Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEw_VdwLJ_GeomW3W3_c.c
Location:line 120, column 5
Description:Value stored to 'sh_ewald' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJ_GeomW3W3_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: LennardJones
53 * Geometry: Water3-Water3
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEw_VdwLJ_GeomW3W3_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 int vdwjidx1;
81 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
82 int vdwjidx2;
83 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
84 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
85 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
86 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
87 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
88 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
89 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
90 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
91 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
92 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
93 real velec,felec,velecsum,facel,crf,krf,krf2;
94 real *charge;
95 int nvdwtype;
96 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
97 int *vdwtype;
98 real *vdwparam;
99 int ewitab;
100 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
101 real *ewtab;
102
103 x = xx[0];
104 f = ff[0];
105
106 nri = nlist->nri;
107 iinr = nlist->iinr;
108 jindex = nlist->jindex;
109 jjnr = nlist->jjnr;
110 shiftidx = nlist->shift;
111 gid = nlist->gid;
112 shiftvec = fr->shift_vec[0];
113 fshift = fr->fshift[0];
114 facel = fr->epsfac;
115 charge = mdatoms->chargeA;
116 nvdwtype = fr->ntype;
117 vdwparam = fr->nbfp;
118 vdwtype = mdatoms->typeA;
119
120 sh_ewald = fr->ic->sh_ewald;
Value stored to 'sh_ewald' is never read
121 ewtab = fr->ic->tabq_coul_FDV0;
122 ewtabscale = fr->ic->tabq_scale;
123 ewtabhalfspace = 0.5/ewtabscale;
124
125 /* Setup water-specific parameters */
126 inr = nlist->iinr[0];
127 iq0 = facel*charge[inr+0];
128 iq1 = facel*charge[inr+1];
129 iq2 = facel*charge[inr+2];
130 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
131
132 jq0 = charge[inr+0];
133 jq1 = charge[inr+1];
134 jq2 = charge[inr+2];
135 vdwjidx0 = 2*vdwtype[inr+0];
136 qq00 = iq0*jq0;
137 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
138 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
139 qq01 = iq0*jq1;
140 qq02 = iq0*jq2;
141 qq10 = iq1*jq0;
142 qq11 = iq1*jq1;
143 qq12 = iq1*jq2;
144 qq20 = iq2*jq0;
145 qq21 = iq2*jq1;
146 qq22 = iq2*jq2;
147
148 outeriter = 0;
149 inneriter = 0;
150
151 /* Start outer loop over neighborlists */
152 for(iidx=0; iidx<nri; iidx++)
153 {
154 /* Load shift vector for this list */
155 i_shift_offset = DIM3*shiftidx[iidx];
156 shX = shiftvec[i_shift_offset+XX0];
157 shY = shiftvec[i_shift_offset+YY1];
158 shZ = shiftvec[i_shift_offset+ZZ2];
159
160 /* Load limits for loop over neighbors */
161 j_index_start = jindex[iidx];
162 j_index_end = jindex[iidx+1];
163
164 /* Get outer coordinate index */
165 inr = iinr[iidx];
166 i_coord_offset = DIM3*inr;
167
168 /* Load i particle coords and add shift vector */
169 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
170 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
171 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
172 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
173 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
174 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
175 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
176 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
177 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
178
179 fix0 = 0.0;
180 fiy0 = 0.0;
181 fiz0 = 0.0;
182 fix1 = 0.0;
183 fiy1 = 0.0;
184 fiz1 = 0.0;
185 fix2 = 0.0;
186 fiy2 = 0.0;
187 fiz2 = 0.0;
188
189 /* Reset potential sums */
190 velecsum = 0.0;
191 vvdwsum = 0.0;
192
193 /* Start inner kernel loop */
194 for(jidx=j_index_start; jidx<j_index_end; jidx++)
195 {
196 /* Get j neighbor index, and coordinate index */
197 jnr = jjnr[jidx];
198 j_coord_offset = DIM3*jnr;
199
200 /* load j atom coordinates */
201 jx0 = x[j_coord_offset+DIM3*0+XX0];
202 jy0 = x[j_coord_offset+DIM3*0+YY1];
203 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
204 jx1 = x[j_coord_offset+DIM3*1+XX0];
205 jy1 = x[j_coord_offset+DIM3*1+YY1];
206 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
207 jx2 = x[j_coord_offset+DIM3*2+XX0];
208 jy2 = x[j_coord_offset+DIM3*2+YY1];
209 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
210
211 /* Calculate displacement vector */
212 dx00 = ix0 - jx0;
213 dy00 = iy0 - jy0;
214 dz00 = iz0 - jz0;
215 dx01 = ix0 - jx1;
216 dy01 = iy0 - jy1;
217 dz01 = iz0 - jz1;
218 dx02 = ix0 - jx2;
219 dy02 = iy0 - jy2;
220 dz02 = iz0 - jz2;
221 dx10 = ix1 - jx0;
222 dy10 = iy1 - jy0;
223 dz10 = iz1 - jz0;
224 dx11 = ix1 - jx1;
225 dy11 = iy1 - jy1;
226 dz11 = iz1 - jz1;
227 dx12 = ix1 - jx2;
228 dy12 = iy1 - jy2;
229 dz12 = iz1 - jz2;
230 dx20 = ix2 - jx0;
231 dy20 = iy2 - jy0;
232 dz20 = iz2 - jz0;
233 dx21 = ix2 - jx1;
234 dy21 = iy2 - jy1;
235 dz21 = iz2 - jz1;
236 dx22 = ix2 - jx2;
237 dy22 = iy2 - jy2;
238 dz22 = iz2 - jz2;
239
240 /* Calculate squared distance and things based on it */
241 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
242 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
243 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
244 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
245 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
246 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
247 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
248 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
249 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
250
251 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
252 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
253 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
254 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
255 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
256 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
257 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
258 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
259 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
260
261 rinvsq00 = rinv00*rinv00;
262 rinvsq01 = rinv01*rinv01;
263 rinvsq02 = rinv02*rinv02;
264 rinvsq10 = rinv10*rinv10;
265 rinvsq11 = rinv11*rinv11;
266 rinvsq12 = rinv12*rinv12;
267 rinvsq20 = rinv20*rinv20;
268 rinvsq21 = rinv21*rinv21;
269 rinvsq22 = rinv22*rinv22;
270
271 /**************************
272 * CALCULATE INTERACTIONS *
273 **************************/
274
275 r00 = rsq00*rinv00;
276
277 /* EWALD ELECTROSTATICS */
278
279 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
280 ewrt = r00*ewtabscale;
281 ewitab = ewrt;
282 eweps = ewrt-ewitab;
283 ewitab = 4*ewitab;
284 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
285 velec = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
286 felec = qq00*rinv00*(rinvsq00-felec);
287
288 /* LENNARD-JONES DISPERSION/REPULSION */
289
290 rinvsix = rinvsq00*rinvsq00*rinvsq00;
291 vvdw6 = c6_00*rinvsix;
292 vvdw12 = c12_00*rinvsix*rinvsix;
293 vvdw = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
294 fvdw = (vvdw12-vvdw6)*rinvsq00;
295
296 /* Update potential sums from outer loop */
297 velecsum += velec;
298 vvdwsum += vvdw;
299
300 fscal = felec+fvdw;
301
302 /* Calculate temporary vectorial force */
303 tx = fscal*dx00;
304 ty = fscal*dy00;
305 tz = fscal*dz00;
306
307 /* Update vectorial force */
308 fix0 += tx;
309 fiy0 += ty;
310 fiz0 += tz;
311 f[j_coord_offset+DIM3*0+XX0] -= tx;
312 f[j_coord_offset+DIM3*0+YY1] -= ty;
313 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
314
315 /**************************
316 * CALCULATE INTERACTIONS *
317 **************************/
318
319 r01 = rsq01*rinv01;
320
321 /* EWALD ELECTROSTATICS */
322
323 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
324 ewrt = r01*ewtabscale;
325 ewitab = ewrt;
326 eweps = ewrt-ewitab;
327 ewitab = 4*ewitab;
328 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
329 velec = qq01*(rinv01-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
330 felec = qq01*rinv01*(rinvsq01-felec);
331
332 /* Update potential sums from outer loop */
333 velecsum += velec;
334
335 fscal = felec;
336
337 /* Calculate temporary vectorial force */
338 tx = fscal*dx01;
339 ty = fscal*dy01;
340 tz = fscal*dz01;
341
342 /* Update vectorial force */
343 fix0 += tx;
344 fiy0 += ty;
345 fiz0 += tz;
346 f[j_coord_offset+DIM3*1+XX0] -= tx;
347 f[j_coord_offset+DIM3*1+YY1] -= ty;
348 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
349
350 /**************************
351 * CALCULATE INTERACTIONS *
352 **************************/
353
354 r02 = rsq02*rinv02;
355
356 /* EWALD ELECTROSTATICS */
357
358 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
359 ewrt = r02*ewtabscale;
360 ewitab = ewrt;
361 eweps = ewrt-ewitab;
362 ewitab = 4*ewitab;
363 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
364 velec = qq02*(rinv02-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
365 felec = qq02*rinv02*(rinvsq02-felec);
366
367 /* Update potential sums from outer loop */
368 velecsum += velec;
369
370 fscal = felec;
371
372 /* Calculate temporary vectorial force */
373 tx = fscal*dx02;
374 ty = fscal*dy02;
375 tz = fscal*dz02;
376
377 /* Update vectorial force */
378 fix0 += tx;
379 fiy0 += ty;
380 fiz0 += tz;
381 f[j_coord_offset+DIM3*2+XX0] -= tx;
382 f[j_coord_offset+DIM3*2+YY1] -= ty;
383 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
384
385 /**************************
386 * CALCULATE INTERACTIONS *
387 **************************/
388
389 r10 = rsq10*rinv10;
390
391 /* EWALD ELECTROSTATICS */
392
393 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
394 ewrt = r10*ewtabscale;
395 ewitab = ewrt;
396 eweps = ewrt-ewitab;
397 ewitab = 4*ewitab;
398 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
399 velec = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
400 felec = qq10*rinv10*(rinvsq10-felec);
401
402 /* Update potential sums from outer loop */
403 velecsum += velec;
404
405 fscal = felec;
406
407 /* Calculate temporary vectorial force */
408 tx = fscal*dx10;
409 ty = fscal*dy10;
410 tz = fscal*dz10;
411
412 /* Update vectorial force */
413 fix1 += tx;
414 fiy1 += ty;
415 fiz1 += tz;
416 f[j_coord_offset+DIM3*0+XX0] -= tx;
417 f[j_coord_offset+DIM3*0+YY1] -= ty;
418 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
419
420 /**************************
421 * CALCULATE INTERACTIONS *
422 **************************/
423
424 r11 = rsq11*rinv11;
425
426 /* EWALD ELECTROSTATICS */
427
428 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
429 ewrt = r11*ewtabscale;
430 ewitab = ewrt;
431 eweps = ewrt-ewitab;
432 ewitab = 4*ewitab;
433 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
434 velec = qq11*(rinv11-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
435 felec = qq11*rinv11*(rinvsq11-felec);
436
437 /* Update potential sums from outer loop */
438 velecsum += velec;
439
440 fscal = felec;
441
442 /* Calculate temporary vectorial force */
443 tx = fscal*dx11;
444 ty = fscal*dy11;
445 tz = fscal*dz11;
446
447 /* Update vectorial force */
448 fix1 += tx;
449 fiy1 += ty;
450 fiz1 += tz;
451 f[j_coord_offset+DIM3*1+XX0] -= tx;
452 f[j_coord_offset+DIM3*1+YY1] -= ty;
453 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
454
455 /**************************
456 * CALCULATE INTERACTIONS *
457 **************************/
458
459 r12 = rsq12*rinv12;
460
461 /* EWALD ELECTROSTATICS */
462
463 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
464 ewrt = r12*ewtabscale;
465 ewitab = ewrt;
466 eweps = ewrt-ewitab;
467 ewitab = 4*ewitab;
468 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
469 velec = qq12*(rinv12-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
470 felec = qq12*rinv12*(rinvsq12-felec);
471
472 /* Update potential sums from outer loop */
473 velecsum += velec;
474
475 fscal = felec;
476
477 /* Calculate temporary vectorial force */
478 tx = fscal*dx12;
479 ty = fscal*dy12;
480 tz = fscal*dz12;
481
482 /* Update vectorial force */
483 fix1 += tx;
484 fiy1 += ty;
485 fiz1 += tz;
486 f[j_coord_offset+DIM3*2+XX0] -= tx;
487 f[j_coord_offset+DIM3*2+YY1] -= ty;
488 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
489
490 /**************************
491 * CALCULATE INTERACTIONS *
492 **************************/
493
494 r20 = rsq20*rinv20;
495
496 /* EWALD ELECTROSTATICS */
497
498 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
499 ewrt = r20*ewtabscale;
500 ewitab = ewrt;
501 eweps = ewrt-ewitab;
502 ewitab = 4*ewitab;
503 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
504 velec = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
505 felec = qq20*rinv20*(rinvsq20-felec);
506
507 /* Update potential sums from outer loop */
508 velecsum += velec;
509
510 fscal = felec;
511
512 /* Calculate temporary vectorial force */
513 tx = fscal*dx20;
514 ty = fscal*dy20;
515 tz = fscal*dz20;
516
517 /* Update vectorial force */
518 fix2 += tx;
519 fiy2 += ty;
520 fiz2 += tz;
521 f[j_coord_offset+DIM3*0+XX0] -= tx;
522 f[j_coord_offset+DIM3*0+YY1] -= ty;
523 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
524
525 /**************************
526 * CALCULATE INTERACTIONS *
527 **************************/
528
529 r21 = rsq21*rinv21;
530
531 /* EWALD ELECTROSTATICS */
532
533 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
534 ewrt = r21*ewtabscale;
535 ewitab = ewrt;
536 eweps = ewrt-ewitab;
537 ewitab = 4*ewitab;
538 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
539 velec = qq21*(rinv21-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
540 felec = qq21*rinv21*(rinvsq21-felec);
541
542 /* Update potential sums from outer loop */
543 velecsum += velec;
544
545 fscal = felec;
546
547 /* Calculate temporary vectorial force */
548 tx = fscal*dx21;
549 ty = fscal*dy21;
550 tz = fscal*dz21;
551
552 /* Update vectorial force */
553 fix2 += tx;
554 fiy2 += ty;
555 fiz2 += tz;
556 f[j_coord_offset+DIM3*1+XX0] -= tx;
557 f[j_coord_offset+DIM3*1+YY1] -= ty;
558 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
559
560 /**************************
561 * CALCULATE INTERACTIONS *
562 **************************/
563
564 r22 = rsq22*rinv22;
565
566 /* EWALD ELECTROSTATICS */
567
568 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
569 ewrt = r22*ewtabscale;
570 ewitab = ewrt;
571 eweps = ewrt-ewitab;
572 ewitab = 4*ewitab;
573 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
574 velec = qq22*(rinv22-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
575 felec = qq22*rinv22*(rinvsq22-felec);
576
577 /* Update potential sums from outer loop */
578 velecsum += velec;
579
580 fscal = felec;
581
582 /* Calculate temporary vectorial force */
583 tx = fscal*dx22;
584 ty = fscal*dy22;
585 tz = fscal*dz22;
586
587 /* Update vectorial force */
588 fix2 += tx;
589 fiy2 += ty;
590 fiz2 += tz;
591 f[j_coord_offset+DIM3*2+XX0] -= tx;
592 f[j_coord_offset+DIM3*2+YY1] -= ty;
593 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
594
595 /* Inner loop uses 372 flops */
596 }
597 /* End of innermost loop */
598
599 tx = ty = tz = 0;
600 f[i_coord_offset+DIM3*0+XX0] += fix0;
601 f[i_coord_offset+DIM3*0+YY1] += fiy0;
602 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
603 tx += fix0;
604 ty += fiy0;
605 tz += fiz0;
606 f[i_coord_offset+DIM3*1+XX0] += fix1;
607 f[i_coord_offset+DIM3*1+YY1] += fiy1;
608 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
609 tx += fix1;
610 ty += fiy1;
611 tz += fiz1;
612 f[i_coord_offset+DIM3*2+XX0] += fix2;
613 f[i_coord_offset+DIM3*2+YY1] += fiy2;
614 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
615 tx += fix2;
616 ty += fiy2;
617 tz += fiz2;
618 fshift[i_shift_offset+XX0] += tx;
619 fshift[i_shift_offset+YY1] += ty;
620 fshift[i_shift_offset+ZZ2] += tz;
621
622 ggid = gid[iidx];
623 /* Update potential energies */
624 kernel_data->energygrp_elec[ggid] += velecsum;
625 kernel_data->energygrp_vdw[ggid] += vvdwsum;
626
627 /* Increment number of inner iterations */
628 inneriter += j_index_end - j_index_start;
629
630 /* Outer loop uses 32 flops */
631 }
632
633 /* Increment number of outer iterations */
634 outeriter += nri;
635
636 /* Update outer/inner flops */
637
638 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*32 + inneriter*372)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_VF] += outeriter*32 +
inneriter*372
;
639}
640/*
641 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJ_GeomW3W3_F_c
642 * Electrostatics interaction: Ewald
643 * VdW interaction: LennardJones
644 * Geometry: Water3-Water3
645 * Calculate force/pot: Force
646 */
647void
648nb_kernel_ElecEw_VdwLJ_GeomW3W3_F_c
649 (t_nblist * gmx_restrict__restrict nlist,
650 rvec * gmx_restrict__restrict xx,
651 rvec * gmx_restrict__restrict ff,
652 t_forcerec * gmx_restrict__restrict fr,
653 t_mdatoms * gmx_restrict__restrict mdatoms,
654 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
655 t_nrnb * gmx_restrict__restrict nrnb)
656{
657 int i_shift_offset,i_coord_offset,j_coord_offset;
658 int j_index_start,j_index_end;
659 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
660 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
661 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
662 real *shiftvec,*fshift,*x,*f;
663 int vdwioffset0;
664 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
665 int vdwioffset1;
666 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
667 int vdwioffset2;
668 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
669 int vdwjidx0;
670 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
671 int vdwjidx1;
672 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
673 int vdwjidx2;
674 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
675 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
676 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
677 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
678 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
679 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
680 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
681 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
682 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
683 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
684 real velec,felec,velecsum,facel,crf,krf,krf2;
685 real *charge;
686 int nvdwtype;
687 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
688 int *vdwtype;
689 real *vdwparam;
690 int ewitab;
691 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
692 real *ewtab;
693
694 x = xx[0];
695 f = ff[0];
696
697 nri = nlist->nri;
698 iinr = nlist->iinr;
699 jindex = nlist->jindex;
700 jjnr = nlist->jjnr;
701 shiftidx = nlist->shift;
702 gid = nlist->gid;
703 shiftvec = fr->shift_vec[0];
704 fshift = fr->fshift[0];
705 facel = fr->epsfac;
706 charge = mdatoms->chargeA;
707 nvdwtype = fr->ntype;
708 vdwparam = fr->nbfp;
709 vdwtype = mdatoms->typeA;
710
711 sh_ewald = fr->ic->sh_ewald;
712 ewtab = fr->ic->tabq_coul_F;
713 ewtabscale = fr->ic->tabq_scale;
714 ewtabhalfspace = 0.5/ewtabscale;
715
716 /* Setup water-specific parameters */
717 inr = nlist->iinr[0];
718 iq0 = facel*charge[inr+0];
719 iq1 = facel*charge[inr+1];
720 iq2 = facel*charge[inr+2];
721 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
722
723 jq0 = charge[inr+0];
724 jq1 = charge[inr+1];
725 jq2 = charge[inr+2];
726 vdwjidx0 = 2*vdwtype[inr+0];
727 qq00 = iq0*jq0;
728 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
729 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
730 qq01 = iq0*jq1;
731 qq02 = iq0*jq2;
732 qq10 = iq1*jq0;
733 qq11 = iq1*jq1;
734 qq12 = iq1*jq2;
735 qq20 = iq2*jq0;
736 qq21 = iq2*jq1;
737 qq22 = iq2*jq2;
738
739 outeriter = 0;
740 inneriter = 0;
741
742 /* Start outer loop over neighborlists */
743 for(iidx=0; iidx<nri; iidx++)
744 {
745 /* Load shift vector for this list */
746 i_shift_offset = DIM3*shiftidx[iidx];
747 shX = shiftvec[i_shift_offset+XX0];
748 shY = shiftvec[i_shift_offset+YY1];
749 shZ = shiftvec[i_shift_offset+ZZ2];
750
751 /* Load limits for loop over neighbors */
752 j_index_start = jindex[iidx];
753 j_index_end = jindex[iidx+1];
754
755 /* Get outer coordinate index */
756 inr = iinr[iidx];
757 i_coord_offset = DIM3*inr;
758
759 /* Load i particle coords and add shift vector */
760 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
761 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
762 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
763 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
764 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
765 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
766 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
767 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
768 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
769
770 fix0 = 0.0;
771 fiy0 = 0.0;
772 fiz0 = 0.0;
773 fix1 = 0.0;
774 fiy1 = 0.0;
775 fiz1 = 0.0;
776 fix2 = 0.0;
777 fiy2 = 0.0;
778 fiz2 = 0.0;
779
780 /* Start inner kernel loop */
781 for(jidx=j_index_start; jidx<j_index_end; jidx++)
782 {
783 /* Get j neighbor index, and coordinate index */
784 jnr = jjnr[jidx];
785 j_coord_offset = DIM3*jnr;
786
787 /* load j atom coordinates */
788 jx0 = x[j_coord_offset+DIM3*0+XX0];
789 jy0 = x[j_coord_offset+DIM3*0+YY1];
790 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
791 jx1 = x[j_coord_offset+DIM3*1+XX0];
792 jy1 = x[j_coord_offset+DIM3*1+YY1];
793 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
794 jx2 = x[j_coord_offset+DIM3*2+XX0];
795 jy2 = x[j_coord_offset+DIM3*2+YY1];
796 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
797
798 /* Calculate displacement vector */
799 dx00 = ix0 - jx0;
800 dy00 = iy0 - jy0;
801 dz00 = iz0 - jz0;
802 dx01 = ix0 - jx1;
803 dy01 = iy0 - jy1;
804 dz01 = iz0 - jz1;
805 dx02 = ix0 - jx2;
806 dy02 = iy0 - jy2;
807 dz02 = iz0 - jz2;
808 dx10 = ix1 - jx0;
809 dy10 = iy1 - jy0;
810 dz10 = iz1 - jz0;
811 dx11 = ix1 - jx1;
812 dy11 = iy1 - jy1;
813 dz11 = iz1 - jz1;
814 dx12 = ix1 - jx2;
815 dy12 = iy1 - jy2;
816 dz12 = iz1 - jz2;
817 dx20 = ix2 - jx0;
818 dy20 = iy2 - jy0;
819 dz20 = iz2 - jz0;
820 dx21 = ix2 - jx1;
821 dy21 = iy2 - jy1;
822 dz21 = iz2 - jz1;
823 dx22 = ix2 - jx2;
824 dy22 = iy2 - jy2;
825 dz22 = iz2 - jz2;
826
827 /* Calculate squared distance and things based on it */
828 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
829 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
830 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
831 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
832 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
833 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
834 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
835 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
836 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
837
838 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
839 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
840 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
841 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
842 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
843 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
844 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
845 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
846 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
847
848 rinvsq00 = rinv00*rinv00;
849 rinvsq01 = rinv01*rinv01;
850 rinvsq02 = rinv02*rinv02;
851 rinvsq10 = rinv10*rinv10;
852 rinvsq11 = rinv11*rinv11;
853 rinvsq12 = rinv12*rinv12;
854 rinvsq20 = rinv20*rinv20;
855 rinvsq21 = rinv21*rinv21;
856 rinvsq22 = rinv22*rinv22;
857
858 /**************************
859 * CALCULATE INTERACTIONS *
860 **************************/
861
862 r00 = rsq00*rinv00;
863
864 /* EWALD ELECTROSTATICS */
865
866 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
867 ewrt = r00*ewtabscale;
868 ewitab = ewrt;
869 eweps = ewrt-ewitab;
870 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
871 felec = qq00*rinv00*(rinvsq00-felec);
872
873 /* LENNARD-JONES DISPERSION/REPULSION */
874
875 rinvsix = rinvsq00*rinvsq00*rinvsq00;
876 fvdw = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
877
878 fscal = felec+fvdw;
879
880 /* Calculate temporary vectorial force */
881 tx = fscal*dx00;
882 ty = fscal*dy00;
883 tz = fscal*dz00;
884
885 /* Update vectorial force */
886 fix0 += tx;
887 fiy0 += ty;
888 fiz0 += tz;
889 f[j_coord_offset+DIM3*0+XX0] -= tx;
890 f[j_coord_offset+DIM3*0+YY1] -= ty;
891 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
892
893 /**************************
894 * CALCULATE INTERACTIONS *
895 **************************/
896
897 r01 = rsq01*rinv01;
898
899 /* EWALD ELECTROSTATICS */
900
901 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
902 ewrt = r01*ewtabscale;
903 ewitab = ewrt;
904 eweps = ewrt-ewitab;
905 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
906 felec = qq01*rinv01*(rinvsq01-felec);
907
908 fscal = felec;
909
910 /* Calculate temporary vectorial force */
911 tx = fscal*dx01;
912 ty = fscal*dy01;
913 tz = fscal*dz01;
914
915 /* Update vectorial force */
916 fix0 += tx;
917 fiy0 += ty;
918 fiz0 += tz;
919 f[j_coord_offset+DIM3*1+XX0] -= tx;
920 f[j_coord_offset+DIM3*1+YY1] -= ty;
921 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
922
923 /**************************
924 * CALCULATE INTERACTIONS *
925 **************************/
926
927 r02 = rsq02*rinv02;
928
929 /* EWALD ELECTROSTATICS */
930
931 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
932 ewrt = r02*ewtabscale;
933 ewitab = ewrt;
934 eweps = ewrt-ewitab;
935 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
936 felec = qq02*rinv02*(rinvsq02-felec);
937
938 fscal = felec;
939
940 /* Calculate temporary vectorial force */
941 tx = fscal*dx02;
942 ty = fscal*dy02;
943 tz = fscal*dz02;
944
945 /* Update vectorial force */
946 fix0 += tx;
947 fiy0 += ty;
948 fiz0 += tz;
949 f[j_coord_offset+DIM3*2+XX0] -= tx;
950 f[j_coord_offset+DIM3*2+YY1] -= ty;
951 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
952
953 /**************************
954 * CALCULATE INTERACTIONS *
955 **************************/
956
957 r10 = rsq10*rinv10;
958
959 /* EWALD ELECTROSTATICS */
960
961 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
962 ewrt = r10*ewtabscale;
963 ewitab = ewrt;
964 eweps = ewrt-ewitab;
965 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
966 felec = qq10*rinv10*(rinvsq10-felec);
967
968 fscal = felec;
969
970 /* Calculate temporary vectorial force */
971 tx = fscal*dx10;
972 ty = fscal*dy10;
973 tz = fscal*dz10;
974
975 /* Update vectorial force */
976 fix1 += tx;
977 fiy1 += ty;
978 fiz1 += tz;
979 f[j_coord_offset+DIM3*0+XX0] -= tx;
980 f[j_coord_offset+DIM3*0+YY1] -= ty;
981 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
982
983 /**************************
984 * CALCULATE INTERACTIONS *
985 **************************/
986
987 r11 = rsq11*rinv11;
988
989 /* EWALD ELECTROSTATICS */
990
991 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
992 ewrt = r11*ewtabscale;
993 ewitab = ewrt;
994 eweps = ewrt-ewitab;
995 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
996 felec = qq11*rinv11*(rinvsq11-felec);
997
998 fscal = felec;
999
1000 /* Calculate temporary vectorial force */
1001 tx = fscal*dx11;
1002 ty = fscal*dy11;
1003 tz = fscal*dz11;
1004
1005 /* Update vectorial force */
1006 fix1 += tx;
1007 fiy1 += ty;
1008 fiz1 += tz;
1009 f[j_coord_offset+DIM3*1+XX0] -= tx;
1010 f[j_coord_offset+DIM3*1+YY1] -= ty;
1011 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1012
1013 /**************************
1014 * CALCULATE INTERACTIONS *
1015 **************************/
1016
1017 r12 = rsq12*rinv12;
1018
1019 /* EWALD ELECTROSTATICS */
1020
1021 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1022 ewrt = r12*ewtabscale;
1023 ewitab = ewrt;
1024 eweps = ewrt-ewitab;
1025 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1026 felec = qq12*rinv12*(rinvsq12-felec);
1027
1028 fscal = felec;
1029
1030 /* Calculate temporary vectorial force */
1031 tx = fscal*dx12;
1032 ty = fscal*dy12;
1033 tz = fscal*dz12;
1034
1035 /* Update vectorial force */
1036 fix1 += tx;
1037 fiy1 += ty;
1038 fiz1 += tz;
1039 f[j_coord_offset+DIM3*2+XX0] -= tx;
1040 f[j_coord_offset+DIM3*2+YY1] -= ty;
1041 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1042
1043 /**************************
1044 * CALCULATE INTERACTIONS *
1045 **************************/
1046
1047 r20 = rsq20*rinv20;
1048
1049 /* EWALD ELECTROSTATICS */
1050
1051 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1052 ewrt = r20*ewtabscale;
1053 ewitab = ewrt;
1054 eweps = ewrt-ewitab;
1055 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1056 felec = qq20*rinv20*(rinvsq20-felec);
1057
1058 fscal = felec;
1059
1060 /* Calculate temporary vectorial force */
1061 tx = fscal*dx20;
1062 ty = fscal*dy20;
1063 tz = fscal*dz20;
1064
1065 /* Update vectorial force */
1066 fix2 += tx;
1067 fiy2 += ty;
1068 fiz2 += tz;
1069 f[j_coord_offset+DIM3*0+XX0] -= tx;
1070 f[j_coord_offset+DIM3*0+YY1] -= ty;
1071 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
1072
1073 /**************************
1074 * CALCULATE INTERACTIONS *
1075 **************************/
1076
1077 r21 = rsq21*rinv21;
1078
1079 /* EWALD ELECTROSTATICS */
1080
1081 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1082 ewrt = r21*ewtabscale;
1083 ewitab = ewrt;
1084 eweps = ewrt-ewitab;
1085 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1086 felec = qq21*rinv21*(rinvsq21-felec);
1087
1088 fscal = felec;
1089
1090 /* Calculate temporary vectorial force */
1091 tx = fscal*dx21;
1092 ty = fscal*dy21;
1093 tz = fscal*dz21;
1094
1095 /* Update vectorial force */
1096 fix2 += tx;
1097 fiy2 += ty;
1098 fiz2 += tz;
1099 f[j_coord_offset+DIM3*1+XX0] -= tx;
1100 f[j_coord_offset+DIM3*1+YY1] -= ty;
1101 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1102
1103 /**************************
1104 * CALCULATE INTERACTIONS *
1105 **************************/
1106
1107 r22 = rsq22*rinv22;
1108
1109 /* EWALD ELECTROSTATICS */
1110
1111 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1112 ewrt = r22*ewtabscale;
1113 ewitab = ewrt;
1114 eweps = ewrt-ewitab;
1115 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1116 felec = qq22*rinv22*(rinvsq22-felec);
1117
1118 fscal = felec;
1119
1120 /* Calculate temporary vectorial force */
1121 tx = fscal*dx22;
1122 ty = fscal*dy22;
1123 tz = fscal*dz22;
1124
1125 /* Update vectorial force */
1126 fix2 += tx;
1127 fiy2 += ty;
1128 fiz2 += tz;
1129 f[j_coord_offset+DIM3*2+XX0] -= tx;
1130 f[j_coord_offset+DIM3*2+YY1] -= ty;
1131 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1132
1133 /* Inner loop uses 304 flops */
1134 }
1135 /* End of innermost loop */
1136
1137 tx = ty = tz = 0;
1138 f[i_coord_offset+DIM3*0+XX0] += fix0;
1139 f[i_coord_offset+DIM3*0+YY1] += fiy0;
1140 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
1141 tx += fix0;
1142 ty += fiy0;
1143 tz += fiz0;
1144 f[i_coord_offset+DIM3*1+XX0] += fix1;
1145 f[i_coord_offset+DIM3*1+YY1] += fiy1;
1146 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
1147 tx += fix1;
1148 ty += fiy1;
1149 tz += fiz1;
1150 f[i_coord_offset+DIM3*2+XX0] += fix2;
1151 f[i_coord_offset+DIM3*2+YY1] += fiy2;
1152 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
1153 tx += fix2;
1154 ty += fiy2;
1155 tz += fiz2;
1156 fshift[i_shift_offset+XX0] += tx;
1157 fshift[i_shift_offset+YY1] += ty;
1158 fshift[i_shift_offset+ZZ2] += tz;
1159
1160 /* Increment number of inner iterations */
1161 inneriter += j_index_end - j_index_start;
1162
1163 /* Outer loop uses 30 flops */
1164 }
1165
1166 /* Increment number of outer iterations */
1167 outeriter += nri;
1168
1169 /* Update outer/inner flops */
1170
1171 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*30 + inneriter*304)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_F] += outeriter*30 + inneriter
*304
;
1172}