Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_sse4_1_single.c
Location:line 135, column 5
Description:Value stored to 'jnrA' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_sse4_1_single
54 * Electrostatics interaction: ReactionField
55 * VdW interaction: CubicSplineTable
56 * Geometry: Particle-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
91 real *charge;
92 int nvdwtype;
93 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94 int *vdwtype;
95 real *vdwparam;
96 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
97 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
98 __m128i vfitab;
99 __m128i ifour = _mm_set1_epi32(4);
100 __m128 rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
101 real *vftab;
102 __m128 dummy_mask,cutoff_mask;
103 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
104 __m128 one = _mm_set1_ps(1.0);
105 __m128 two = _mm_set1_ps(2.0);
106 x = xx[0];
107 f = ff[0];
108
109 nri = nlist->nri;
110 iinr = nlist->iinr;
111 jindex = nlist->jindex;
112 jjnr = nlist->jjnr;
113 shiftidx = nlist->shift;
114 gid = nlist->gid;
115 shiftvec = fr->shift_vec[0];
116 fshift = fr->fshift[0];
117 facel = _mm_set1_ps(fr->epsfac);
118 charge = mdatoms->chargeA;
119 krf = _mm_set1_ps(fr->ic->k_rf);
120 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
121 crf = _mm_set1_ps(fr->ic->c_rf);
122 nvdwtype = fr->ntype;
123 vdwparam = fr->nbfp;
124 vdwtype = mdatoms->typeA;
125
126 vftab = kernel_data->table_vdw->data;
127 vftabscale = _mm_set1_ps(kernel_data->table_vdw->scale);
128
129 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
130 rcutoff_scalar = fr->rcoulomb;
131 rcutoff = _mm_set1_ps(rcutoff_scalar);
132 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
133
134 /* Avoid stupid compiler warnings */
135 jnrA = jnrB = jnrC = jnrD = 0;
Value stored to 'jnrA' is never read
136 j_coord_offsetA = 0;
137 j_coord_offsetB = 0;
138 j_coord_offsetC = 0;
139 j_coord_offsetD = 0;
140
141 outeriter = 0;
142 inneriter = 0;
143
144 for(iidx=0;iidx<4*DIM3;iidx++)
145 {
146 scratch[iidx] = 0.0;
147 }
148
149 /* Start outer loop over neighborlists */
150 for(iidx=0; iidx<nri; iidx++)
151 {
152 /* Load shift vector for this list */
153 i_shift_offset = DIM3*shiftidx[iidx];
154
155 /* Load limits for loop over neighbors */
156 j_index_start = jindex[iidx];
157 j_index_end = jindex[iidx+1];
158
159 /* Get outer coordinate index */
160 inr = iinr[iidx];
161 i_coord_offset = DIM3*inr;
162
163 /* Load i particle coords and add shift vector */
164 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
165
166 fix0 = _mm_setzero_ps();
167 fiy0 = _mm_setzero_ps();
168 fiz0 = _mm_setzero_ps();
169
170 /* Load parameters for i particles */
171 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
172 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
173
174 /* Reset potential sums */
175 velecsum = _mm_setzero_ps();
176 vvdwsum = _mm_setzero_ps();
177
178 /* Start inner kernel loop */
179 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
180 {
181
182 /* Get j neighbor index, and coordinate index */
183 jnrA = jjnr[jidx];
184 jnrB = jjnr[jidx+1];
185 jnrC = jjnr[jidx+2];
186 jnrD = jjnr[jidx+3];
187 j_coord_offsetA = DIM3*jnrA;
188 j_coord_offsetB = DIM3*jnrB;
189 j_coord_offsetC = DIM3*jnrC;
190 j_coord_offsetD = DIM3*jnrD;
191
192 /* load j atom coordinates */
193 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
194 x+j_coord_offsetC,x+j_coord_offsetD,
195 &jx0,&jy0,&jz0);
196
197 /* Calculate displacement vector */
198 dx00 = _mm_sub_ps(ix0,jx0);
199 dy00 = _mm_sub_ps(iy0,jy0);
200 dz00 = _mm_sub_ps(iz0,jz0);
201
202 /* Calculate squared distance and things based on it */
203 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
204
205 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
206
207 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
208
209 /* Load parameters for j particles */
210 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
211 charge+jnrC+0,charge+jnrD+0);
212 vdwjidx0A = 2*vdwtype[jnrA+0];
213 vdwjidx0B = 2*vdwtype[jnrB+0];
214 vdwjidx0C = 2*vdwtype[jnrC+0];
215 vdwjidx0D = 2*vdwtype[jnrD+0];
216
217 /**************************
218 * CALCULATE INTERACTIONS *
219 **************************/
220
221 if (gmx_mm_any_lt(rsq00,rcutoff2))
222 {
223
224 r00 = _mm_mul_ps(rsq00,rinv00);
225
226 /* Compute parameters for interactions between i and j atoms */
227 qq00 = _mm_mul_ps(iq0,jq0);
228 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
229 vdwparam+vdwioffset0+vdwjidx0B,
230 vdwparam+vdwioffset0+vdwjidx0C,
231 vdwparam+vdwioffset0+vdwjidx0D,
232 &c6_00,&c12_00);
233
234 /* Calculate table index by multiplying r with table scale and truncate to integer */
235 rt = _mm_mul_ps(r00,vftabscale);
236 vfitab = _mm_cvttps_epi32(rt);
237 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
238 vfitab = _mm_slli_epi32(vfitab,3);
239
240 /* REACTION-FIELD ELECTROSTATICS */
241 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
242 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
243
244 /* CUBIC SPLINE TABLE DISPERSION */
245 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
246 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
247 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
248 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
249 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
250 Heps = _mm_mul_ps(vfeps,H);
251 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
252 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
253 vvdw6 = _mm_mul_ps(c6_00,VV);
254 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
255 fvdw6 = _mm_mul_ps(c6_00,FF);
256
257 /* CUBIC SPLINE TABLE REPULSION */
258 vfitab = _mm_add_epi32(vfitab,ifour);
259 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
260 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
261 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
262 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
263 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
264 Heps = _mm_mul_ps(vfeps,H);
265 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
266 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
267 vvdw12 = _mm_mul_ps(c12_00,VV);
268 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
269 fvdw12 = _mm_mul_ps(c12_00,FF);
270 vvdw = _mm_add_ps(vvdw12,vvdw6);
271 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
272
273 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
274
275 /* Update potential sum for this i atom from the interaction with this j atom. */
276 velec = _mm_and_ps(velec,cutoff_mask);
277 velecsum = _mm_add_ps(velecsum,velec);
278 vvdw = _mm_and_ps(vvdw,cutoff_mask);
279 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
280
281 fscal = _mm_add_ps(felec,fvdw);
282
283 fscal = _mm_and_ps(fscal,cutoff_mask);
284
285 /* Calculate temporary vectorial force */
286 tx = _mm_mul_ps(fscal,dx00);
287 ty = _mm_mul_ps(fscal,dy00);
288 tz = _mm_mul_ps(fscal,dz00);
289
290 /* Update vectorial force */
291 fix0 = _mm_add_ps(fix0,tx);
292 fiy0 = _mm_add_ps(fiy0,ty);
293 fiz0 = _mm_add_ps(fiz0,tz);
294
295 fjptrA = f+j_coord_offsetA;
296 fjptrB = f+j_coord_offsetB;
297 fjptrC = f+j_coord_offsetC;
298 fjptrD = f+j_coord_offsetD;
299 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
300
301 }
302
303 /* Inner loop uses 72 flops */
304 }
305
306 if(jidx<j_index_end)
307 {
308
309 /* Get j neighbor index, and coordinate index */
310 jnrlistA = jjnr[jidx];
311 jnrlistB = jjnr[jidx+1];
312 jnrlistC = jjnr[jidx+2];
313 jnrlistD = jjnr[jidx+3];
314 /* Sign of each element will be negative for non-real atoms.
315 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
316 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
317 */
318 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
319 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
320 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
321 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
322 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
323 j_coord_offsetA = DIM3*jnrA;
324 j_coord_offsetB = DIM3*jnrB;
325 j_coord_offsetC = DIM3*jnrC;
326 j_coord_offsetD = DIM3*jnrD;
327
328 /* load j atom coordinates */
329 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
330 x+j_coord_offsetC,x+j_coord_offsetD,
331 &jx0,&jy0,&jz0);
332
333 /* Calculate displacement vector */
334 dx00 = _mm_sub_ps(ix0,jx0);
335 dy00 = _mm_sub_ps(iy0,jy0);
336 dz00 = _mm_sub_ps(iz0,jz0);
337
338 /* Calculate squared distance and things based on it */
339 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
340
341 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
342
343 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
344
345 /* Load parameters for j particles */
346 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
347 charge+jnrC+0,charge+jnrD+0);
348 vdwjidx0A = 2*vdwtype[jnrA+0];
349 vdwjidx0B = 2*vdwtype[jnrB+0];
350 vdwjidx0C = 2*vdwtype[jnrC+0];
351 vdwjidx0D = 2*vdwtype[jnrD+0];
352
353 /**************************
354 * CALCULATE INTERACTIONS *
355 **************************/
356
357 if (gmx_mm_any_lt(rsq00,rcutoff2))
358 {
359
360 r00 = _mm_mul_ps(rsq00,rinv00);
361 r00 = _mm_andnot_ps(dummy_mask,r00);
362
363 /* Compute parameters for interactions between i and j atoms */
364 qq00 = _mm_mul_ps(iq0,jq0);
365 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
366 vdwparam+vdwioffset0+vdwjidx0B,
367 vdwparam+vdwioffset0+vdwjidx0C,
368 vdwparam+vdwioffset0+vdwjidx0D,
369 &c6_00,&c12_00);
370
371 /* Calculate table index by multiplying r with table scale and truncate to integer */
372 rt = _mm_mul_ps(r00,vftabscale);
373 vfitab = _mm_cvttps_epi32(rt);
374 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
375 vfitab = _mm_slli_epi32(vfitab,3);
376
377 /* REACTION-FIELD ELECTROSTATICS */
378 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
379 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
380
381 /* CUBIC SPLINE TABLE DISPERSION */
382 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
383 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
384 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
385 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
386 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
387 Heps = _mm_mul_ps(vfeps,H);
388 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
389 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
390 vvdw6 = _mm_mul_ps(c6_00,VV);
391 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
392 fvdw6 = _mm_mul_ps(c6_00,FF);
393
394 /* CUBIC SPLINE TABLE REPULSION */
395 vfitab = _mm_add_epi32(vfitab,ifour);
396 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
397 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
398 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
399 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
400 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
401 Heps = _mm_mul_ps(vfeps,H);
402 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
403 VV = _mm_add_ps(Y,_mm_mul_ps(vfeps,Fp));
404 vvdw12 = _mm_mul_ps(c12_00,VV);
405 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
406 fvdw12 = _mm_mul_ps(c12_00,FF);
407 vvdw = _mm_add_ps(vvdw12,vvdw6);
408 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
409
410 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
411
412 /* Update potential sum for this i atom from the interaction with this j atom. */
413 velec = _mm_and_ps(velec,cutoff_mask);
414 velec = _mm_andnot_ps(dummy_mask,velec);
415 velecsum = _mm_add_ps(velecsum,velec);
416 vvdw = _mm_and_ps(vvdw,cutoff_mask);
417 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
418 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
419
420 fscal = _mm_add_ps(felec,fvdw);
421
422 fscal = _mm_and_ps(fscal,cutoff_mask);
423
424 fscal = _mm_andnot_ps(dummy_mask,fscal);
425
426 /* Calculate temporary vectorial force */
427 tx = _mm_mul_ps(fscal,dx00);
428 ty = _mm_mul_ps(fscal,dy00);
429 tz = _mm_mul_ps(fscal,dz00);
430
431 /* Update vectorial force */
432 fix0 = _mm_add_ps(fix0,tx);
433 fiy0 = _mm_add_ps(fiy0,ty);
434 fiz0 = _mm_add_ps(fiz0,tz);
435
436 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
437 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
438 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
439 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
440 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
441
442 }
443
444 /* Inner loop uses 73 flops */
445 }
446
447 /* End of innermost loop */
448
449 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
450 f+i_coord_offset,fshift+i_shift_offset);
451
452 ggid = gid[iidx];
453 /* Update potential energies */
454 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
455 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
456
457 /* Increment number of inner iterations */
458 inneriter += j_index_end - j_index_start;
459
460 /* Outer loop uses 9 flops */
461 }
462
463 /* Increment number of outer iterations */
464 outeriter += nri;
465
466 /* Update outer/inner flops */
467
468 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*73)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_VF] += outeriter*9 + inneriter
*73
;
469}
470/*
471 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_sse4_1_single
472 * Electrostatics interaction: ReactionField
473 * VdW interaction: CubicSplineTable
474 * Geometry: Particle-Particle
475 * Calculate force/pot: Force
476 */
477void
478nb_kernel_ElecRFCut_VdwCSTab_GeomP1P1_F_sse4_1_single
479 (t_nblist * gmx_restrict nlist,
480 rvec * gmx_restrict xx,
481 rvec * gmx_restrict ff,
482 t_forcerec * gmx_restrict fr,
483 t_mdatoms * gmx_restrict mdatoms,
484 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
485 t_nrnb * gmx_restrict nrnb)
486{
487 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
488 * just 0 for non-waters.
489 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
490 * jnr indices corresponding to data put in the four positions in the SIMD register.
491 */
492 int i_shift_offset,i_coord_offset,outeriter,inneriter;
493 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
494 int jnrA,jnrB,jnrC,jnrD;
495 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
496 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
497 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
498 real rcutoff_scalar;
499 real *shiftvec,*fshift,*x,*f;
500 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
501 real scratch[4*DIM3];
502 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
503 int vdwioffset0;
504 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
505 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
506 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
507 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
508 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
509 real *charge;
510 int nvdwtype;
511 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
512 int *vdwtype;
513 real *vdwparam;
514 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
515 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
516 __m128i vfitab;
517 __m128i ifour = _mm_set1_epi32(4);
518 __m128 rt,vfeps,vftabscale,Y,F,G,H,Heps,Fp,VV,FF;
519 real *vftab;
520 __m128 dummy_mask,cutoff_mask;
521 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
522 __m128 one = _mm_set1_ps(1.0);
523 __m128 two = _mm_set1_ps(2.0);
524 x = xx[0];
525 f = ff[0];
526
527 nri = nlist->nri;
528 iinr = nlist->iinr;
529 jindex = nlist->jindex;
530 jjnr = nlist->jjnr;
531 shiftidx = nlist->shift;
532 gid = nlist->gid;
533 shiftvec = fr->shift_vec[0];
534 fshift = fr->fshift[0];
535 facel = _mm_set1_ps(fr->epsfac);
536 charge = mdatoms->chargeA;
537 krf = _mm_set1_ps(fr->ic->k_rf);
538 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
539 crf = _mm_set1_ps(fr->ic->c_rf);
540 nvdwtype = fr->ntype;
541 vdwparam = fr->nbfp;
542 vdwtype = mdatoms->typeA;
543
544 vftab = kernel_data->table_vdw->data;
545 vftabscale = _mm_set1_ps(kernel_data->table_vdw->scale);
546
547 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
548 rcutoff_scalar = fr->rcoulomb;
549 rcutoff = _mm_set1_ps(rcutoff_scalar);
550 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
551
552 /* Avoid stupid compiler warnings */
553 jnrA = jnrB = jnrC = jnrD = 0;
554 j_coord_offsetA = 0;
555 j_coord_offsetB = 0;
556 j_coord_offsetC = 0;
557 j_coord_offsetD = 0;
558
559 outeriter = 0;
560 inneriter = 0;
561
562 for(iidx=0;iidx<4*DIM3;iidx++)
563 {
564 scratch[iidx] = 0.0;
565 }
566
567 /* Start outer loop over neighborlists */
568 for(iidx=0; iidx<nri; iidx++)
569 {
570 /* Load shift vector for this list */
571 i_shift_offset = DIM3*shiftidx[iidx];
572
573 /* Load limits for loop over neighbors */
574 j_index_start = jindex[iidx];
575 j_index_end = jindex[iidx+1];
576
577 /* Get outer coordinate index */
578 inr = iinr[iidx];
579 i_coord_offset = DIM3*inr;
580
581 /* Load i particle coords and add shift vector */
582 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
583
584 fix0 = _mm_setzero_ps();
585 fiy0 = _mm_setzero_ps();
586 fiz0 = _mm_setzero_ps();
587
588 /* Load parameters for i particles */
589 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
590 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
591
592 /* Start inner kernel loop */
593 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
594 {
595
596 /* Get j neighbor index, and coordinate index */
597 jnrA = jjnr[jidx];
598 jnrB = jjnr[jidx+1];
599 jnrC = jjnr[jidx+2];
600 jnrD = jjnr[jidx+3];
601 j_coord_offsetA = DIM3*jnrA;
602 j_coord_offsetB = DIM3*jnrB;
603 j_coord_offsetC = DIM3*jnrC;
604 j_coord_offsetD = DIM3*jnrD;
605
606 /* load j atom coordinates */
607 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
608 x+j_coord_offsetC,x+j_coord_offsetD,
609 &jx0,&jy0,&jz0);
610
611 /* Calculate displacement vector */
612 dx00 = _mm_sub_ps(ix0,jx0);
613 dy00 = _mm_sub_ps(iy0,jy0);
614 dz00 = _mm_sub_ps(iz0,jz0);
615
616 /* Calculate squared distance and things based on it */
617 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
618
619 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
620
621 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
622
623 /* Load parameters for j particles */
624 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
625 charge+jnrC+0,charge+jnrD+0);
626 vdwjidx0A = 2*vdwtype[jnrA+0];
627 vdwjidx0B = 2*vdwtype[jnrB+0];
628 vdwjidx0C = 2*vdwtype[jnrC+0];
629 vdwjidx0D = 2*vdwtype[jnrD+0];
630
631 /**************************
632 * CALCULATE INTERACTIONS *
633 **************************/
634
635 if (gmx_mm_any_lt(rsq00,rcutoff2))
636 {
637
638 r00 = _mm_mul_ps(rsq00,rinv00);
639
640 /* Compute parameters for interactions between i and j atoms */
641 qq00 = _mm_mul_ps(iq0,jq0);
642 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
643 vdwparam+vdwioffset0+vdwjidx0B,
644 vdwparam+vdwioffset0+vdwjidx0C,
645 vdwparam+vdwioffset0+vdwjidx0D,
646 &c6_00,&c12_00);
647
648 /* Calculate table index by multiplying r with table scale and truncate to integer */
649 rt = _mm_mul_ps(r00,vftabscale);
650 vfitab = _mm_cvttps_epi32(rt);
651 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
652 vfitab = _mm_slli_epi32(vfitab,3);
653
654 /* REACTION-FIELD ELECTROSTATICS */
655 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
656
657 /* CUBIC SPLINE TABLE DISPERSION */
658 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
659 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
660 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
661 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
662 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
663 Heps = _mm_mul_ps(vfeps,H);
664 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
665 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
666 fvdw6 = _mm_mul_ps(c6_00,FF);
667
668 /* CUBIC SPLINE TABLE REPULSION */
669 vfitab = _mm_add_epi32(vfitab,ifour);
670 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
671 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
672 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
673 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
674 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
675 Heps = _mm_mul_ps(vfeps,H);
676 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
677 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
678 fvdw12 = _mm_mul_ps(c12_00,FF);
679 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
680
681 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
682
683 fscal = _mm_add_ps(felec,fvdw);
684
685 fscal = _mm_and_ps(fscal,cutoff_mask);
686
687 /* Calculate temporary vectorial force */
688 tx = _mm_mul_ps(fscal,dx00);
689 ty = _mm_mul_ps(fscal,dy00);
690 tz = _mm_mul_ps(fscal,dz00);
691
692 /* Update vectorial force */
693 fix0 = _mm_add_ps(fix0,tx);
694 fiy0 = _mm_add_ps(fiy0,ty);
695 fiz0 = _mm_add_ps(fiz0,tz);
696
697 fjptrA = f+j_coord_offsetA;
698 fjptrB = f+j_coord_offsetB;
699 fjptrC = f+j_coord_offsetC;
700 fjptrD = f+j_coord_offsetD;
701 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
702
703 }
704
705 /* Inner loop uses 57 flops */
706 }
707
708 if(jidx<j_index_end)
709 {
710
711 /* Get j neighbor index, and coordinate index */
712 jnrlistA = jjnr[jidx];
713 jnrlistB = jjnr[jidx+1];
714 jnrlistC = jjnr[jidx+2];
715 jnrlistD = jjnr[jidx+3];
716 /* Sign of each element will be negative for non-real atoms.
717 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
718 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
719 */
720 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
721 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
722 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
723 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
724 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
725 j_coord_offsetA = DIM3*jnrA;
726 j_coord_offsetB = DIM3*jnrB;
727 j_coord_offsetC = DIM3*jnrC;
728 j_coord_offsetD = DIM3*jnrD;
729
730 /* load j atom coordinates */
731 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
732 x+j_coord_offsetC,x+j_coord_offsetD,
733 &jx0,&jy0,&jz0);
734
735 /* Calculate displacement vector */
736 dx00 = _mm_sub_ps(ix0,jx0);
737 dy00 = _mm_sub_ps(iy0,jy0);
738 dz00 = _mm_sub_ps(iz0,jz0);
739
740 /* Calculate squared distance and things based on it */
741 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
742
743 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
744
745 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
746
747 /* Load parameters for j particles */
748 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
749 charge+jnrC+0,charge+jnrD+0);
750 vdwjidx0A = 2*vdwtype[jnrA+0];
751 vdwjidx0B = 2*vdwtype[jnrB+0];
752 vdwjidx0C = 2*vdwtype[jnrC+0];
753 vdwjidx0D = 2*vdwtype[jnrD+0];
754
755 /**************************
756 * CALCULATE INTERACTIONS *
757 **************************/
758
759 if (gmx_mm_any_lt(rsq00,rcutoff2))
760 {
761
762 r00 = _mm_mul_ps(rsq00,rinv00);
763 r00 = _mm_andnot_ps(dummy_mask,r00);
764
765 /* Compute parameters for interactions between i and j atoms */
766 qq00 = _mm_mul_ps(iq0,jq0);
767 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
768 vdwparam+vdwioffset0+vdwjidx0B,
769 vdwparam+vdwioffset0+vdwjidx0C,
770 vdwparam+vdwioffset0+vdwjidx0D,
771 &c6_00,&c12_00);
772
773 /* Calculate table index by multiplying r with table scale and truncate to integer */
774 rt = _mm_mul_ps(r00,vftabscale);
775 vfitab = _mm_cvttps_epi32(rt);
776 vfeps = _mm_sub_ps(rt,_mm_round_ps(rt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (rt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
777 vfitab = _mm_slli_epi32(vfitab,3);
778
779 /* REACTION-FIELD ELECTROSTATICS */
780 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
781
782 /* CUBIC SPLINE TABLE DISPERSION */
783 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
784 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
785 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
786 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
787 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
788 Heps = _mm_mul_ps(vfeps,H);
789 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
790 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
791 fvdw6 = _mm_mul_ps(c6_00,FF);
792
793 /* CUBIC SPLINE TABLE REPULSION */
794 vfitab = _mm_add_epi32(vfitab,ifour);
795 Y = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,0)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(0) &
3];}))
);
796 F = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,1)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(1) &
3];}))
);
797 G = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,2)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(2) &
3];}))
);
798 H = _mm_load_ps( vftab + gmx_mm_extract_epi32(vfitab,3)(__extension__ ({ __v4si __a = (__v4si)(vfitab); __a[(3) &
3];}))
);
799 _MM_TRANSPOSE4_PS(Y,F,G,H)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((Y
), (F)); tmp2 = _mm_unpacklo_ps((G), (H)); tmp1 = _mm_unpackhi_ps
((Y), (F)); tmp3 = _mm_unpackhi_ps((G), (H)); (Y) = _mm_movelh_ps
(tmp0, tmp2); (F) = _mm_movehl_ps(tmp2, tmp0); (G) = _mm_movelh_ps
(tmp1, tmp3); (H) = _mm_movehl_ps(tmp3, tmp1); } while (0)
;
800 Heps = _mm_mul_ps(vfeps,H);
801 Fp = _mm_add_ps(F,_mm_mul_ps(vfeps,_mm_add_ps(G,Heps)));
802 FF = _mm_add_ps(Fp,_mm_mul_ps(vfeps,_mm_add_ps(G,_mm_add_ps(Heps,Heps))));
803 fvdw12 = _mm_mul_ps(c12_00,FF);
804 fvdw = _mm_xor_ps(signbit,_mm_mul_ps(_mm_add_ps(fvdw6,fvdw12),_mm_mul_ps(vftabscale,rinv00)));
805
806 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
807
808 fscal = _mm_add_ps(felec,fvdw);
809
810 fscal = _mm_and_ps(fscal,cutoff_mask);
811
812 fscal = _mm_andnot_ps(dummy_mask,fscal);
813
814 /* Calculate temporary vectorial force */
815 tx = _mm_mul_ps(fscal,dx00);
816 ty = _mm_mul_ps(fscal,dy00);
817 tz = _mm_mul_ps(fscal,dz00);
818
819 /* Update vectorial force */
820 fix0 = _mm_add_ps(fix0,tx);
821 fiy0 = _mm_add_ps(fiy0,ty);
822 fiz0 = _mm_add_ps(fiz0,tz);
823
824 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
825 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
826 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
827 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
828 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
829
830 }
831
832 /* Inner loop uses 58 flops */
833 }
834
835 /* End of innermost loop */
836
837 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
838 f+i_coord_offset,fshift+i_shift_offset);
839
840 /* Increment number of inner iterations */
841 inneriter += j_index_end - j_index_start;
842
843 /* Outer loop uses 7 flops */
844 }
845
846 /* Increment number of outer iterations */
847 outeriter += nri;
848
849 /* Update outer/inner flops */
850
851 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*58)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_F] += outeriter*7 + inneriter
*58
;
852}