Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecRFCut_VdwBhamSh_GeomW4P1_c.c
Location:line 474, column 5
Description:Value stored to 'crf' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwBhamSh_GeomW4P1_VF_c
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: Buckingham
53 * Geometry: Water4-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecRFCut_VdwBhamSh_GeomW4P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwioffset3;
79 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80 int vdwjidx0;
81 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
83 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
84 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
85 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
86 real velec,felec,velecsum,facel,crf,krf,krf2;
87 real *charge;
88 int nvdwtype;
89 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
90 int *vdwtype;
91 real *vdwparam;
92
93 x = xx[0];
94 f = ff[0];
95
96 nri = nlist->nri;
97 iinr = nlist->iinr;
98 jindex = nlist->jindex;
99 jjnr = nlist->jjnr;
100 shiftidx = nlist->shift;
101 gid = nlist->gid;
102 shiftvec = fr->shift_vec[0];
103 fshift = fr->fshift[0];
104 facel = fr->epsfac;
105 charge = mdatoms->chargeA;
106 krf = fr->ic->k_rf;
107 krf2 = krf*2.0;
108 crf = fr->ic->c_rf;
109 nvdwtype = fr->ntype;
110 vdwparam = fr->nbfp;
111 vdwtype = mdatoms->typeA;
112
113 /* Setup water-specific parameters */
114 inr = nlist->iinr[0];
115 iq1 = facel*charge[inr+1];
116 iq2 = facel*charge[inr+2];
117 iq3 = facel*charge[inr+3];
118 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
119
120 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
121 rcutoff = fr->rcoulomb;
122 rcutoff2 = rcutoff*rcutoff;
123
124 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
125 rvdw = fr->rvdw;
126
127 outeriter = 0;
128 inneriter = 0;
129
130 /* Start outer loop over neighborlists */
131 for(iidx=0; iidx<nri; iidx++)
132 {
133 /* Load shift vector for this list */
134 i_shift_offset = DIM3*shiftidx[iidx];
135 shX = shiftvec[i_shift_offset+XX0];
136 shY = shiftvec[i_shift_offset+YY1];
137 shZ = shiftvec[i_shift_offset+ZZ2];
138
139 /* Load limits for loop over neighbors */
140 j_index_start = jindex[iidx];
141 j_index_end = jindex[iidx+1];
142
143 /* Get outer coordinate index */
144 inr = iinr[iidx];
145 i_coord_offset = DIM3*inr;
146
147 /* Load i particle coords and add shift vector */
148 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
149 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
150 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
151 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
152 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
153 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
154 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
155 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
156 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
157 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
158 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
159 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
160
161 fix0 = 0.0;
162 fiy0 = 0.0;
163 fiz0 = 0.0;
164 fix1 = 0.0;
165 fiy1 = 0.0;
166 fiz1 = 0.0;
167 fix2 = 0.0;
168 fiy2 = 0.0;
169 fiz2 = 0.0;
170 fix3 = 0.0;
171 fiy3 = 0.0;
172 fiz3 = 0.0;
173
174 /* Reset potential sums */
175 velecsum = 0.0;
176 vvdwsum = 0.0;
177
178 /* Start inner kernel loop */
179 for(jidx=j_index_start; jidx<j_index_end; jidx++)
180 {
181 /* Get j neighbor index, and coordinate index */
182 jnr = jjnr[jidx];
183 j_coord_offset = DIM3*jnr;
184
185 /* load j atom coordinates */
186 jx0 = x[j_coord_offset+DIM3*0+XX0];
187 jy0 = x[j_coord_offset+DIM3*0+YY1];
188 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
189
190 /* Calculate displacement vector */
191 dx00 = ix0 - jx0;
192 dy00 = iy0 - jy0;
193 dz00 = iz0 - jz0;
194 dx10 = ix1 - jx0;
195 dy10 = iy1 - jy0;
196 dz10 = iz1 - jz0;
197 dx20 = ix2 - jx0;
198 dy20 = iy2 - jy0;
199 dz20 = iz2 - jz0;
200 dx30 = ix3 - jx0;
201 dy30 = iy3 - jy0;
202 dz30 = iz3 - jz0;
203
204 /* Calculate squared distance and things based on it */
205 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
206 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
207 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
208 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
209
210 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
211 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
212 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
213 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
214
215 rinvsq00 = rinv00*rinv00;
216 rinvsq10 = rinv10*rinv10;
217 rinvsq20 = rinv20*rinv20;
218 rinvsq30 = rinv30*rinv30;
219
220 /* Load parameters for j particles */
221 jq0 = charge[jnr+0];
222 vdwjidx0 = 3*vdwtype[jnr+0];
223
224 /**************************
225 * CALCULATE INTERACTIONS *
226 **************************/
227
228 if (rsq00<rcutoff2)
229 {
230
231 r00 = rsq00*rinv00;
232
233 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
234 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
235 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
236
237 /* BUCKINGHAM DISPERSION/REPULSION */
238 rinvsix = rinvsq00*rinvsq00*rinvsq00;
239 vvdw6 = c6_00*rinvsix;
240 br = cexp2_00*r00;
241 vvdwexp = cexp1_00*exp(-br);
242 vvdw = (vvdwexp-cexp1_00*exp(-cexp2_00*rvdw)) - (vvdw6 - c6_00*sh_vdw_invrcut6)*(1.0/6.0);
243 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
244
245 /* Update potential sums from outer loop */
246 vvdwsum += vvdw;
247
248 fscal = fvdw;
249
250 /* Calculate temporary vectorial force */
251 tx = fscal*dx00;
252 ty = fscal*dy00;
253 tz = fscal*dz00;
254
255 /* Update vectorial force */
256 fix0 += tx;
257 fiy0 += ty;
258 fiz0 += tz;
259 f[j_coord_offset+DIM3*0+XX0] -= tx;
260 f[j_coord_offset+DIM3*0+YY1] -= ty;
261 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
262
263 }
264
265 /**************************
266 * CALCULATE INTERACTIONS *
267 **************************/
268
269 if (rsq10<rcutoff2)
270 {
271
272 qq10 = iq1*jq0;
273
274 /* REACTION-FIELD ELECTROSTATICS */
275 velec = qq10*(rinv10+krf*rsq10-crf);
276 felec = qq10*(rinv10*rinvsq10-krf2);
277
278 /* Update potential sums from outer loop */
279 velecsum += velec;
280
281 fscal = felec;
282
283 /* Calculate temporary vectorial force */
284 tx = fscal*dx10;
285 ty = fscal*dy10;
286 tz = fscal*dz10;
287
288 /* Update vectorial force */
289 fix1 += tx;
290 fiy1 += ty;
291 fiz1 += tz;
292 f[j_coord_offset+DIM3*0+XX0] -= tx;
293 f[j_coord_offset+DIM3*0+YY1] -= ty;
294 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
295
296 }
297
298 /**************************
299 * CALCULATE INTERACTIONS *
300 **************************/
301
302 if (rsq20<rcutoff2)
303 {
304
305 qq20 = iq2*jq0;
306
307 /* REACTION-FIELD ELECTROSTATICS */
308 velec = qq20*(rinv20+krf*rsq20-crf);
309 felec = qq20*(rinv20*rinvsq20-krf2);
310
311 /* Update potential sums from outer loop */
312 velecsum += velec;
313
314 fscal = felec;
315
316 /* Calculate temporary vectorial force */
317 tx = fscal*dx20;
318 ty = fscal*dy20;
319 tz = fscal*dz20;
320
321 /* Update vectorial force */
322 fix2 += tx;
323 fiy2 += ty;
324 fiz2 += tz;
325 f[j_coord_offset+DIM3*0+XX0] -= tx;
326 f[j_coord_offset+DIM3*0+YY1] -= ty;
327 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
328
329 }
330
331 /**************************
332 * CALCULATE INTERACTIONS *
333 **************************/
334
335 if (rsq30<rcutoff2)
336 {
337
338 qq30 = iq3*jq0;
339
340 /* REACTION-FIELD ELECTROSTATICS */
341 velec = qq30*(rinv30+krf*rsq30-crf);
342 felec = qq30*(rinv30*rinvsq30-krf2);
343
344 /* Update potential sums from outer loop */
345 velecsum += velec;
346
347 fscal = felec;
348
349 /* Calculate temporary vectorial force */
350 tx = fscal*dx30;
351 ty = fscal*dy30;
352 tz = fscal*dz30;
353
354 /* Update vectorial force */
355 fix3 += tx;
356 fiy3 += ty;
357 fiz3 += tz;
358 f[j_coord_offset+DIM3*0+XX0] -= tx;
359 f[j_coord_offset+DIM3*0+YY1] -= ty;
360 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
361
362 }
363
364 /* Inner loop uses 188 flops */
365 }
366 /* End of innermost loop */
367
368 tx = ty = tz = 0;
369 f[i_coord_offset+DIM3*0+XX0] += fix0;
370 f[i_coord_offset+DIM3*0+YY1] += fiy0;
371 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
372 tx += fix0;
373 ty += fiy0;
374 tz += fiz0;
375 f[i_coord_offset+DIM3*1+XX0] += fix1;
376 f[i_coord_offset+DIM3*1+YY1] += fiy1;
377 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
378 tx += fix1;
379 ty += fiy1;
380 tz += fiz1;
381 f[i_coord_offset+DIM3*2+XX0] += fix2;
382 f[i_coord_offset+DIM3*2+YY1] += fiy2;
383 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
384 tx += fix2;
385 ty += fiy2;
386 tz += fiz2;
387 f[i_coord_offset+DIM3*3+XX0] += fix3;
388 f[i_coord_offset+DIM3*3+YY1] += fiy3;
389 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
390 tx += fix3;
391 ty += fiy3;
392 tz += fiz3;
393 fshift[i_shift_offset+XX0] += tx;
394 fshift[i_shift_offset+YY1] += ty;
395 fshift[i_shift_offset+ZZ2] += tz;
396
397 ggid = gid[iidx];
398 /* Update potential energies */
399 kernel_data->energygrp_elec[ggid] += velecsum;
400 kernel_data->energygrp_vdw[ggid] += vvdwsum;
401
402 /* Increment number of inner iterations */
403 inneriter += j_index_end - j_index_start;
404
405 /* Outer loop uses 41 flops */
406 }
407
408 /* Increment number of outer iterations */
409 outeriter += nri;
410
411 /* Update outer/inner flops */
412
413 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*41 + inneriter*188)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_VF] += outeriter*41 + inneriter
*188
;
414}
415/*
416 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwBhamSh_GeomW4P1_F_c
417 * Electrostatics interaction: ReactionField
418 * VdW interaction: Buckingham
419 * Geometry: Water4-Particle
420 * Calculate force/pot: Force
421 */
422void
423nb_kernel_ElecRFCut_VdwBhamSh_GeomW4P1_F_c
424 (t_nblist * gmx_restrict__restrict nlist,
425 rvec * gmx_restrict__restrict xx,
426 rvec * gmx_restrict__restrict ff,
427 t_forcerec * gmx_restrict__restrict fr,
428 t_mdatoms * gmx_restrict__restrict mdatoms,
429 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
430 t_nrnb * gmx_restrict__restrict nrnb)
431{
432 int i_shift_offset,i_coord_offset,j_coord_offset;
433 int j_index_start,j_index_end;
434 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
435 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
436 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
437 real *shiftvec,*fshift,*x,*f;
438 int vdwioffset0;
439 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
440 int vdwioffset1;
441 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
442 int vdwioffset2;
443 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
444 int vdwioffset3;
445 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
446 int vdwjidx0;
447 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
448 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
449 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
450 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
451 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
452 real velec,felec,velecsum,facel,crf,krf,krf2;
453 real *charge;
454 int nvdwtype;
455 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
456 int *vdwtype;
457 real *vdwparam;
458
459 x = xx[0];
460 f = ff[0];
461
462 nri = nlist->nri;
463 iinr = nlist->iinr;
464 jindex = nlist->jindex;
465 jjnr = nlist->jjnr;
466 shiftidx = nlist->shift;
467 gid = nlist->gid;
468 shiftvec = fr->shift_vec[0];
469 fshift = fr->fshift[0];
470 facel = fr->epsfac;
471 charge = mdatoms->chargeA;
472 krf = fr->ic->k_rf;
473 krf2 = krf*2.0;
474 crf = fr->ic->c_rf;
Value stored to 'crf' is never read
475 nvdwtype = fr->ntype;
476 vdwparam = fr->nbfp;
477 vdwtype = mdatoms->typeA;
478
479 /* Setup water-specific parameters */
480 inr = nlist->iinr[0];
481 iq1 = facel*charge[inr+1];
482 iq2 = facel*charge[inr+2];
483 iq3 = facel*charge[inr+3];
484 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
485
486 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
487 rcutoff = fr->rcoulomb;
488 rcutoff2 = rcutoff*rcutoff;
489
490 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
491 rvdw = fr->rvdw;
492
493 outeriter = 0;
494 inneriter = 0;
495
496 /* Start outer loop over neighborlists */
497 for(iidx=0; iidx<nri; iidx++)
498 {
499 /* Load shift vector for this list */
500 i_shift_offset = DIM3*shiftidx[iidx];
501 shX = shiftvec[i_shift_offset+XX0];
502 shY = shiftvec[i_shift_offset+YY1];
503 shZ = shiftvec[i_shift_offset+ZZ2];
504
505 /* Load limits for loop over neighbors */
506 j_index_start = jindex[iidx];
507 j_index_end = jindex[iidx+1];
508
509 /* Get outer coordinate index */
510 inr = iinr[iidx];
511 i_coord_offset = DIM3*inr;
512
513 /* Load i particle coords and add shift vector */
514 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
515 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
516 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
517 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
518 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
519 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
520 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
521 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
522 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
523 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
524 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
525 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
526
527 fix0 = 0.0;
528 fiy0 = 0.0;
529 fiz0 = 0.0;
530 fix1 = 0.0;
531 fiy1 = 0.0;
532 fiz1 = 0.0;
533 fix2 = 0.0;
534 fiy2 = 0.0;
535 fiz2 = 0.0;
536 fix3 = 0.0;
537 fiy3 = 0.0;
538 fiz3 = 0.0;
539
540 /* Start inner kernel loop */
541 for(jidx=j_index_start; jidx<j_index_end; jidx++)
542 {
543 /* Get j neighbor index, and coordinate index */
544 jnr = jjnr[jidx];
545 j_coord_offset = DIM3*jnr;
546
547 /* load j atom coordinates */
548 jx0 = x[j_coord_offset+DIM3*0+XX0];
549 jy0 = x[j_coord_offset+DIM3*0+YY1];
550 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
551
552 /* Calculate displacement vector */
553 dx00 = ix0 - jx0;
554 dy00 = iy0 - jy0;
555 dz00 = iz0 - jz0;
556 dx10 = ix1 - jx0;
557 dy10 = iy1 - jy0;
558 dz10 = iz1 - jz0;
559 dx20 = ix2 - jx0;
560 dy20 = iy2 - jy0;
561 dz20 = iz2 - jz0;
562 dx30 = ix3 - jx0;
563 dy30 = iy3 - jy0;
564 dz30 = iz3 - jz0;
565
566 /* Calculate squared distance and things based on it */
567 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
568 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
569 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
570 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
571
572 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
573 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
574 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
575 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
576
577 rinvsq00 = rinv00*rinv00;
578 rinvsq10 = rinv10*rinv10;
579 rinvsq20 = rinv20*rinv20;
580 rinvsq30 = rinv30*rinv30;
581
582 /* Load parameters for j particles */
583 jq0 = charge[jnr+0];
584 vdwjidx0 = 3*vdwtype[jnr+0];
585
586 /**************************
587 * CALCULATE INTERACTIONS *
588 **************************/
589
590 if (rsq00<rcutoff2)
591 {
592
593 r00 = rsq00*rinv00;
594
595 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
596 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
597 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
598
599 /* BUCKINGHAM DISPERSION/REPULSION */
600 rinvsix = rinvsq00*rinvsq00*rinvsq00;
601 vvdw6 = c6_00*rinvsix;
602 br = cexp2_00*r00;
603 vvdwexp = cexp1_00*exp(-br);
604 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
605
606 fscal = fvdw;
607
608 /* Calculate temporary vectorial force */
609 tx = fscal*dx00;
610 ty = fscal*dy00;
611 tz = fscal*dz00;
612
613 /* Update vectorial force */
614 fix0 += tx;
615 fiy0 += ty;
616 fiz0 += tz;
617 f[j_coord_offset+DIM3*0+XX0] -= tx;
618 f[j_coord_offset+DIM3*0+YY1] -= ty;
619 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
620
621 }
622
623 /**************************
624 * CALCULATE INTERACTIONS *
625 **************************/
626
627 if (rsq10<rcutoff2)
628 {
629
630 qq10 = iq1*jq0;
631
632 /* REACTION-FIELD ELECTROSTATICS */
633 felec = qq10*(rinv10*rinvsq10-krf2);
634
635 fscal = felec;
636
637 /* Calculate temporary vectorial force */
638 tx = fscal*dx10;
639 ty = fscal*dy10;
640 tz = fscal*dz10;
641
642 /* Update vectorial force */
643 fix1 += tx;
644 fiy1 += ty;
645 fiz1 += tz;
646 f[j_coord_offset+DIM3*0+XX0] -= tx;
647 f[j_coord_offset+DIM3*0+YY1] -= ty;
648 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
649
650 }
651
652 /**************************
653 * CALCULATE INTERACTIONS *
654 **************************/
655
656 if (rsq20<rcutoff2)
657 {
658
659 qq20 = iq2*jq0;
660
661 /* REACTION-FIELD ELECTROSTATICS */
662 felec = qq20*(rinv20*rinvsq20-krf2);
663
664 fscal = felec;
665
666 /* Calculate temporary vectorial force */
667 tx = fscal*dx20;
668 ty = fscal*dy20;
669 tz = fscal*dz20;
670
671 /* Update vectorial force */
672 fix2 += tx;
673 fiy2 += ty;
674 fiz2 += tz;
675 f[j_coord_offset+DIM3*0+XX0] -= tx;
676 f[j_coord_offset+DIM3*0+YY1] -= ty;
677 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
678
679 }
680
681 /**************************
682 * CALCULATE INTERACTIONS *
683 **************************/
684
685 if (rsq30<rcutoff2)
686 {
687
688 qq30 = iq3*jq0;
689
690 /* REACTION-FIELD ELECTROSTATICS */
691 felec = qq30*(rinv30*rinvsq30-krf2);
692
693 fscal = felec;
694
695 /* Calculate temporary vectorial force */
696 tx = fscal*dx30;
697 ty = fscal*dy30;
698 tz = fscal*dz30;
699
700 /* Update vectorial force */
701 fix3 += tx;
702 fiy3 += ty;
703 fiz3 += tz;
704 f[j_coord_offset+DIM3*0+XX0] -= tx;
705 f[j_coord_offset+DIM3*0+YY1] -= ty;
706 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
707
708 }
709
710 /* Inner loop uses 139 flops */
711 }
712 /* End of innermost loop */
713
714 tx = ty = tz = 0;
715 f[i_coord_offset+DIM3*0+XX0] += fix0;
716 f[i_coord_offset+DIM3*0+YY1] += fiy0;
717 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
718 tx += fix0;
719 ty += fiy0;
720 tz += fiz0;
721 f[i_coord_offset+DIM3*1+XX0] += fix1;
722 f[i_coord_offset+DIM3*1+YY1] += fiy1;
723 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
724 tx += fix1;
725 ty += fiy1;
726 tz += fiz1;
727 f[i_coord_offset+DIM3*2+XX0] += fix2;
728 f[i_coord_offset+DIM3*2+YY1] += fiy2;
729 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
730 tx += fix2;
731 ty += fiy2;
732 tz += fiz2;
733 f[i_coord_offset+DIM3*3+XX0] += fix3;
734 f[i_coord_offset+DIM3*3+YY1] += fiy3;
735 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
736 tx += fix3;
737 ty += fiy3;
738 tz += fiz3;
739 fshift[i_shift_offset+XX0] += tx;
740 fshift[i_shift_offset+YY1] += ty;
741 fshift[i_shift_offset+ZZ2] += tz;
742
743 /* Increment number of inner iterations */
744 inneriter += j_index_end - j_index_start;
745
746 /* Outer loop uses 39 flops */
747 }
748
749 /* Increment number of outer iterations */
750 outeriter += nri;
751
752 /* Update outer/inner flops */
753
754 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*39 + inneriter*139)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_F] += outeriter*39 + inneriter
*139
;
755}