Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEw_VdwBham_GeomW3W3_c.c
Location:line 703, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwBham_GeomW3W3_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: Buckingham
53 * Geometry: Water3-Water3
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEw_VdwBham_GeomW3W3_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 int vdwjidx1;
81 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
82 int vdwjidx2;
83 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
84 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
85 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
86 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
87 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
88 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
89 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
90 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
91 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
92 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
93 real velec,felec,velecsum,facel,crf,krf,krf2;
94 real *charge;
95 int nvdwtype;
96 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
97 int *vdwtype;
98 real *vdwparam;
99 int ewitab;
100 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
101 real *ewtab;
102
103 x = xx[0];
104 f = ff[0];
105
106 nri = nlist->nri;
107 iinr = nlist->iinr;
108 jindex = nlist->jindex;
109 jjnr = nlist->jjnr;
110 shiftidx = nlist->shift;
111 gid = nlist->gid;
112 shiftvec = fr->shift_vec[0];
113 fshift = fr->fshift[0];
114 facel = fr->epsfac;
115 charge = mdatoms->chargeA;
116 nvdwtype = fr->ntype;
117 vdwparam = fr->nbfp;
118 vdwtype = mdatoms->typeA;
119
120 sh_ewald = fr->ic->sh_ewald;
121 ewtab = fr->ic->tabq_coul_FDV0;
122 ewtabscale = fr->ic->tabq_scale;
123 ewtabhalfspace = 0.5/ewtabscale;
124
125 /* Setup water-specific parameters */
126 inr = nlist->iinr[0];
127 iq0 = facel*charge[inr+0];
128 iq1 = facel*charge[inr+1];
129 iq2 = facel*charge[inr+2];
130 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
131
132 jq0 = charge[inr+0];
133 jq1 = charge[inr+1];
134 jq2 = charge[inr+2];
135 vdwjidx0 = 3*vdwtype[inr+0];
136 qq00 = iq0*jq0;
137 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
138 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
139 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
140 qq01 = iq0*jq1;
141 qq02 = iq0*jq2;
142 qq10 = iq1*jq0;
143 qq11 = iq1*jq1;
144 qq12 = iq1*jq2;
145 qq20 = iq2*jq0;
146 qq21 = iq2*jq1;
147 qq22 = iq2*jq2;
148
149 outeriter = 0;
150 inneriter = 0;
151
152 /* Start outer loop over neighborlists */
153 for(iidx=0; iidx<nri; iidx++)
154 {
155 /* Load shift vector for this list */
156 i_shift_offset = DIM3*shiftidx[iidx];
157 shX = shiftvec[i_shift_offset+XX0];
158 shY = shiftvec[i_shift_offset+YY1];
159 shZ = shiftvec[i_shift_offset+ZZ2];
160
161 /* Load limits for loop over neighbors */
162 j_index_start = jindex[iidx];
163 j_index_end = jindex[iidx+1];
164
165 /* Get outer coordinate index */
166 inr = iinr[iidx];
167 i_coord_offset = DIM3*inr;
168
169 /* Load i particle coords and add shift vector */
170 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
171 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
172 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
173 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
174 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
175 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
176 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
177 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
178 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
179
180 fix0 = 0.0;
181 fiy0 = 0.0;
182 fiz0 = 0.0;
183 fix1 = 0.0;
184 fiy1 = 0.0;
185 fiz1 = 0.0;
186 fix2 = 0.0;
187 fiy2 = 0.0;
188 fiz2 = 0.0;
189
190 /* Reset potential sums */
191 velecsum = 0.0;
192 vvdwsum = 0.0;
193
194 /* Start inner kernel loop */
195 for(jidx=j_index_start; jidx<j_index_end; jidx++)
196 {
197 /* Get j neighbor index, and coordinate index */
198 jnr = jjnr[jidx];
199 j_coord_offset = DIM3*jnr;
200
201 /* load j atom coordinates */
202 jx0 = x[j_coord_offset+DIM3*0+XX0];
203 jy0 = x[j_coord_offset+DIM3*0+YY1];
204 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
205 jx1 = x[j_coord_offset+DIM3*1+XX0];
206 jy1 = x[j_coord_offset+DIM3*1+YY1];
207 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
208 jx2 = x[j_coord_offset+DIM3*2+XX0];
209 jy2 = x[j_coord_offset+DIM3*2+YY1];
210 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
211
212 /* Calculate displacement vector */
213 dx00 = ix0 - jx0;
214 dy00 = iy0 - jy0;
215 dz00 = iz0 - jz0;
216 dx01 = ix0 - jx1;
217 dy01 = iy0 - jy1;
218 dz01 = iz0 - jz1;
219 dx02 = ix0 - jx2;
220 dy02 = iy0 - jy2;
221 dz02 = iz0 - jz2;
222 dx10 = ix1 - jx0;
223 dy10 = iy1 - jy0;
224 dz10 = iz1 - jz0;
225 dx11 = ix1 - jx1;
226 dy11 = iy1 - jy1;
227 dz11 = iz1 - jz1;
228 dx12 = ix1 - jx2;
229 dy12 = iy1 - jy2;
230 dz12 = iz1 - jz2;
231 dx20 = ix2 - jx0;
232 dy20 = iy2 - jy0;
233 dz20 = iz2 - jz0;
234 dx21 = ix2 - jx1;
235 dy21 = iy2 - jy1;
236 dz21 = iz2 - jz1;
237 dx22 = ix2 - jx2;
238 dy22 = iy2 - jy2;
239 dz22 = iz2 - jz2;
240
241 /* Calculate squared distance and things based on it */
242 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
243 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
244 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
245 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
246 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
247 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
248 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
249 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
250 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
251
252 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
253 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
254 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
255 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
256 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
257 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
258 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
259 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
260 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
261
262 rinvsq00 = rinv00*rinv00;
263 rinvsq01 = rinv01*rinv01;
264 rinvsq02 = rinv02*rinv02;
265 rinvsq10 = rinv10*rinv10;
266 rinvsq11 = rinv11*rinv11;
267 rinvsq12 = rinv12*rinv12;
268 rinvsq20 = rinv20*rinv20;
269 rinvsq21 = rinv21*rinv21;
270 rinvsq22 = rinv22*rinv22;
271
272 /**************************
273 * CALCULATE INTERACTIONS *
274 **************************/
275
276 r00 = rsq00*rinv00;
277
278 /* EWALD ELECTROSTATICS */
279
280 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
281 ewrt = r00*ewtabscale;
282 ewitab = ewrt;
283 eweps = ewrt-ewitab;
284 ewitab = 4*ewitab;
285 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
286 velec = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
287 felec = qq00*rinv00*(rinvsq00-felec);
288
289 /* BUCKINGHAM DISPERSION/REPULSION */
290 rinvsix = rinvsq00*rinvsq00*rinvsq00;
291 vvdw6 = c6_00*rinvsix;
292 br = cexp2_00*r00;
293 vvdwexp = cexp1_00*exp(-br);
294 vvdw = vvdwexp - vvdw6*(1.0/6.0);
295 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
296
297 /* Update potential sums from outer loop */
298 velecsum += velec;
299 vvdwsum += vvdw;
300
301 fscal = felec+fvdw;
302
303 /* Calculate temporary vectorial force */
304 tx = fscal*dx00;
305 ty = fscal*dy00;
306 tz = fscal*dz00;
307
308 /* Update vectorial force */
309 fix0 += tx;
310 fiy0 += ty;
311 fiz0 += tz;
312 f[j_coord_offset+DIM3*0+XX0] -= tx;
313 f[j_coord_offset+DIM3*0+YY1] -= ty;
314 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
315
316 /**************************
317 * CALCULATE INTERACTIONS *
318 **************************/
319
320 r01 = rsq01*rinv01;
321
322 /* EWALD ELECTROSTATICS */
323
324 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
325 ewrt = r01*ewtabscale;
326 ewitab = ewrt;
327 eweps = ewrt-ewitab;
328 ewitab = 4*ewitab;
329 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
330 velec = qq01*(rinv01-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
331 felec = qq01*rinv01*(rinvsq01-felec);
332
333 /* Update potential sums from outer loop */
334 velecsum += velec;
335
336 fscal = felec;
337
338 /* Calculate temporary vectorial force */
339 tx = fscal*dx01;
340 ty = fscal*dy01;
341 tz = fscal*dz01;
342
343 /* Update vectorial force */
344 fix0 += tx;
345 fiy0 += ty;
346 fiz0 += tz;
347 f[j_coord_offset+DIM3*1+XX0] -= tx;
348 f[j_coord_offset+DIM3*1+YY1] -= ty;
349 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
350
351 /**************************
352 * CALCULATE INTERACTIONS *
353 **************************/
354
355 r02 = rsq02*rinv02;
356
357 /* EWALD ELECTROSTATICS */
358
359 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
360 ewrt = r02*ewtabscale;
361 ewitab = ewrt;
362 eweps = ewrt-ewitab;
363 ewitab = 4*ewitab;
364 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
365 velec = qq02*(rinv02-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
366 felec = qq02*rinv02*(rinvsq02-felec);
367
368 /* Update potential sums from outer loop */
369 velecsum += velec;
370
371 fscal = felec;
372
373 /* Calculate temporary vectorial force */
374 tx = fscal*dx02;
375 ty = fscal*dy02;
376 tz = fscal*dz02;
377
378 /* Update vectorial force */
379 fix0 += tx;
380 fiy0 += ty;
381 fiz0 += tz;
382 f[j_coord_offset+DIM3*2+XX0] -= tx;
383 f[j_coord_offset+DIM3*2+YY1] -= ty;
384 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
385
386 /**************************
387 * CALCULATE INTERACTIONS *
388 **************************/
389
390 r10 = rsq10*rinv10;
391
392 /* EWALD ELECTROSTATICS */
393
394 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
395 ewrt = r10*ewtabscale;
396 ewitab = ewrt;
397 eweps = ewrt-ewitab;
398 ewitab = 4*ewitab;
399 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
400 velec = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
401 felec = qq10*rinv10*(rinvsq10-felec);
402
403 /* Update potential sums from outer loop */
404 velecsum += velec;
405
406 fscal = felec;
407
408 /* Calculate temporary vectorial force */
409 tx = fscal*dx10;
410 ty = fscal*dy10;
411 tz = fscal*dz10;
412
413 /* Update vectorial force */
414 fix1 += tx;
415 fiy1 += ty;
416 fiz1 += tz;
417 f[j_coord_offset+DIM3*0+XX0] -= tx;
418 f[j_coord_offset+DIM3*0+YY1] -= ty;
419 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
420
421 /**************************
422 * CALCULATE INTERACTIONS *
423 **************************/
424
425 r11 = rsq11*rinv11;
426
427 /* EWALD ELECTROSTATICS */
428
429 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
430 ewrt = r11*ewtabscale;
431 ewitab = ewrt;
432 eweps = ewrt-ewitab;
433 ewitab = 4*ewitab;
434 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
435 velec = qq11*(rinv11-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
436 felec = qq11*rinv11*(rinvsq11-felec);
437
438 /* Update potential sums from outer loop */
439 velecsum += velec;
440
441 fscal = felec;
442
443 /* Calculate temporary vectorial force */
444 tx = fscal*dx11;
445 ty = fscal*dy11;
446 tz = fscal*dz11;
447
448 /* Update vectorial force */
449 fix1 += tx;
450 fiy1 += ty;
451 fiz1 += tz;
452 f[j_coord_offset+DIM3*1+XX0] -= tx;
453 f[j_coord_offset+DIM3*1+YY1] -= ty;
454 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
455
456 /**************************
457 * CALCULATE INTERACTIONS *
458 **************************/
459
460 r12 = rsq12*rinv12;
461
462 /* EWALD ELECTROSTATICS */
463
464 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
465 ewrt = r12*ewtabscale;
466 ewitab = ewrt;
467 eweps = ewrt-ewitab;
468 ewitab = 4*ewitab;
469 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
470 velec = qq12*(rinv12-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
471 felec = qq12*rinv12*(rinvsq12-felec);
472
473 /* Update potential sums from outer loop */
474 velecsum += velec;
475
476 fscal = felec;
477
478 /* Calculate temporary vectorial force */
479 tx = fscal*dx12;
480 ty = fscal*dy12;
481 tz = fscal*dz12;
482
483 /* Update vectorial force */
484 fix1 += tx;
485 fiy1 += ty;
486 fiz1 += tz;
487 f[j_coord_offset+DIM3*2+XX0] -= tx;
488 f[j_coord_offset+DIM3*2+YY1] -= ty;
489 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
490
491 /**************************
492 * CALCULATE INTERACTIONS *
493 **************************/
494
495 r20 = rsq20*rinv20;
496
497 /* EWALD ELECTROSTATICS */
498
499 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
500 ewrt = r20*ewtabscale;
501 ewitab = ewrt;
502 eweps = ewrt-ewitab;
503 ewitab = 4*ewitab;
504 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
505 velec = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
506 felec = qq20*rinv20*(rinvsq20-felec);
507
508 /* Update potential sums from outer loop */
509 velecsum += velec;
510
511 fscal = felec;
512
513 /* Calculate temporary vectorial force */
514 tx = fscal*dx20;
515 ty = fscal*dy20;
516 tz = fscal*dz20;
517
518 /* Update vectorial force */
519 fix2 += tx;
520 fiy2 += ty;
521 fiz2 += tz;
522 f[j_coord_offset+DIM3*0+XX0] -= tx;
523 f[j_coord_offset+DIM3*0+YY1] -= ty;
524 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
525
526 /**************************
527 * CALCULATE INTERACTIONS *
528 **************************/
529
530 r21 = rsq21*rinv21;
531
532 /* EWALD ELECTROSTATICS */
533
534 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
535 ewrt = r21*ewtabscale;
536 ewitab = ewrt;
537 eweps = ewrt-ewitab;
538 ewitab = 4*ewitab;
539 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
540 velec = qq21*(rinv21-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
541 felec = qq21*rinv21*(rinvsq21-felec);
542
543 /* Update potential sums from outer loop */
544 velecsum += velec;
545
546 fscal = felec;
547
548 /* Calculate temporary vectorial force */
549 tx = fscal*dx21;
550 ty = fscal*dy21;
551 tz = fscal*dz21;
552
553 /* Update vectorial force */
554 fix2 += tx;
555 fiy2 += ty;
556 fiz2 += tz;
557 f[j_coord_offset+DIM3*1+XX0] -= tx;
558 f[j_coord_offset+DIM3*1+YY1] -= ty;
559 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
560
561 /**************************
562 * CALCULATE INTERACTIONS *
563 **************************/
564
565 r22 = rsq22*rinv22;
566
567 /* EWALD ELECTROSTATICS */
568
569 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
570 ewrt = r22*ewtabscale;
571 ewitab = ewrt;
572 eweps = ewrt-ewitab;
573 ewitab = 4*ewitab;
574 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
575 velec = qq22*(rinv22-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
576 felec = qq22*rinv22*(rinvsq22-felec);
577
578 /* Update potential sums from outer loop */
579 velecsum += velec;
580
581 fscal = felec;
582
583 /* Calculate temporary vectorial force */
584 tx = fscal*dx22;
585 ty = fscal*dy22;
586 tz = fscal*dz22;
587
588 /* Update vectorial force */
589 fix2 += tx;
590 fiy2 += ty;
591 fiz2 += tz;
592 f[j_coord_offset+DIM3*2+XX0] -= tx;
593 f[j_coord_offset+DIM3*2+YY1] -= ty;
594 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
595
596 /* Inner loop uses 398 flops */
597 }
598 /* End of innermost loop */
599
600 tx = ty = tz = 0;
601 f[i_coord_offset+DIM3*0+XX0] += fix0;
602 f[i_coord_offset+DIM3*0+YY1] += fiy0;
603 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
604 tx += fix0;
605 ty += fiy0;
606 tz += fiz0;
607 f[i_coord_offset+DIM3*1+XX0] += fix1;
608 f[i_coord_offset+DIM3*1+YY1] += fiy1;
609 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
610 tx += fix1;
611 ty += fiy1;
612 tz += fiz1;
613 f[i_coord_offset+DIM3*2+XX0] += fix2;
614 f[i_coord_offset+DIM3*2+YY1] += fiy2;
615 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
616 tx += fix2;
617 ty += fiy2;
618 tz += fiz2;
619 fshift[i_shift_offset+XX0] += tx;
620 fshift[i_shift_offset+YY1] += ty;
621 fshift[i_shift_offset+ZZ2] += tz;
622
623 ggid = gid[iidx];
624 /* Update potential energies */
625 kernel_data->energygrp_elec[ggid] += velecsum;
626 kernel_data->energygrp_vdw[ggid] += vvdwsum;
627
628 /* Increment number of inner iterations */
629 inneriter += j_index_end - j_index_start;
630
631 /* Outer loop uses 32 flops */
632 }
633
634 /* Increment number of outer iterations */
635 outeriter += nri;
636
637 /* Update outer/inner flops */
638
639 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*32 + inneriter*398)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_VF] += outeriter*32 +
inneriter*398
;
640}
641/*
642 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwBham_GeomW3W3_F_c
643 * Electrostatics interaction: Ewald
644 * VdW interaction: Buckingham
645 * Geometry: Water3-Water3
646 * Calculate force/pot: Force
647 */
648void
649nb_kernel_ElecEw_VdwBham_GeomW3W3_F_c
650 (t_nblist * gmx_restrict__restrict nlist,
651 rvec * gmx_restrict__restrict xx,
652 rvec * gmx_restrict__restrict ff,
653 t_forcerec * gmx_restrict__restrict fr,
654 t_mdatoms * gmx_restrict__restrict mdatoms,
655 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
656 t_nrnb * gmx_restrict__restrict nrnb)
657{
658 int i_shift_offset,i_coord_offset,j_coord_offset;
659 int j_index_start,j_index_end;
660 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
661 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
662 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
663 real *shiftvec,*fshift,*x,*f;
664 int vdwioffset0;
665 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
666 int vdwioffset1;
667 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
668 int vdwioffset2;
669 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
670 int vdwjidx0;
671 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
672 int vdwjidx1;
673 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
674 int vdwjidx2;
675 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
676 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
677 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
678 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
679 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
680 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
681 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
682 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
683 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
684 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
685 real velec,felec,velecsum,facel,crf,krf,krf2;
686 real *charge;
687 int nvdwtype;
688 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
689 int *vdwtype;
690 real *vdwparam;
691 int ewitab;
692 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
693 real *ewtab;
694
695 x = xx[0];
696 f = ff[0];
697
698 nri = nlist->nri;
699 iinr = nlist->iinr;
700 jindex = nlist->jindex;
701 jjnr = nlist->jjnr;
702 shiftidx = nlist->shift;
703 gid = nlist->gid;
Value stored to 'gid' is never read
704 shiftvec = fr->shift_vec[0];
705 fshift = fr->fshift[0];
706 facel = fr->epsfac;
707 charge = mdatoms->chargeA;
708 nvdwtype = fr->ntype;
709 vdwparam = fr->nbfp;
710 vdwtype = mdatoms->typeA;
711
712 sh_ewald = fr->ic->sh_ewald;
713 ewtab = fr->ic->tabq_coul_F;
714 ewtabscale = fr->ic->tabq_scale;
715 ewtabhalfspace = 0.5/ewtabscale;
716
717 /* Setup water-specific parameters */
718 inr = nlist->iinr[0];
719 iq0 = facel*charge[inr+0];
720 iq1 = facel*charge[inr+1];
721 iq2 = facel*charge[inr+2];
722 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
723
724 jq0 = charge[inr+0];
725 jq1 = charge[inr+1];
726 jq2 = charge[inr+2];
727 vdwjidx0 = 3*vdwtype[inr+0];
728 qq00 = iq0*jq0;
729 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
730 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
731 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
732 qq01 = iq0*jq1;
733 qq02 = iq0*jq2;
734 qq10 = iq1*jq0;
735 qq11 = iq1*jq1;
736 qq12 = iq1*jq2;
737 qq20 = iq2*jq0;
738 qq21 = iq2*jq1;
739 qq22 = iq2*jq2;
740
741 outeriter = 0;
742 inneriter = 0;
743
744 /* Start outer loop over neighborlists */
745 for(iidx=0; iidx<nri; iidx++)
746 {
747 /* Load shift vector for this list */
748 i_shift_offset = DIM3*shiftidx[iidx];
749 shX = shiftvec[i_shift_offset+XX0];
750 shY = shiftvec[i_shift_offset+YY1];
751 shZ = shiftvec[i_shift_offset+ZZ2];
752
753 /* Load limits for loop over neighbors */
754 j_index_start = jindex[iidx];
755 j_index_end = jindex[iidx+1];
756
757 /* Get outer coordinate index */
758 inr = iinr[iidx];
759 i_coord_offset = DIM3*inr;
760
761 /* Load i particle coords and add shift vector */
762 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
763 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
764 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
765 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
766 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
767 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
768 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
769 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
770 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
771
772 fix0 = 0.0;
773 fiy0 = 0.0;
774 fiz0 = 0.0;
775 fix1 = 0.0;
776 fiy1 = 0.0;
777 fiz1 = 0.0;
778 fix2 = 0.0;
779 fiy2 = 0.0;
780 fiz2 = 0.0;
781
782 /* Start inner kernel loop */
783 for(jidx=j_index_start; jidx<j_index_end; jidx++)
784 {
785 /* Get j neighbor index, and coordinate index */
786 jnr = jjnr[jidx];
787 j_coord_offset = DIM3*jnr;
788
789 /* load j atom coordinates */
790 jx0 = x[j_coord_offset+DIM3*0+XX0];
791 jy0 = x[j_coord_offset+DIM3*0+YY1];
792 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
793 jx1 = x[j_coord_offset+DIM3*1+XX0];
794 jy1 = x[j_coord_offset+DIM3*1+YY1];
795 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
796 jx2 = x[j_coord_offset+DIM3*2+XX0];
797 jy2 = x[j_coord_offset+DIM3*2+YY1];
798 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
799
800 /* Calculate displacement vector */
801 dx00 = ix0 - jx0;
802 dy00 = iy0 - jy0;
803 dz00 = iz0 - jz0;
804 dx01 = ix0 - jx1;
805 dy01 = iy0 - jy1;
806 dz01 = iz0 - jz1;
807 dx02 = ix0 - jx2;
808 dy02 = iy0 - jy2;
809 dz02 = iz0 - jz2;
810 dx10 = ix1 - jx0;
811 dy10 = iy1 - jy0;
812 dz10 = iz1 - jz0;
813 dx11 = ix1 - jx1;
814 dy11 = iy1 - jy1;
815 dz11 = iz1 - jz1;
816 dx12 = ix1 - jx2;
817 dy12 = iy1 - jy2;
818 dz12 = iz1 - jz2;
819 dx20 = ix2 - jx0;
820 dy20 = iy2 - jy0;
821 dz20 = iz2 - jz0;
822 dx21 = ix2 - jx1;
823 dy21 = iy2 - jy1;
824 dz21 = iz2 - jz1;
825 dx22 = ix2 - jx2;
826 dy22 = iy2 - jy2;
827 dz22 = iz2 - jz2;
828
829 /* Calculate squared distance and things based on it */
830 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
831 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
832 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
833 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
834 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
835 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
836 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
837 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
838 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
839
840 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
841 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
842 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
843 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
844 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
845 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
846 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
847 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
848 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
849
850 rinvsq00 = rinv00*rinv00;
851 rinvsq01 = rinv01*rinv01;
852 rinvsq02 = rinv02*rinv02;
853 rinvsq10 = rinv10*rinv10;
854 rinvsq11 = rinv11*rinv11;
855 rinvsq12 = rinv12*rinv12;
856 rinvsq20 = rinv20*rinv20;
857 rinvsq21 = rinv21*rinv21;
858 rinvsq22 = rinv22*rinv22;
859
860 /**************************
861 * CALCULATE INTERACTIONS *
862 **************************/
863
864 r00 = rsq00*rinv00;
865
866 /* EWALD ELECTROSTATICS */
867
868 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
869 ewrt = r00*ewtabscale;
870 ewitab = ewrt;
871 eweps = ewrt-ewitab;
872 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
873 felec = qq00*rinv00*(rinvsq00-felec);
874
875 /* BUCKINGHAM DISPERSION/REPULSION */
876 rinvsix = rinvsq00*rinvsq00*rinvsq00;
877 vvdw6 = c6_00*rinvsix;
878 br = cexp2_00*r00;
879 vvdwexp = cexp1_00*exp(-br);
880 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
881
882 fscal = felec+fvdw;
883
884 /* Calculate temporary vectorial force */
885 tx = fscal*dx00;
886 ty = fscal*dy00;
887 tz = fscal*dz00;
888
889 /* Update vectorial force */
890 fix0 += tx;
891 fiy0 += ty;
892 fiz0 += tz;
893 f[j_coord_offset+DIM3*0+XX0] -= tx;
894 f[j_coord_offset+DIM3*0+YY1] -= ty;
895 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
896
897 /**************************
898 * CALCULATE INTERACTIONS *
899 **************************/
900
901 r01 = rsq01*rinv01;
902
903 /* EWALD ELECTROSTATICS */
904
905 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
906 ewrt = r01*ewtabscale;
907 ewitab = ewrt;
908 eweps = ewrt-ewitab;
909 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
910 felec = qq01*rinv01*(rinvsq01-felec);
911
912 fscal = felec;
913
914 /* Calculate temporary vectorial force */
915 tx = fscal*dx01;
916 ty = fscal*dy01;
917 tz = fscal*dz01;
918
919 /* Update vectorial force */
920 fix0 += tx;
921 fiy0 += ty;
922 fiz0 += tz;
923 f[j_coord_offset+DIM3*1+XX0] -= tx;
924 f[j_coord_offset+DIM3*1+YY1] -= ty;
925 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
926
927 /**************************
928 * CALCULATE INTERACTIONS *
929 **************************/
930
931 r02 = rsq02*rinv02;
932
933 /* EWALD ELECTROSTATICS */
934
935 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
936 ewrt = r02*ewtabscale;
937 ewitab = ewrt;
938 eweps = ewrt-ewitab;
939 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
940 felec = qq02*rinv02*(rinvsq02-felec);
941
942 fscal = felec;
943
944 /* Calculate temporary vectorial force */
945 tx = fscal*dx02;
946 ty = fscal*dy02;
947 tz = fscal*dz02;
948
949 /* Update vectorial force */
950 fix0 += tx;
951 fiy0 += ty;
952 fiz0 += tz;
953 f[j_coord_offset+DIM3*2+XX0] -= tx;
954 f[j_coord_offset+DIM3*2+YY1] -= ty;
955 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
956
957 /**************************
958 * CALCULATE INTERACTIONS *
959 **************************/
960
961 r10 = rsq10*rinv10;
962
963 /* EWALD ELECTROSTATICS */
964
965 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
966 ewrt = r10*ewtabscale;
967 ewitab = ewrt;
968 eweps = ewrt-ewitab;
969 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
970 felec = qq10*rinv10*(rinvsq10-felec);
971
972 fscal = felec;
973
974 /* Calculate temporary vectorial force */
975 tx = fscal*dx10;
976 ty = fscal*dy10;
977 tz = fscal*dz10;
978
979 /* Update vectorial force */
980 fix1 += tx;
981 fiy1 += ty;
982 fiz1 += tz;
983 f[j_coord_offset+DIM3*0+XX0] -= tx;
984 f[j_coord_offset+DIM3*0+YY1] -= ty;
985 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
986
987 /**************************
988 * CALCULATE INTERACTIONS *
989 **************************/
990
991 r11 = rsq11*rinv11;
992
993 /* EWALD ELECTROSTATICS */
994
995 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
996 ewrt = r11*ewtabscale;
997 ewitab = ewrt;
998 eweps = ewrt-ewitab;
999 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1000 felec = qq11*rinv11*(rinvsq11-felec);
1001
1002 fscal = felec;
1003
1004 /* Calculate temporary vectorial force */
1005 tx = fscal*dx11;
1006 ty = fscal*dy11;
1007 tz = fscal*dz11;
1008
1009 /* Update vectorial force */
1010 fix1 += tx;
1011 fiy1 += ty;
1012 fiz1 += tz;
1013 f[j_coord_offset+DIM3*1+XX0] -= tx;
1014 f[j_coord_offset+DIM3*1+YY1] -= ty;
1015 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1016
1017 /**************************
1018 * CALCULATE INTERACTIONS *
1019 **************************/
1020
1021 r12 = rsq12*rinv12;
1022
1023 /* EWALD ELECTROSTATICS */
1024
1025 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1026 ewrt = r12*ewtabscale;
1027 ewitab = ewrt;
1028 eweps = ewrt-ewitab;
1029 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1030 felec = qq12*rinv12*(rinvsq12-felec);
1031
1032 fscal = felec;
1033
1034 /* Calculate temporary vectorial force */
1035 tx = fscal*dx12;
1036 ty = fscal*dy12;
1037 tz = fscal*dz12;
1038
1039 /* Update vectorial force */
1040 fix1 += tx;
1041 fiy1 += ty;
1042 fiz1 += tz;
1043 f[j_coord_offset+DIM3*2+XX0] -= tx;
1044 f[j_coord_offset+DIM3*2+YY1] -= ty;
1045 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1046
1047 /**************************
1048 * CALCULATE INTERACTIONS *
1049 **************************/
1050
1051 r20 = rsq20*rinv20;
1052
1053 /* EWALD ELECTROSTATICS */
1054
1055 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1056 ewrt = r20*ewtabscale;
1057 ewitab = ewrt;
1058 eweps = ewrt-ewitab;
1059 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1060 felec = qq20*rinv20*(rinvsq20-felec);
1061
1062 fscal = felec;
1063
1064 /* Calculate temporary vectorial force */
1065 tx = fscal*dx20;
1066 ty = fscal*dy20;
1067 tz = fscal*dz20;
1068
1069 /* Update vectorial force */
1070 fix2 += tx;
1071 fiy2 += ty;
1072 fiz2 += tz;
1073 f[j_coord_offset+DIM3*0+XX0] -= tx;
1074 f[j_coord_offset+DIM3*0+YY1] -= ty;
1075 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
1076
1077 /**************************
1078 * CALCULATE INTERACTIONS *
1079 **************************/
1080
1081 r21 = rsq21*rinv21;
1082
1083 /* EWALD ELECTROSTATICS */
1084
1085 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1086 ewrt = r21*ewtabscale;
1087 ewitab = ewrt;
1088 eweps = ewrt-ewitab;
1089 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1090 felec = qq21*rinv21*(rinvsq21-felec);
1091
1092 fscal = felec;
1093
1094 /* Calculate temporary vectorial force */
1095 tx = fscal*dx21;
1096 ty = fscal*dy21;
1097 tz = fscal*dz21;
1098
1099 /* Update vectorial force */
1100 fix2 += tx;
1101 fiy2 += ty;
1102 fiz2 += tz;
1103 f[j_coord_offset+DIM3*1+XX0] -= tx;
1104 f[j_coord_offset+DIM3*1+YY1] -= ty;
1105 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1106
1107 /**************************
1108 * CALCULATE INTERACTIONS *
1109 **************************/
1110
1111 r22 = rsq22*rinv22;
1112
1113 /* EWALD ELECTROSTATICS */
1114
1115 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1116 ewrt = r22*ewtabscale;
1117 ewitab = ewrt;
1118 eweps = ewrt-ewitab;
1119 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1120 felec = qq22*rinv22*(rinvsq22-felec);
1121
1122 fscal = felec;
1123
1124 /* Calculate temporary vectorial force */
1125 tx = fscal*dx22;
1126 ty = fscal*dy22;
1127 tz = fscal*dz22;
1128
1129 /* Update vectorial force */
1130 fix2 += tx;
1131 fiy2 += ty;
1132 fiz2 += tz;
1133 f[j_coord_offset+DIM3*2+XX0] -= tx;
1134 f[j_coord_offset+DIM3*2+YY1] -= ty;
1135 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1136
1137 /* Inner loop uses 332 flops */
1138 }
1139 /* End of innermost loop */
1140
1141 tx = ty = tz = 0;
1142 f[i_coord_offset+DIM3*0+XX0] += fix0;
1143 f[i_coord_offset+DIM3*0+YY1] += fiy0;
1144 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
1145 tx += fix0;
1146 ty += fiy0;
1147 tz += fiz0;
1148 f[i_coord_offset+DIM3*1+XX0] += fix1;
1149 f[i_coord_offset+DIM3*1+YY1] += fiy1;
1150 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
1151 tx += fix1;
1152 ty += fiy1;
1153 tz += fiz1;
1154 f[i_coord_offset+DIM3*2+XX0] += fix2;
1155 f[i_coord_offset+DIM3*2+YY1] += fiy2;
1156 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
1157 tx += fix2;
1158 ty += fiy2;
1159 tz += fiz2;
1160 fshift[i_shift_offset+XX0] += tx;
1161 fshift[i_shift_offset+YY1] += ty;
1162 fshift[i_shift_offset+ZZ2] += tz;
1163
1164 /* Increment number of inner iterations */
1165 inneriter += j_index_end - j_index_start;
1166
1167 /* Outer loop uses 30 flops */
1168 }
1169
1170 /* Increment number of outer iterations */
1171 outeriter += nri;
1172
1173 /* Update outer/inner flops */
1174
1175 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*30 + inneriter*332)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_F] += outeriter*30 + inneriter
*332
;
1176}