Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecEwSh_VdwNone_GeomW4P1_sse4_1_single.c
Location:line 759, column 5
Description:Value stored to 'jnrA' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwNone_GeomW4P1_VF_sse4_1_single
54 * Electrostatics interaction: Ewald
55 * VdW interaction: None
56 * Geometry: Water4-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecEwSh_VdwNone_GeomW4P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset1;
86 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
87 int vdwioffset2;
88 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
89 int vdwioffset3;
90 __m128 ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
91 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
94 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
95 __m128 dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
96 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
97 real *charge;
98 __m128i ewitab;
99 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
100 real *ewtab;
101 __m128 dummy_mask,cutoff_mask;
102 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
103 __m128 one = _mm_set1_ps(1.0);
104 __m128 two = _mm_set1_ps(2.0);
105 x = xx[0];
106 f = ff[0];
107
108 nri = nlist->nri;
109 iinr = nlist->iinr;
110 jindex = nlist->jindex;
111 jjnr = nlist->jjnr;
112 shiftidx = nlist->shift;
113 gid = nlist->gid;
114 shiftvec = fr->shift_vec[0];
115 fshift = fr->fshift[0];
116 facel = _mm_set1_ps(fr->epsfac);
117 charge = mdatoms->chargeA;
118
119 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
120 ewtab = fr->ic->tabq_coul_FDV0;
121 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
122 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
123
124 /* Setup water-specific parameters */
125 inr = nlist->iinr[0];
126 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
127 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
128 iq3 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
129
130 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
131 rcutoff_scalar = fr->rcoulomb;
132 rcutoff = _mm_set1_ps(rcutoff_scalar);
133 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
134
135 /* Avoid stupid compiler warnings */
136 jnrA = jnrB = jnrC = jnrD = 0;
137 j_coord_offsetA = 0;
138 j_coord_offsetB = 0;
139 j_coord_offsetC = 0;
140 j_coord_offsetD = 0;
141
142 outeriter = 0;
143 inneriter = 0;
144
145 for(iidx=0;iidx<4*DIM3;iidx++)
146 {
147 scratch[iidx] = 0.0;
148 }
149
150 /* Start outer loop over neighborlists */
151 for(iidx=0; iidx<nri; iidx++)
152 {
153 /* Load shift vector for this list */
154 i_shift_offset = DIM3*shiftidx[iidx];
155
156 /* Load limits for loop over neighbors */
157 j_index_start = jindex[iidx];
158 j_index_end = jindex[iidx+1];
159
160 /* Get outer coordinate index */
161 inr = iinr[iidx];
162 i_coord_offset = DIM3*inr;
163
164 /* Load i particle coords and add shift vector */
165 gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM3,
166 &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
167
168 fix1 = _mm_setzero_ps();
169 fiy1 = _mm_setzero_ps();
170 fiz1 = _mm_setzero_ps();
171 fix2 = _mm_setzero_ps();
172 fiy2 = _mm_setzero_ps();
173 fiz2 = _mm_setzero_ps();
174 fix3 = _mm_setzero_ps();
175 fiy3 = _mm_setzero_ps();
176 fiz3 = _mm_setzero_ps();
177
178 /* Reset potential sums */
179 velecsum = _mm_setzero_ps();
180
181 /* Start inner kernel loop */
182 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
183 {
184
185 /* Get j neighbor index, and coordinate index */
186 jnrA = jjnr[jidx];
187 jnrB = jjnr[jidx+1];
188 jnrC = jjnr[jidx+2];
189 jnrD = jjnr[jidx+3];
190 j_coord_offsetA = DIM3*jnrA;
191 j_coord_offsetB = DIM3*jnrB;
192 j_coord_offsetC = DIM3*jnrC;
193 j_coord_offsetD = DIM3*jnrD;
194
195 /* load j atom coordinates */
196 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
197 x+j_coord_offsetC,x+j_coord_offsetD,
198 &jx0,&jy0,&jz0);
199
200 /* Calculate displacement vector */
201 dx10 = _mm_sub_ps(ix1,jx0);
202 dy10 = _mm_sub_ps(iy1,jy0);
203 dz10 = _mm_sub_ps(iz1,jz0);
204 dx20 = _mm_sub_ps(ix2,jx0);
205 dy20 = _mm_sub_ps(iy2,jy0);
206 dz20 = _mm_sub_ps(iz2,jz0);
207 dx30 = _mm_sub_ps(ix3,jx0);
208 dy30 = _mm_sub_ps(iy3,jy0);
209 dz30 = _mm_sub_ps(iz3,jz0);
210
211 /* Calculate squared distance and things based on it */
212 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
213 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
214 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
215
216 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
217 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
218 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
219
220 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
221 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
222 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
223
224 /* Load parameters for j particles */
225 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
226 charge+jnrC+0,charge+jnrD+0);
227
228 fjx0 = _mm_setzero_ps();
229 fjy0 = _mm_setzero_ps();
230 fjz0 = _mm_setzero_ps();
231
232 /**************************
233 * CALCULATE INTERACTIONS *
234 **************************/
235
236 if (gmx_mm_any_lt(rsq10,rcutoff2))
237 {
238
239 r10 = _mm_mul_ps(rsq10,rinv10);
240
241 /* Compute parameters for interactions between i and j atoms */
242 qq10 = _mm_mul_ps(iq1,jq0);
243
244 /* EWALD ELECTROSTATICS */
245
246 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
247 ewrt = _mm_mul_ps(r10,ewtabscale);
248 ewitab = _mm_cvttps_epi32(ewrt);
249 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
250 ewitab = _mm_slli_epi32(ewitab,2);
251 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
252 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
253 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
254 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
255 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
256 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
257 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
258 velec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
259 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
260
261 cutoff_mask = _mm_cmplt_ps(rsq10,rcutoff2);
262
263 /* Update potential sum for this i atom from the interaction with this j atom. */
264 velec = _mm_and_ps(velec,cutoff_mask);
265 velecsum = _mm_add_ps(velecsum,velec);
266
267 fscal = felec;
268
269 fscal = _mm_and_ps(fscal,cutoff_mask);
270
271 /* Calculate temporary vectorial force */
272 tx = _mm_mul_ps(fscal,dx10);
273 ty = _mm_mul_ps(fscal,dy10);
274 tz = _mm_mul_ps(fscal,dz10);
275
276 /* Update vectorial force */
277 fix1 = _mm_add_ps(fix1,tx);
278 fiy1 = _mm_add_ps(fiy1,ty);
279 fiz1 = _mm_add_ps(fiz1,tz);
280
281 fjx0 = _mm_add_ps(fjx0,tx);
282 fjy0 = _mm_add_ps(fjy0,ty);
283 fjz0 = _mm_add_ps(fjz0,tz);
284
285 }
286
287 /**************************
288 * CALCULATE INTERACTIONS *
289 **************************/
290
291 if (gmx_mm_any_lt(rsq20,rcutoff2))
292 {
293
294 r20 = _mm_mul_ps(rsq20,rinv20);
295
296 /* Compute parameters for interactions between i and j atoms */
297 qq20 = _mm_mul_ps(iq2,jq0);
298
299 /* EWALD ELECTROSTATICS */
300
301 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
302 ewrt = _mm_mul_ps(r20,ewtabscale);
303 ewitab = _mm_cvttps_epi32(ewrt);
304 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
305 ewitab = _mm_slli_epi32(ewitab,2);
306 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
307 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
308 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
309 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
310 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
311 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
312 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
313 velec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
314 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
315
316 cutoff_mask = _mm_cmplt_ps(rsq20,rcutoff2);
317
318 /* Update potential sum for this i atom from the interaction with this j atom. */
319 velec = _mm_and_ps(velec,cutoff_mask);
320 velecsum = _mm_add_ps(velecsum,velec);
321
322 fscal = felec;
323
324 fscal = _mm_and_ps(fscal,cutoff_mask);
325
326 /* Calculate temporary vectorial force */
327 tx = _mm_mul_ps(fscal,dx20);
328 ty = _mm_mul_ps(fscal,dy20);
329 tz = _mm_mul_ps(fscal,dz20);
330
331 /* Update vectorial force */
332 fix2 = _mm_add_ps(fix2,tx);
333 fiy2 = _mm_add_ps(fiy2,ty);
334 fiz2 = _mm_add_ps(fiz2,tz);
335
336 fjx0 = _mm_add_ps(fjx0,tx);
337 fjy0 = _mm_add_ps(fjy0,ty);
338 fjz0 = _mm_add_ps(fjz0,tz);
339
340 }
341
342 /**************************
343 * CALCULATE INTERACTIONS *
344 **************************/
345
346 if (gmx_mm_any_lt(rsq30,rcutoff2))
347 {
348
349 r30 = _mm_mul_ps(rsq30,rinv30);
350
351 /* Compute parameters for interactions between i and j atoms */
352 qq30 = _mm_mul_ps(iq3,jq0);
353
354 /* EWALD ELECTROSTATICS */
355
356 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
357 ewrt = _mm_mul_ps(r30,ewtabscale);
358 ewitab = _mm_cvttps_epi32(ewrt);
359 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
360 ewitab = _mm_slli_epi32(ewitab,2);
361 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
362 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
363 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
364 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
365 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
366 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
367 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
368 velec = _mm_mul_ps(qq30,_mm_sub_ps(_mm_sub_ps(rinv30,sh_ewald),velec));
369 felec = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
370
371 cutoff_mask = _mm_cmplt_ps(rsq30,rcutoff2);
372
373 /* Update potential sum for this i atom from the interaction with this j atom. */
374 velec = _mm_and_ps(velec,cutoff_mask);
375 velecsum = _mm_add_ps(velecsum,velec);
376
377 fscal = felec;
378
379 fscal = _mm_and_ps(fscal,cutoff_mask);
380
381 /* Calculate temporary vectorial force */
382 tx = _mm_mul_ps(fscal,dx30);
383 ty = _mm_mul_ps(fscal,dy30);
384 tz = _mm_mul_ps(fscal,dz30);
385
386 /* Update vectorial force */
387 fix3 = _mm_add_ps(fix3,tx);
388 fiy3 = _mm_add_ps(fiy3,ty);
389 fiz3 = _mm_add_ps(fiz3,tz);
390
391 fjx0 = _mm_add_ps(fjx0,tx);
392 fjy0 = _mm_add_ps(fjy0,ty);
393 fjz0 = _mm_add_ps(fjz0,tz);
394
395 }
396
397 fjptrA = f+j_coord_offsetA;
398 fjptrB = f+j_coord_offsetB;
399 fjptrC = f+j_coord_offsetC;
400 fjptrD = f+j_coord_offsetD;
401
402 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
403
404 /* Inner loop uses 138 flops */
405 }
406
407 if(jidx<j_index_end)
408 {
409
410 /* Get j neighbor index, and coordinate index */
411 jnrlistA = jjnr[jidx];
412 jnrlistB = jjnr[jidx+1];
413 jnrlistC = jjnr[jidx+2];
414 jnrlistD = jjnr[jidx+3];
415 /* Sign of each element will be negative for non-real atoms.
416 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
417 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
418 */
419 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
420 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
421 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
422 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
423 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
424 j_coord_offsetA = DIM3*jnrA;
425 j_coord_offsetB = DIM3*jnrB;
426 j_coord_offsetC = DIM3*jnrC;
427 j_coord_offsetD = DIM3*jnrD;
428
429 /* load j atom coordinates */
430 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
431 x+j_coord_offsetC,x+j_coord_offsetD,
432 &jx0,&jy0,&jz0);
433
434 /* Calculate displacement vector */
435 dx10 = _mm_sub_ps(ix1,jx0);
436 dy10 = _mm_sub_ps(iy1,jy0);
437 dz10 = _mm_sub_ps(iz1,jz0);
438 dx20 = _mm_sub_ps(ix2,jx0);
439 dy20 = _mm_sub_ps(iy2,jy0);
440 dz20 = _mm_sub_ps(iz2,jz0);
441 dx30 = _mm_sub_ps(ix3,jx0);
442 dy30 = _mm_sub_ps(iy3,jy0);
443 dz30 = _mm_sub_ps(iz3,jz0);
444
445 /* Calculate squared distance and things based on it */
446 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
447 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
448 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
449
450 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
451 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
452 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
453
454 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
455 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
456 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
457
458 /* Load parameters for j particles */
459 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
460 charge+jnrC+0,charge+jnrD+0);
461
462 fjx0 = _mm_setzero_ps();
463 fjy0 = _mm_setzero_ps();
464 fjz0 = _mm_setzero_ps();
465
466 /**************************
467 * CALCULATE INTERACTIONS *
468 **************************/
469
470 if (gmx_mm_any_lt(rsq10,rcutoff2))
471 {
472
473 r10 = _mm_mul_ps(rsq10,rinv10);
474 r10 = _mm_andnot_ps(dummy_mask,r10);
475
476 /* Compute parameters for interactions between i and j atoms */
477 qq10 = _mm_mul_ps(iq1,jq0);
478
479 /* EWALD ELECTROSTATICS */
480
481 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
482 ewrt = _mm_mul_ps(r10,ewtabscale);
483 ewitab = _mm_cvttps_epi32(ewrt);
484 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
485 ewitab = _mm_slli_epi32(ewitab,2);
486 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
487 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
488 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
489 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
490 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
491 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
492 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
493 velec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_sub_ps(rinv10,sh_ewald),velec));
494 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
495
496 cutoff_mask = _mm_cmplt_ps(rsq10,rcutoff2);
497
498 /* Update potential sum for this i atom from the interaction with this j atom. */
499 velec = _mm_and_ps(velec,cutoff_mask);
500 velec = _mm_andnot_ps(dummy_mask,velec);
501 velecsum = _mm_add_ps(velecsum,velec);
502
503 fscal = felec;
504
505 fscal = _mm_and_ps(fscal,cutoff_mask);
506
507 fscal = _mm_andnot_ps(dummy_mask,fscal);
508
509 /* Calculate temporary vectorial force */
510 tx = _mm_mul_ps(fscal,dx10);
511 ty = _mm_mul_ps(fscal,dy10);
512 tz = _mm_mul_ps(fscal,dz10);
513
514 /* Update vectorial force */
515 fix1 = _mm_add_ps(fix1,tx);
516 fiy1 = _mm_add_ps(fiy1,ty);
517 fiz1 = _mm_add_ps(fiz1,tz);
518
519 fjx0 = _mm_add_ps(fjx0,tx);
520 fjy0 = _mm_add_ps(fjy0,ty);
521 fjz0 = _mm_add_ps(fjz0,tz);
522
523 }
524
525 /**************************
526 * CALCULATE INTERACTIONS *
527 **************************/
528
529 if (gmx_mm_any_lt(rsq20,rcutoff2))
530 {
531
532 r20 = _mm_mul_ps(rsq20,rinv20);
533 r20 = _mm_andnot_ps(dummy_mask,r20);
534
535 /* Compute parameters for interactions between i and j atoms */
536 qq20 = _mm_mul_ps(iq2,jq0);
537
538 /* EWALD ELECTROSTATICS */
539
540 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
541 ewrt = _mm_mul_ps(r20,ewtabscale);
542 ewitab = _mm_cvttps_epi32(ewrt);
543 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
544 ewitab = _mm_slli_epi32(ewitab,2);
545 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
546 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
547 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
548 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
549 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
550 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
551 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
552 velec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_sub_ps(rinv20,sh_ewald),velec));
553 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
554
555 cutoff_mask = _mm_cmplt_ps(rsq20,rcutoff2);
556
557 /* Update potential sum for this i atom from the interaction with this j atom. */
558 velec = _mm_and_ps(velec,cutoff_mask);
559 velec = _mm_andnot_ps(dummy_mask,velec);
560 velecsum = _mm_add_ps(velecsum,velec);
561
562 fscal = felec;
563
564 fscal = _mm_and_ps(fscal,cutoff_mask);
565
566 fscal = _mm_andnot_ps(dummy_mask,fscal);
567
568 /* Calculate temporary vectorial force */
569 tx = _mm_mul_ps(fscal,dx20);
570 ty = _mm_mul_ps(fscal,dy20);
571 tz = _mm_mul_ps(fscal,dz20);
572
573 /* Update vectorial force */
574 fix2 = _mm_add_ps(fix2,tx);
575 fiy2 = _mm_add_ps(fiy2,ty);
576 fiz2 = _mm_add_ps(fiz2,tz);
577
578 fjx0 = _mm_add_ps(fjx0,tx);
579 fjy0 = _mm_add_ps(fjy0,ty);
580 fjz0 = _mm_add_ps(fjz0,tz);
581
582 }
583
584 /**************************
585 * CALCULATE INTERACTIONS *
586 **************************/
587
588 if (gmx_mm_any_lt(rsq30,rcutoff2))
589 {
590
591 r30 = _mm_mul_ps(rsq30,rinv30);
592 r30 = _mm_andnot_ps(dummy_mask,r30);
593
594 /* Compute parameters for interactions between i and j atoms */
595 qq30 = _mm_mul_ps(iq3,jq0);
596
597 /* EWALD ELECTROSTATICS */
598
599 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
600 ewrt = _mm_mul_ps(r30,ewtabscale);
601 ewitab = _mm_cvttps_epi32(ewrt);
602 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
603 ewitab = _mm_slli_epi32(ewitab,2);
604 ewtabF = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
);
605 ewtabD = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
);
606 ewtabV = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
);
607 ewtabFn = _mm_load_ps( ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
);
608 _MM_TRANSPOSE4_PS(ewtabF,ewtabD,ewtabV,ewtabFn)do { __m128 tmp3, tmp2, tmp1, tmp0; tmp0 = _mm_unpacklo_ps((ewtabF
), (ewtabD)); tmp2 = _mm_unpacklo_ps((ewtabV), (ewtabFn)); tmp1
= _mm_unpackhi_ps((ewtabF), (ewtabD)); tmp3 = _mm_unpackhi_ps
((ewtabV), (ewtabFn)); (ewtabF) = _mm_movelh_ps(tmp0, tmp2); (
ewtabD) = _mm_movehl_ps(tmp2, tmp0); (ewtabV) = _mm_movelh_ps
(tmp1, tmp3); (ewtabFn) = _mm_movehl_ps(tmp3, tmp1); } while (
0)
;
609 felec = _mm_add_ps(ewtabF,_mm_mul_ps(eweps,ewtabD));
610 velec = _mm_sub_ps(ewtabV,_mm_mul_ps(_mm_mul_ps(ewtabhalfspace,eweps),_mm_add_ps(ewtabF,felec)));
611 velec = _mm_mul_ps(qq30,_mm_sub_ps(_mm_sub_ps(rinv30,sh_ewald),velec));
612 felec = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
613
614 cutoff_mask = _mm_cmplt_ps(rsq30,rcutoff2);
615
616 /* Update potential sum for this i atom from the interaction with this j atom. */
617 velec = _mm_and_ps(velec,cutoff_mask);
618 velec = _mm_andnot_ps(dummy_mask,velec);
619 velecsum = _mm_add_ps(velecsum,velec);
620
621 fscal = felec;
622
623 fscal = _mm_and_ps(fscal,cutoff_mask);
624
625 fscal = _mm_andnot_ps(dummy_mask,fscal);
626
627 /* Calculate temporary vectorial force */
628 tx = _mm_mul_ps(fscal,dx30);
629 ty = _mm_mul_ps(fscal,dy30);
630 tz = _mm_mul_ps(fscal,dz30);
631
632 /* Update vectorial force */
633 fix3 = _mm_add_ps(fix3,tx);
634 fiy3 = _mm_add_ps(fiy3,ty);
635 fiz3 = _mm_add_ps(fiz3,tz);
636
637 fjx0 = _mm_add_ps(fjx0,tx);
638 fjy0 = _mm_add_ps(fjy0,ty);
639 fjz0 = _mm_add_ps(fjz0,tz);
640
641 }
642
643 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
644 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
645 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
646 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
647
648 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
649
650 /* Inner loop uses 141 flops */
651 }
652
653 /* End of innermost loop */
654
655 gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
656 f+i_coord_offset+DIM3,fshift+i_shift_offset);
657
658 ggid = gid[iidx];
659 /* Update potential energies */
660 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
661
662 /* Increment number of inner iterations */
663 inneriter += j_index_end - j_index_start;
664
665 /* Outer loop uses 19 flops */
666 }
667
668 /* Increment number of outer iterations */
669 outeriter += nri;
670
671 /* Update outer/inner flops */
672
673 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*19 + inneriter*141)(nrnb)->n[eNR_NBKERNEL_ELEC_W4_VF] += outeriter*19 + inneriter
*141
;
674}
675/*
676 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwNone_GeomW4P1_F_sse4_1_single
677 * Electrostatics interaction: Ewald
678 * VdW interaction: None
679 * Geometry: Water4-Particle
680 * Calculate force/pot: Force
681 */
682void
683nb_kernel_ElecEwSh_VdwNone_GeomW4P1_F_sse4_1_single
684 (t_nblist * gmx_restrict nlist,
685 rvec * gmx_restrict xx,
686 rvec * gmx_restrict ff,
687 t_forcerec * gmx_restrict fr,
688 t_mdatoms * gmx_restrict mdatoms,
689 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
690 t_nrnb * gmx_restrict nrnb)
691{
692 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
693 * just 0 for non-waters.
694 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
695 * jnr indices corresponding to data put in the four positions in the SIMD register.
696 */
697 int i_shift_offset,i_coord_offset,outeriter,inneriter;
698 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
699 int jnrA,jnrB,jnrC,jnrD;
700 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
701 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
702 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
703 real rcutoff_scalar;
704 real *shiftvec,*fshift,*x,*f;
705 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
706 real scratch[4*DIM3];
707 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
708 int vdwioffset1;
709 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
710 int vdwioffset2;
711 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
712 int vdwioffset3;
713 __m128 ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
714 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
715 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
716 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
717 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
718 __m128 dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
719 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
720 real *charge;
721 __m128i ewitab;
722 __m128 ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace,ewtabF,ewtabFn,ewtabD,ewtabV;
723 real *ewtab;
724 __m128 dummy_mask,cutoff_mask;
725 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
726 __m128 one = _mm_set1_ps(1.0);
727 __m128 two = _mm_set1_ps(2.0);
728 x = xx[0];
729 f = ff[0];
730
731 nri = nlist->nri;
732 iinr = nlist->iinr;
733 jindex = nlist->jindex;
734 jjnr = nlist->jjnr;
735 shiftidx = nlist->shift;
736 gid = nlist->gid;
737 shiftvec = fr->shift_vec[0];
738 fshift = fr->fshift[0];
739 facel = _mm_set1_ps(fr->epsfac);
740 charge = mdatoms->chargeA;
741
742 sh_ewald = _mm_set1_ps(fr->ic->sh_ewald);
743 ewtab = fr->ic->tabq_coul_F;
744 ewtabscale = _mm_set1_ps(fr->ic->tabq_scale);
745 ewtabhalfspace = _mm_set1_ps(0.5/fr->ic->tabq_scale);
746
747 /* Setup water-specific parameters */
748 inr = nlist->iinr[0];
749 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
750 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
751 iq3 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
752
753 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
754 rcutoff_scalar = fr->rcoulomb;
755 rcutoff = _mm_set1_ps(rcutoff_scalar);
756 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
757
758 /* Avoid stupid compiler warnings */
759 jnrA = jnrB = jnrC = jnrD = 0;
Value stored to 'jnrA' is never read
760 j_coord_offsetA = 0;
761 j_coord_offsetB = 0;
762 j_coord_offsetC = 0;
763 j_coord_offsetD = 0;
764
765 outeriter = 0;
766 inneriter = 0;
767
768 for(iidx=0;iidx<4*DIM3;iidx++)
769 {
770 scratch[iidx] = 0.0;
771 }
772
773 /* Start outer loop over neighborlists */
774 for(iidx=0; iidx<nri; iidx++)
775 {
776 /* Load shift vector for this list */
777 i_shift_offset = DIM3*shiftidx[iidx];
778
779 /* Load limits for loop over neighbors */
780 j_index_start = jindex[iidx];
781 j_index_end = jindex[iidx+1];
782
783 /* Get outer coordinate index */
784 inr = iinr[iidx];
785 i_coord_offset = DIM3*inr;
786
787 /* Load i particle coords and add shift vector */
788 gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset+DIM3,
789 &ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
790
791 fix1 = _mm_setzero_ps();
792 fiy1 = _mm_setzero_ps();
793 fiz1 = _mm_setzero_ps();
794 fix2 = _mm_setzero_ps();
795 fiy2 = _mm_setzero_ps();
796 fiz2 = _mm_setzero_ps();
797 fix3 = _mm_setzero_ps();
798 fiy3 = _mm_setzero_ps();
799 fiz3 = _mm_setzero_ps();
800
801 /* Start inner kernel loop */
802 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
803 {
804
805 /* Get j neighbor index, and coordinate index */
806 jnrA = jjnr[jidx];
807 jnrB = jjnr[jidx+1];
808 jnrC = jjnr[jidx+2];
809 jnrD = jjnr[jidx+3];
810 j_coord_offsetA = DIM3*jnrA;
811 j_coord_offsetB = DIM3*jnrB;
812 j_coord_offsetC = DIM3*jnrC;
813 j_coord_offsetD = DIM3*jnrD;
814
815 /* load j atom coordinates */
816 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
817 x+j_coord_offsetC,x+j_coord_offsetD,
818 &jx0,&jy0,&jz0);
819
820 /* Calculate displacement vector */
821 dx10 = _mm_sub_ps(ix1,jx0);
822 dy10 = _mm_sub_ps(iy1,jy0);
823 dz10 = _mm_sub_ps(iz1,jz0);
824 dx20 = _mm_sub_ps(ix2,jx0);
825 dy20 = _mm_sub_ps(iy2,jy0);
826 dz20 = _mm_sub_ps(iz2,jz0);
827 dx30 = _mm_sub_ps(ix3,jx0);
828 dy30 = _mm_sub_ps(iy3,jy0);
829 dz30 = _mm_sub_ps(iz3,jz0);
830
831 /* Calculate squared distance and things based on it */
832 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
833 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
834 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
835
836 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
837 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
838 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
839
840 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
841 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
842 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
843
844 /* Load parameters for j particles */
845 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
846 charge+jnrC+0,charge+jnrD+0);
847
848 fjx0 = _mm_setzero_ps();
849 fjy0 = _mm_setzero_ps();
850 fjz0 = _mm_setzero_ps();
851
852 /**************************
853 * CALCULATE INTERACTIONS *
854 **************************/
855
856 if (gmx_mm_any_lt(rsq10,rcutoff2))
857 {
858
859 r10 = _mm_mul_ps(rsq10,rinv10);
860
861 /* Compute parameters for interactions between i and j atoms */
862 qq10 = _mm_mul_ps(iq1,jq0);
863
864 /* EWALD ELECTROSTATICS */
865
866 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
867 ewrt = _mm_mul_ps(r10,ewtabscale);
868 ewitab = _mm_cvttps_epi32(ewrt);
869 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
870 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
871 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
872 &ewtabF,&ewtabFn);
873 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
874 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
875
876 cutoff_mask = _mm_cmplt_ps(rsq10,rcutoff2);
877
878 fscal = felec;
879
880 fscal = _mm_and_ps(fscal,cutoff_mask);
881
882 /* Calculate temporary vectorial force */
883 tx = _mm_mul_ps(fscal,dx10);
884 ty = _mm_mul_ps(fscal,dy10);
885 tz = _mm_mul_ps(fscal,dz10);
886
887 /* Update vectorial force */
888 fix1 = _mm_add_ps(fix1,tx);
889 fiy1 = _mm_add_ps(fiy1,ty);
890 fiz1 = _mm_add_ps(fiz1,tz);
891
892 fjx0 = _mm_add_ps(fjx0,tx);
893 fjy0 = _mm_add_ps(fjy0,ty);
894 fjz0 = _mm_add_ps(fjz0,tz);
895
896 }
897
898 /**************************
899 * CALCULATE INTERACTIONS *
900 **************************/
901
902 if (gmx_mm_any_lt(rsq20,rcutoff2))
903 {
904
905 r20 = _mm_mul_ps(rsq20,rinv20);
906
907 /* Compute parameters for interactions between i and j atoms */
908 qq20 = _mm_mul_ps(iq2,jq0);
909
910 /* EWALD ELECTROSTATICS */
911
912 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
913 ewrt = _mm_mul_ps(r20,ewtabscale);
914 ewitab = _mm_cvttps_epi32(ewrt);
915 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
916 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
917 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
918 &ewtabF,&ewtabFn);
919 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
920 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
921
922 cutoff_mask = _mm_cmplt_ps(rsq20,rcutoff2);
923
924 fscal = felec;
925
926 fscal = _mm_and_ps(fscal,cutoff_mask);
927
928 /* Calculate temporary vectorial force */
929 tx = _mm_mul_ps(fscal,dx20);
930 ty = _mm_mul_ps(fscal,dy20);
931 tz = _mm_mul_ps(fscal,dz20);
932
933 /* Update vectorial force */
934 fix2 = _mm_add_ps(fix2,tx);
935 fiy2 = _mm_add_ps(fiy2,ty);
936 fiz2 = _mm_add_ps(fiz2,tz);
937
938 fjx0 = _mm_add_ps(fjx0,tx);
939 fjy0 = _mm_add_ps(fjy0,ty);
940 fjz0 = _mm_add_ps(fjz0,tz);
941
942 }
943
944 /**************************
945 * CALCULATE INTERACTIONS *
946 **************************/
947
948 if (gmx_mm_any_lt(rsq30,rcutoff2))
949 {
950
951 r30 = _mm_mul_ps(rsq30,rinv30);
952
953 /* Compute parameters for interactions between i and j atoms */
954 qq30 = _mm_mul_ps(iq3,jq0);
955
956 /* EWALD ELECTROSTATICS */
957
958 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
959 ewrt = _mm_mul_ps(r30,ewtabscale);
960 ewitab = _mm_cvttps_epi32(ewrt);
961 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
962 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
963 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
964 &ewtabF,&ewtabFn);
965 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
966 felec = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
967
968 cutoff_mask = _mm_cmplt_ps(rsq30,rcutoff2);
969
970 fscal = felec;
971
972 fscal = _mm_and_ps(fscal,cutoff_mask);
973
974 /* Calculate temporary vectorial force */
975 tx = _mm_mul_ps(fscal,dx30);
976 ty = _mm_mul_ps(fscal,dy30);
977 tz = _mm_mul_ps(fscal,dz30);
978
979 /* Update vectorial force */
980 fix3 = _mm_add_ps(fix3,tx);
981 fiy3 = _mm_add_ps(fiy3,ty);
982 fiz3 = _mm_add_ps(fiz3,tz);
983
984 fjx0 = _mm_add_ps(fjx0,tx);
985 fjy0 = _mm_add_ps(fjy0,ty);
986 fjz0 = _mm_add_ps(fjz0,tz);
987
988 }
989
990 fjptrA = f+j_coord_offsetA;
991 fjptrB = f+j_coord_offsetB;
992 fjptrC = f+j_coord_offsetC;
993 fjptrD = f+j_coord_offsetD;
994
995 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
996
997 /* Inner loop uses 117 flops */
998 }
999
1000 if(jidx<j_index_end)
1001 {
1002
1003 /* Get j neighbor index, and coordinate index */
1004 jnrlistA = jjnr[jidx];
1005 jnrlistB = jjnr[jidx+1];
1006 jnrlistC = jjnr[jidx+2];
1007 jnrlistD = jjnr[jidx+3];
1008 /* Sign of each element will be negative for non-real atoms.
1009 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1010 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1011 */
1012 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1013 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
1014 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
1015 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
1016 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
1017 j_coord_offsetA = DIM3*jnrA;
1018 j_coord_offsetB = DIM3*jnrB;
1019 j_coord_offsetC = DIM3*jnrC;
1020 j_coord_offsetD = DIM3*jnrD;
1021
1022 /* load j atom coordinates */
1023 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1024 x+j_coord_offsetC,x+j_coord_offsetD,
1025 &jx0,&jy0,&jz0);
1026
1027 /* Calculate displacement vector */
1028 dx10 = _mm_sub_ps(ix1,jx0);
1029 dy10 = _mm_sub_ps(iy1,jy0);
1030 dz10 = _mm_sub_ps(iz1,jz0);
1031 dx20 = _mm_sub_ps(ix2,jx0);
1032 dy20 = _mm_sub_ps(iy2,jy0);
1033 dz20 = _mm_sub_ps(iz2,jz0);
1034 dx30 = _mm_sub_ps(ix3,jx0);
1035 dy30 = _mm_sub_ps(iy3,jy0);
1036 dz30 = _mm_sub_ps(iz3,jz0);
1037
1038 /* Calculate squared distance and things based on it */
1039 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1040 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1041 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
1042
1043 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
1044 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
1045 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
1046
1047 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
1048 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
1049 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
1050
1051 /* Load parameters for j particles */
1052 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1053 charge+jnrC+0,charge+jnrD+0);
1054
1055 fjx0 = _mm_setzero_ps();
1056 fjy0 = _mm_setzero_ps();
1057 fjz0 = _mm_setzero_ps();
1058
1059 /**************************
1060 * CALCULATE INTERACTIONS *
1061 **************************/
1062
1063 if (gmx_mm_any_lt(rsq10,rcutoff2))
1064 {
1065
1066 r10 = _mm_mul_ps(rsq10,rinv10);
1067 r10 = _mm_andnot_ps(dummy_mask,r10);
1068
1069 /* Compute parameters for interactions between i and j atoms */
1070 qq10 = _mm_mul_ps(iq1,jq0);
1071
1072 /* EWALD ELECTROSTATICS */
1073
1074 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1075 ewrt = _mm_mul_ps(r10,ewtabscale);
1076 ewitab = _mm_cvttps_epi32(ewrt);
1077 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1078 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1079 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1080 &ewtabF,&ewtabFn);
1081 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1082 felec = _mm_mul_ps(_mm_mul_ps(qq10,rinv10),_mm_sub_ps(rinvsq10,felec));
1083
1084 cutoff_mask = _mm_cmplt_ps(rsq10,rcutoff2);
1085
1086 fscal = felec;
1087
1088 fscal = _mm_and_ps(fscal,cutoff_mask);
1089
1090 fscal = _mm_andnot_ps(dummy_mask,fscal);
1091
1092 /* Calculate temporary vectorial force */
1093 tx = _mm_mul_ps(fscal,dx10);
1094 ty = _mm_mul_ps(fscal,dy10);
1095 tz = _mm_mul_ps(fscal,dz10);
1096
1097 /* Update vectorial force */
1098 fix1 = _mm_add_ps(fix1,tx);
1099 fiy1 = _mm_add_ps(fiy1,ty);
1100 fiz1 = _mm_add_ps(fiz1,tz);
1101
1102 fjx0 = _mm_add_ps(fjx0,tx);
1103 fjy0 = _mm_add_ps(fjy0,ty);
1104 fjz0 = _mm_add_ps(fjz0,tz);
1105
1106 }
1107
1108 /**************************
1109 * CALCULATE INTERACTIONS *
1110 **************************/
1111
1112 if (gmx_mm_any_lt(rsq20,rcutoff2))
1113 {
1114
1115 r20 = _mm_mul_ps(rsq20,rinv20);
1116 r20 = _mm_andnot_ps(dummy_mask,r20);
1117
1118 /* Compute parameters for interactions between i and j atoms */
1119 qq20 = _mm_mul_ps(iq2,jq0);
1120
1121 /* EWALD ELECTROSTATICS */
1122
1123 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1124 ewrt = _mm_mul_ps(r20,ewtabscale);
1125 ewitab = _mm_cvttps_epi32(ewrt);
1126 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1127 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1128 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1129 &ewtabF,&ewtabFn);
1130 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1131 felec = _mm_mul_ps(_mm_mul_ps(qq20,rinv20),_mm_sub_ps(rinvsq20,felec));
1132
1133 cutoff_mask = _mm_cmplt_ps(rsq20,rcutoff2);
1134
1135 fscal = felec;
1136
1137 fscal = _mm_and_ps(fscal,cutoff_mask);
1138
1139 fscal = _mm_andnot_ps(dummy_mask,fscal);
1140
1141 /* Calculate temporary vectorial force */
1142 tx = _mm_mul_ps(fscal,dx20);
1143 ty = _mm_mul_ps(fscal,dy20);
1144 tz = _mm_mul_ps(fscal,dz20);
1145
1146 /* Update vectorial force */
1147 fix2 = _mm_add_ps(fix2,tx);
1148 fiy2 = _mm_add_ps(fiy2,ty);
1149 fiz2 = _mm_add_ps(fiz2,tz);
1150
1151 fjx0 = _mm_add_ps(fjx0,tx);
1152 fjy0 = _mm_add_ps(fjy0,ty);
1153 fjz0 = _mm_add_ps(fjz0,tz);
1154
1155 }
1156
1157 /**************************
1158 * CALCULATE INTERACTIONS *
1159 **************************/
1160
1161 if (gmx_mm_any_lt(rsq30,rcutoff2))
1162 {
1163
1164 r30 = _mm_mul_ps(rsq30,rinv30);
1165 r30 = _mm_andnot_ps(dummy_mask,r30);
1166
1167 /* Compute parameters for interactions between i and j atoms */
1168 qq30 = _mm_mul_ps(iq3,jq0);
1169
1170 /* EWALD ELECTROSTATICS */
1171
1172 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1173 ewrt = _mm_mul_ps(r30,ewtabscale);
1174 ewitab = _mm_cvttps_epi32(ewrt);
1175 eweps = _mm_sub_ps(ewrt,_mm_round_ps(ewrt, _MM_FROUND_FLOOR)__extension__ ({ __m128 __X = (ewrt); (__m128) __builtin_ia32_roundps
((__v4sf)__X, ((0x00 | 0x01))); })
);
1176 gmx_mm_load_4pair_swizzle_ps(ewtab + gmx_mm_extract_epi32(ewitab,0)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(0) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,1)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(1) &
3];}))
,
1177 ewtab + gmx_mm_extract_epi32(ewitab,2)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(2) &
3];}))
,ewtab + gmx_mm_extract_epi32(ewitab,3)(__extension__ ({ __v4si __a = (__v4si)(ewitab); __a[(3) &
3];}))
,
1178 &ewtabF,&ewtabFn);
1179 felec = _mm_add_ps(_mm_mul_ps( _mm_sub_ps(one,eweps),ewtabF),_mm_mul_ps(eweps,ewtabFn));
1180 felec = _mm_mul_ps(_mm_mul_ps(qq30,rinv30),_mm_sub_ps(rinvsq30,felec));
1181
1182 cutoff_mask = _mm_cmplt_ps(rsq30,rcutoff2);
1183
1184 fscal = felec;
1185
1186 fscal = _mm_and_ps(fscal,cutoff_mask);
1187
1188 fscal = _mm_andnot_ps(dummy_mask,fscal);
1189
1190 /* Calculate temporary vectorial force */
1191 tx = _mm_mul_ps(fscal,dx30);
1192 ty = _mm_mul_ps(fscal,dy30);
1193 tz = _mm_mul_ps(fscal,dz30);
1194
1195 /* Update vectorial force */
1196 fix3 = _mm_add_ps(fix3,tx);
1197 fiy3 = _mm_add_ps(fiy3,ty);
1198 fiz3 = _mm_add_ps(fiz3,tz);
1199
1200 fjx0 = _mm_add_ps(fjx0,tx);
1201 fjy0 = _mm_add_ps(fjy0,ty);
1202 fjz0 = _mm_add_ps(fjz0,tz);
1203
1204 }
1205
1206 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1207 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1208 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1209 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1210
1211 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1212
1213 /* Inner loop uses 120 flops */
1214 }
1215
1216 /* End of innermost loop */
1217
1218 gmx_mm_update_iforce_3atom_swizzle_ps(fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1219 f+i_coord_offset+DIM3,fshift+i_shift_offset);
1220
1221 /* Increment number of inner iterations */
1222 inneriter += j_index_end - j_index_start;
1223
1224 /* Outer loop uses 18 flops */
1225 }
1226
1227 /* Increment number of outer iterations */
1228 outeriter += nri;
1229
1230 /* Update outer/inner flops */
1231
1232 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*18 + inneriter*120)(nrnb)->n[eNR_NBKERNEL_ELEC_W4_F] += outeriter*18 + inneriter
*120
;
1233}