Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecCSTab_VdwCSTab_GeomW3W3_c.c
Location:line 761, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwCSTab_GeomW3W3_VF_c
51 * Electrostatics interaction: CubicSplineTable
52 * VdW interaction: CubicSplineTable
53 * Geometry: Water3-Water3
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecCSTab_VdwCSTab_GeomW3W3_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 int vdwjidx1;
81 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
82 int vdwjidx2;
83 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
84 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
85 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
86 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
87 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
88 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
89 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
90 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
91 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
92 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
93 real velec,felec,velecsum,facel,crf,krf,krf2;
94 real *charge;
95 int nvdwtype;
96 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
97 int *vdwtype;
98 real *vdwparam;
99 int vfitab;
100 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
101 real *vftab;
102
103 x = xx[0];
104 f = ff[0];
105
106 nri = nlist->nri;
107 iinr = nlist->iinr;
108 jindex = nlist->jindex;
109 jjnr = nlist->jjnr;
110 shiftidx = nlist->shift;
111 gid = nlist->gid;
112 shiftvec = fr->shift_vec[0];
113 fshift = fr->fshift[0];
114 facel = fr->epsfac;
115 charge = mdatoms->chargeA;
116 nvdwtype = fr->ntype;
117 vdwparam = fr->nbfp;
118 vdwtype = mdatoms->typeA;
119
120 vftab = kernel_data->table_elec_vdw->data;
121 vftabscale = kernel_data->table_elec_vdw->scale;
122
123 /* Setup water-specific parameters */
124 inr = nlist->iinr[0];
125 iq0 = facel*charge[inr+0];
126 iq1 = facel*charge[inr+1];
127 iq2 = facel*charge[inr+2];
128 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
129
130 jq0 = charge[inr+0];
131 jq1 = charge[inr+1];
132 jq2 = charge[inr+2];
133 vdwjidx0 = 2*vdwtype[inr+0];
134 qq00 = iq0*jq0;
135 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
136 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
137 qq01 = iq0*jq1;
138 qq02 = iq0*jq2;
139 qq10 = iq1*jq0;
140 qq11 = iq1*jq1;
141 qq12 = iq1*jq2;
142 qq20 = iq2*jq0;
143 qq21 = iq2*jq1;
144 qq22 = iq2*jq2;
145
146 outeriter = 0;
147 inneriter = 0;
148
149 /* Start outer loop over neighborlists */
150 for(iidx=0; iidx<nri; iidx++)
151 {
152 /* Load shift vector for this list */
153 i_shift_offset = DIM3*shiftidx[iidx];
154 shX = shiftvec[i_shift_offset+XX0];
155 shY = shiftvec[i_shift_offset+YY1];
156 shZ = shiftvec[i_shift_offset+ZZ2];
157
158 /* Load limits for loop over neighbors */
159 j_index_start = jindex[iidx];
160 j_index_end = jindex[iidx+1];
161
162 /* Get outer coordinate index */
163 inr = iinr[iidx];
164 i_coord_offset = DIM3*inr;
165
166 /* Load i particle coords and add shift vector */
167 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
168 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
169 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
170 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
171 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
172 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
173 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
174 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
175 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
176
177 fix0 = 0.0;
178 fiy0 = 0.0;
179 fiz0 = 0.0;
180 fix1 = 0.0;
181 fiy1 = 0.0;
182 fiz1 = 0.0;
183 fix2 = 0.0;
184 fiy2 = 0.0;
185 fiz2 = 0.0;
186
187 /* Reset potential sums */
188 velecsum = 0.0;
189 vvdwsum = 0.0;
190
191 /* Start inner kernel loop */
192 for(jidx=j_index_start; jidx<j_index_end; jidx++)
193 {
194 /* Get j neighbor index, and coordinate index */
195 jnr = jjnr[jidx];
196 j_coord_offset = DIM3*jnr;
197
198 /* load j atom coordinates */
199 jx0 = x[j_coord_offset+DIM3*0+XX0];
200 jy0 = x[j_coord_offset+DIM3*0+YY1];
201 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
202 jx1 = x[j_coord_offset+DIM3*1+XX0];
203 jy1 = x[j_coord_offset+DIM3*1+YY1];
204 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
205 jx2 = x[j_coord_offset+DIM3*2+XX0];
206 jy2 = x[j_coord_offset+DIM3*2+YY1];
207 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
208
209 /* Calculate displacement vector */
210 dx00 = ix0 - jx0;
211 dy00 = iy0 - jy0;
212 dz00 = iz0 - jz0;
213 dx01 = ix0 - jx1;
214 dy01 = iy0 - jy1;
215 dz01 = iz0 - jz1;
216 dx02 = ix0 - jx2;
217 dy02 = iy0 - jy2;
218 dz02 = iz0 - jz2;
219 dx10 = ix1 - jx0;
220 dy10 = iy1 - jy0;
221 dz10 = iz1 - jz0;
222 dx11 = ix1 - jx1;
223 dy11 = iy1 - jy1;
224 dz11 = iz1 - jz1;
225 dx12 = ix1 - jx2;
226 dy12 = iy1 - jy2;
227 dz12 = iz1 - jz2;
228 dx20 = ix2 - jx0;
229 dy20 = iy2 - jy0;
230 dz20 = iz2 - jz0;
231 dx21 = ix2 - jx1;
232 dy21 = iy2 - jy1;
233 dz21 = iz2 - jz1;
234 dx22 = ix2 - jx2;
235 dy22 = iy2 - jy2;
236 dz22 = iz2 - jz2;
237
238 /* Calculate squared distance and things based on it */
239 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
240 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
241 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
242 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
243 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
244 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
245 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
246 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
247 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
248
249 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
250 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
251 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
252 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
253 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
254 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
255 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
256 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
257 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
258
259 /**************************
260 * CALCULATE INTERACTIONS *
261 **************************/
262
263 r00 = rsq00*rinv00;
264
265 /* Calculate table index by multiplying r with table scale and truncate to integer */
266 rt = r00*vftabscale;
267 vfitab = rt;
268 vfeps = rt-vfitab;
269 vfitab = 3*4*vfitab;
270
271 /* CUBIC SPLINE TABLE ELECTROSTATICS */
272 Y = vftab[vfitab];
273 F = vftab[vfitab+1];
274 Geps = vfeps*vftab[vfitab+2];
275 Heps2 = vfeps*vfeps*vftab[vfitab+3];
276 Fp = F+Geps+Heps2;
277 VV = Y+vfeps*Fp;
278 velec = qq00*VV;
279 FF = Fp+Geps+2.0*Heps2;
280 felec = -qq00*FF*vftabscale*rinv00;
281
282 /* CUBIC SPLINE TABLE DISPERSION */
283 vfitab += 4;
284 Y = vftab[vfitab];
285 F = vftab[vfitab+1];
286 Geps = vfeps*vftab[vfitab+2];
287 Heps2 = vfeps*vfeps*vftab[vfitab+3];
288 Fp = F+Geps+Heps2;
289 VV = Y+vfeps*Fp;
290 vvdw6 = c6_00*VV;
291 FF = Fp+Geps+2.0*Heps2;
292 fvdw6 = c6_00*FF;
293
294 /* CUBIC SPLINE TABLE REPULSION */
295 Y = vftab[vfitab+4];
296 F = vftab[vfitab+5];
297 Geps = vfeps*vftab[vfitab+6];
298 Heps2 = vfeps*vfeps*vftab[vfitab+7];
299 Fp = F+Geps+Heps2;
300 VV = Y+vfeps*Fp;
301 vvdw12 = c12_00*VV;
302 FF = Fp+Geps+2.0*Heps2;
303 fvdw12 = c12_00*FF;
304 vvdw = vvdw12+vvdw6;
305 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
306
307 /* Update potential sums from outer loop */
308 velecsum += velec;
309 vvdwsum += vvdw;
310
311 fscal = felec+fvdw;
312
313 /* Calculate temporary vectorial force */
314 tx = fscal*dx00;
315 ty = fscal*dy00;
316 tz = fscal*dz00;
317
318 /* Update vectorial force */
319 fix0 += tx;
320 fiy0 += ty;
321 fiz0 += tz;
322 f[j_coord_offset+DIM3*0+XX0] -= tx;
323 f[j_coord_offset+DIM3*0+YY1] -= ty;
324 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
325
326 /**************************
327 * CALCULATE INTERACTIONS *
328 **************************/
329
330 r01 = rsq01*rinv01;
331
332 /* Calculate table index by multiplying r with table scale and truncate to integer */
333 rt = r01*vftabscale;
334 vfitab = rt;
335 vfeps = rt-vfitab;
336 vfitab = 3*4*vfitab;
337
338 /* CUBIC SPLINE TABLE ELECTROSTATICS */
339 Y = vftab[vfitab];
340 F = vftab[vfitab+1];
341 Geps = vfeps*vftab[vfitab+2];
342 Heps2 = vfeps*vfeps*vftab[vfitab+3];
343 Fp = F+Geps+Heps2;
344 VV = Y+vfeps*Fp;
345 velec = qq01*VV;
346 FF = Fp+Geps+2.0*Heps2;
347 felec = -qq01*FF*vftabscale*rinv01;
348
349 /* Update potential sums from outer loop */
350 velecsum += velec;
351
352 fscal = felec;
353
354 /* Calculate temporary vectorial force */
355 tx = fscal*dx01;
356 ty = fscal*dy01;
357 tz = fscal*dz01;
358
359 /* Update vectorial force */
360 fix0 += tx;
361 fiy0 += ty;
362 fiz0 += tz;
363 f[j_coord_offset+DIM3*1+XX0] -= tx;
364 f[j_coord_offset+DIM3*1+YY1] -= ty;
365 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
366
367 /**************************
368 * CALCULATE INTERACTIONS *
369 **************************/
370
371 r02 = rsq02*rinv02;
372
373 /* Calculate table index by multiplying r with table scale and truncate to integer */
374 rt = r02*vftabscale;
375 vfitab = rt;
376 vfeps = rt-vfitab;
377 vfitab = 3*4*vfitab;
378
379 /* CUBIC SPLINE TABLE ELECTROSTATICS */
380 Y = vftab[vfitab];
381 F = vftab[vfitab+1];
382 Geps = vfeps*vftab[vfitab+2];
383 Heps2 = vfeps*vfeps*vftab[vfitab+3];
384 Fp = F+Geps+Heps2;
385 VV = Y+vfeps*Fp;
386 velec = qq02*VV;
387 FF = Fp+Geps+2.0*Heps2;
388 felec = -qq02*FF*vftabscale*rinv02;
389
390 /* Update potential sums from outer loop */
391 velecsum += velec;
392
393 fscal = felec;
394
395 /* Calculate temporary vectorial force */
396 tx = fscal*dx02;
397 ty = fscal*dy02;
398 tz = fscal*dz02;
399
400 /* Update vectorial force */
401 fix0 += tx;
402 fiy0 += ty;
403 fiz0 += tz;
404 f[j_coord_offset+DIM3*2+XX0] -= tx;
405 f[j_coord_offset+DIM3*2+YY1] -= ty;
406 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
407
408 /**************************
409 * CALCULATE INTERACTIONS *
410 **************************/
411
412 r10 = rsq10*rinv10;
413
414 /* Calculate table index by multiplying r with table scale and truncate to integer */
415 rt = r10*vftabscale;
416 vfitab = rt;
417 vfeps = rt-vfitab;
418 vfitab = 3*4*vfitab;
419
420 /* CUBIC SPLINE TABLE ELECTROSTATICS */
421 Y = vftab[vfitab];
422 F = vftab[vfitab+1];
423 Geps = vfeps*vftab[vfitab+2];
424 Heps2 = vfeps*vfeps*vftab[vfitab+3];
425 Fp = F+Geps+Heps2;
426 VV = Y+vfeps*Fp;
427 velec = qq10*VV;
428 FF = Fp+Geps+2.0*Heps2;
429 felec = -qq10*FF*vftabscale*rinv10;
430
431 /* Update potential sums from outer loop */
432 velecsum += velec;
433
434 fscal = felec;
435
436 /* Calculate temporary vectorial force */
437 tx = fscal*dx10;
438 ty = fscal*dy10;
439 tz = fscal*dz10;
440
441 /* Update vectorial force */
442 fix1 += tx;
443 fiy1 += ty;
444 fiz1 += tz;
445 f[j_coord_offset+DIM3*0+XX0] -= tx;
446 f[j_coord_offset+DIM3*0+YY1] -= ty;
447 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
448
449 /**************************
450 * CALCULATE INTERACTIONS *
451 **************************/
452
453 r11 = rsq11*rinv11;
454
455 /* Calculate table index by multiplying r with table scale and truncate to integer */
456 rt = r11*vftabscale;
457 vfitab = rt;
458 vfeps = rt-vfitab;
459 vfitab = 3*4*vfitab;
460
461 /* CUBIC SPLINE TABLE ELECTROSTATICS */
462 Y = vftab[vfitab];
463 F = vftab[vfitab+1];
464 Geps = vfeps*vftab[vfitab+2];
465 Heps2 = vfeps*vfeps*vftab[vfitab+3];
466 Fp = F+Geps+Heps2;
467 VV = Y+vfeps*Fp;
468 velec = qq11*VV;
469 FF = Fp+Geps+2.0*Heps2;
470 felec = -qq11*FF*vftabscale*rinv11;
471
472 /* Update potential sums from outer loop */
473 velecsum += velec;
474
475 fscal = felec;
476
477 /* Calculate temporary vectorial force */
478 tx = fscal*dx11;
479 ty = fscal*dy11;
480 tz = fscal*dz11;
481
482 /* Update vectorial force */
483 fix1 += tx;
484 fiy1 += ty;
485 fiz1 += tz;
486 f[j_coord_offset+DIM3*1+XX0] -= tx;
487 f[j_coord_offset+DIM3*1+YY1] -= ty;
488 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
489
490 /**************************
491 * CALCULATE INTERACTIONS *
492 **************************/
493
494 r12 = rsq12*rinv12;
495
496 /* Calculate table index by multiplying r with table scale and truncate to integer */
497 rt = r12*vftabscale;
498 vfitab = rt;
499 vfeps = rt-vfitab;
500 vfitab = 3*4*vfitab;
501
502 /* CUBIC SPLINE TABLE ELECTROSTATICS */
503 Y = vftab[vfitab];
504 F = vftab[vfitab+1];
505 Geps = vfeps*vftab[vfitab+2];
506 Heps2 = vfeps*vfeps*vftab[vfitab+3];
507 Fp = F+Geps+Heps2;
508 VV = Y+vfeps*Fp;
509 velec = qq12*VV;
510 FF = Fp+Geps+2.0*Heps2;
511 felec = -qq12*FF*vftabscale*rinv12;
512
513 /* Update potential sums from outer loop */
514 velecsum += velec;
515
516 fscal = felec;
517
518 /* Calculate temporary vectorial force */
519 tx = fscal*dx12;
520 ty = fscal*dy12;
521 tz = fscal*dz12;
522
523 /* Update vectorial force */
524 fix1 += tx;
525 fiy1 += ty;
526 fiz1 += tz;
527 f[j_coord_offset+DIM3*2+XX0] -= tx;
528 f[j_coord_offset+DIM3*2+YY1] -= ty;
529 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
530
531 /**************************
532 * CALCULATE INTERACTIONS *
533 **************************/
534
535 r20 = rsq20*rinv20;
536
537 /* Calculate table index by multiplying r with table scale and truncate to integer */
538 rt = r20*vftabscale;
539 vfitab = rt;
540 vfeps = rt-vfitab;
541 vfitab = 3*4*vfitab;
542
543 /* CUBIC SPLINE TABLE ELECTROSTATICS */
544 Y = vftab[vfitab];
545 F = vftab[vfitab+1];
546 Geps = vfeps*vftab[vfitab+2];
547 Heps2 = vfeps*vfeps*vftab[vfitab+3];
548 Fp = F+Geps+Heps2;
549 VV = Y+vfeps*Fp;
550 velec = qq20*VV;
551 FF = Fp+Geps+2.0*Heps2;
552 felec = -qq20*FF*vftabscale*rinv20;
553
554 /* Update potential sums from outer loop */
555 velecsum += velec;
556
557 fscal = felec;
558
559 /* Calculate temporary vectorial force */
560 tx = fscal*dx20;
561 ty = fscal*dy20;
562 tz = fscal*dz20;
563
564 /* Update vectorial force */
565 fix2 += tx;
566 fiy2 += ty;
567 fiz2 += tz;
568 f[j_coord_offset+DIM3*0+XX0] -= tx;
569 f[j_coord_offset+DIM3*0+YY1] -= ty;
570 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
571
572 /**************************
573 * CALCULATE INTERACTIONS *
574 **************************/
575
576 r21 = rsq21*rinv21;
577
578 /* Calculate table index by multiplying r with table scale and truncate to integer */
579 rt = r21*vftabscale;
580 vfitab = rt;
581 vfeps = rt-vfitab;
582 vfitab = 3*4*vfitab;
583
584 /* CUBIC SPLINE TABLE ELECTROSTATICS */
585 Y = vftab[vfitab];
586 F = vftab[vfitab+1];
587 Geps = vfeps*vftab[vfitab+2];
588 Heps2 = vfeps*vfeps*vftab[vfitab+3];
589 Fp = F+Geps+Heps2;
590 VV = Y+vfeps*Fp;
591 velec = qq21*VV;
592 FF = Fp+Geps+2.0*Heps2;
593 felec = -qq21*FF*vftabscale*rinv21;
594
595 /* Update potential sums from outer loop */
596 velecsum += velec;
597
598 fscal = felec;
599
600 /* Calculate temporary vectorial force */
601 tx = fscal*dx21;
602 ty = fscal*dy21;
603 tz = fscal*dz21;
604
605 /* Update vectorial force */
606 fix2 += tx;
607 fiy2 += ty;
608 fiz2 += tz;
609 f[j_coord_offset+DIM3*1+XX0] -= tx;
610 f[j_coord_offset+DIM3*1+YY1] -= ty;
611 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
612
613 /**************************
614 * CALCULATE INTERACTIONS *
615 **************************/
616
617 r22 = rsq22*rinv22;
618
619 /* Calculate table index by multiplying r with table scale and truncate to integer */
620 rt = r22*vftabscale;
621 vfitab = rt;
622 vfeps = rt-vfitab;
623 vfitab = 3*4*vfitab;
624
625 /* CUBIC SPLINE TABLE ELECTROSTATICS */
626 Y = vftab[vfitab];
627 F = vftab[vfitab+1];
628 Geps = vfeps*vftab[vfitab+2];
629 Heps2 = vfeps*vfeps*vftab[vfitab+3];
630 Fp = F+Geps+Heps2;
631 VV = Y+vfeps*Fp;
632 velec = qq22*VV;
633 FF = Fp+Geps+2.0*Heps2;
634 felec = -qq22*FF*vftabscale*rinv22;
635
636 /* Update potential sums from outer loop */
637 velecsum += velec;
638
639 fscal = felec;
640
641 /* Calculate temporary vectorial force */
642 tx = fscal*dx22;
643 ty = fscal*dy22;
644 tz = fscal*dz22;
645
646 /* Update vectorial force */
647 fix2 += tx;
648 fiy2 += ty;
649 fiz2 += tz;
650 f[j_coord_offset+DIM3*2+XX0] -= tx;
651 f[j_coord_offset+DIM3*2+YY1] -= ty;
652 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
653
654 /* Inner loop uses 400 flops */
655 }
656 /* End of innermost loop */
657
658 tx = ty = tz = 0;
659 f[i_coord_offset+DIM3*0+XX0] += fix0;
660 f[i_coord_offset+DIM3*0+YY1] += fiy0;
661 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
662 tx += fix0;
663 ty += fiy0;
664 tz += fiz0;
665 f[i_coord_offset+DIM3*1+XX0] += fix1;
666 f[i_coord_offset+DIM3*1+YY1] += fiy1;
667 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
668 tx += fix1;
669 ty += fiy1;
670 tz += fiz1;
671 f[i_coord_offset+DIM3*2+XX0] += fix2;
672 f[i_coord_offset+DIM3*2+YY1] += fiy2;
673 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
674 tx += fix2;
675 ty += fiy2;
676 tz += fiz2;
677 fshift[i_shift_offset+XX0] += tx;
678 fshift[i_shift_offset+YY1] += ty;
679 fshift[i_shift_offset+ZZ2] += tz;
680
681 ggid = gid[iidx];
682 /* Update potential energies */
683 kernel_data->energygrp_elec[ggid] += velecsum;
684 kernel_data->energygrp_vdw[ggid] += vvdwsum;
685
686 /* Increment number of inner iterations */
687 inneriter += j_index_end - j_index_start;
688
689 /* Outer loop uses 32 flops */
690 }
691
692 /* Increment number of outer iterations */
693 outeriter += nri;
694
695 /* Update outer/inner flops */
696
697 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*32 + inneriter*400)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_VF] += outeriter*32 +
inneriter*400
;
698}
699/*
700 * Gromacs nonbonded kernel: nb_kernel_ElecCSTab_VdwCSTab_GeomW3W3_F_c
701 * Electrostatics interaction: CubicSplineTable
702 * VdW interaction: CubicSplineTable
703 * Geometry: Water3-Water3
704 * Calculate force/pot: Force
705 */
706void
707nb_kernel_ElecCSTab_VdwCSTab_GeomW3W3_F_c
708 (t_nblist * gmx_restrict__restrict nlist,
709 rvec * gmx_restrict__restrict xx,
710 rvec * gmx_restrict__restrict ff,
711 t_forcerec * gmx_restrict__restrict fr,
712 t_mdatoms * gmx_restrict__restrict mdatoms,
713 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
714 t_nrnb * gmx_restrict__restrict nrnb)
715{
716 int i_shift_offset,i_coord_offset,j_coord_offset;
717 int j_index_start,j_index_end;
718 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
719 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
720 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
721 real *shiftvec,*fshift,*x,*f;
722 int vdwioffset0;
723 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
724 int vdwioffset1;
725 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
726 int vdwioffset2;
727 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
728 int vdwjidx0;
729 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
730 int vdwjidx1;
731 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
732 int vdwjidx2;
733 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
734 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
735 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
736 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
737 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
738 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
739 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
740 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
741 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
742 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
743 real velec,felec,velecsum,facel,crf,krf,krf2;
744 real *charge;
745 int nvdwtype;
746 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
747 int *vdwtype;
748 real *vdwparam;
749 int vfitab;
750 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
751 real *vftab;
752
753 x = xx[0];
754 f = ff[0];
755
756 nri = nlist->nri;
757 iinr = nlist->iinr;
758 jindex = nlist->jindex;
759 jjnr = nlist->jjnr;
760 shiftidx = nlist->shift;
761 gid = nlist->gid;
Value stored to 'gid' is never read
762 shiftvec = fr->shift_vec[0];
763 fshift = fr->fshift[0];
764 facel = fr->epsfac;
765 charge = mdatoms->chargeA;
766 nvdwtype = fr->ntype;
767 vdwparam = fr->nbfp;
768 vdwtype = mdatoms->typeA;
769
770 vftab = kernel_data->table_elec_vdw->data;
771 vftabscale = kernel_data->table_elec_vdw->scale;
772
773 /* Setup water-specific parameters */
774 inr = nlist->iinr[0];
775 iq0 = facel*charge[inr+0];
776 iq1 = facel*charge[inr+1];
777 iq2 = facel*charge[inr+2];
778 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
779
780 jq0 = charge[inr+0];
781 jq1 = charge[inr+1];
782 jq2 = charge[inr+2];
783 vdwjidx0 = 2*vdwtype[inr+0];
784 qq00 = iq0*jq0;
785 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
786 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
787 qq01 = iq0*jq1;
788 qq02 = iq0*jq2;
789 qq10 = iq1*jq0;
790 qq11 = iq1*jq1;
791 qq12 = iq1*jq2;
792 qq20 = iq2*jq0;
793 qq21 = iq2*jq1;
794 qq22 = iq2*jq2;
795
796 outeriter = 0;
797 inneriter = 0;
798
799 /* Start outer loop over neighborlists */
800 for(iidx=0; iidx<nri; iidx++)
801 {
802 /* Load shift vector for this list */
803 i_shift_offset = DIM3*shiftidx[iidx];
804 shX = shiftvec[i_shift_offset+XX0];
805 shY = shiftvec[i_shift_offset+YY1];
806 shZ = shiftvec[i_shift_offset+ZZ2];
807
808 /* Load limits for loop over neighbors */
809 j_index_start = jindex[iidx];
810 j_index_end = jindex[iidx+1];
811
812 /* Get outer coordinate index */
813 inr = iinr[iidx];
814 i_coord_offset = DIM3*inr;
815
816 /* Load i particle coords and add shift vector */
817 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
818 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
819 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
820 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
821 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
822 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
823 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
824 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
825 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
826
827 fix0 = 0.0;
828 fiy0 = 0.0;
829 fiz0 = 0.0;
830 fix1 = 0.0;
831 fiy1 = 0.0;
832 fiz1 = 0.0;
833 fix2 = 0.0;
834 fiy2 = 0.0;
835 fiz2 = 0.0;
836
837 /* Start inner kernel loop */
838 for(jidx=j_index_start; jidx<j_index_end; jidx++)
839 {
840 /* Get j neighbor index, and coordinate index */
841 jnr = jjnr[jidx];
842 j_coord_offset = DIM3*jnr;
843
844 /* load j atom coordinates */
845 jx0 = x[j_coord_offset+DIM3*0+XX0];
846 jy0 = x[j_coord_offset+DIM3*0+YY1];
847 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
848 jx1 = x[j_coord_offset+DIM3*1+XX0];
849 jy1 = x[j_coord_offset+DIM3*1+YY1];
850 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
851 jx2 = x[j_coord_offset+DIM3*2+XX0];
852 jy2 = x[j_coord_offset+DIM3*2+YY1];
853 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
854
855 /* Calculate displacement vector */
856 dx00 = ix0 - jx0;
857 dy00 = iy0 - jy0;
858 dz00 = iz0 - jz0;
859 dx01 = ix0 - jx1;
860 dy01 = iy0 - jy1;
861 dz01 = iz0 - jz1;
862 dx02 = ix0 - jx2;
863 dy02 = iy0 - jy2;
864 dz02 = iz0 - jz2;
865 dx10 = ix1 - jx0;
866 dy10 = iy1 - jy0;
867 dz10 = iz1 - jz0;
868 dx11 = ix1 - jx1;
869 dy11 = iy1 - jy1;
870 dz11 = iz1 - jz1;
871 dx12 = ix1 - jx2;
872 dy12 = iy1 - jy2;
873 dz12 = iz1 - jz2;
874 dx20 = ix2 - jx0;
875 dy20 = iy2 - jy0;
876 dz20 = iz2 - jz0;
877 dx21 = ix2 - jx1;
878 dy21 = iy2 - jy1;
879 dz21 = iz2 - jz1;
880 dx22 = ix2 - jx2;
881 dy22 = iy2 - jy2;
882 dz22 = iz2 - jz2;
883
884 /* Calculate squared distance and things based on it */
885 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
886 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
887 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
888 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
889 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
890 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
891 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
892 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
893 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
894
895 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
896 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
897 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
898 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
899 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
900 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
901 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
902 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
903 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
904
905 /**************************
906 * CALCULATE INTERACTIONS *
907 **************************/
908
909 r00 = rsq00*rinv00;
910
911 /* Calculate table index by multiplying r with table scale and truncate to integer */
912 rt = r00*vftabscale;
913 vfitab = rt;
914 vfeps = rt-vfitab;
915 vfitab = 3*4*vfitab;
916
917 /* CUBIC SPLINE TABLE ELECTROSTATICS */
918 F = vftab[vfitab+1];
919 Geps = vfeps*vftab[vfitab+2];
920 Heps2 = vfeps*vfeps*vftab[vfitab+3];
921 Fp = F+Geps+Heps2;
922 FF = Fp+Geps+2.0*Heps2;
923 felec = -qq00*FF*vftabscale*rinv00;
924
925 /* CUBIC SPLINE TABLE DISPERSION */
926 vfitab += 4;
927 F = vftab[vfitab+1];
928 Geps = vfeps*vftab[vfitab+2];
929 Heps2 = vfeps*vfeps*vftab[vfitab+3];
930 Fp = F+Geps+Heps2;
931 FF = Fp+Geps+2.0*Heps2;
932 fvdw6 = c6_00*FF;
933
934 /* CUBIC SPLINE TABLE REPULSION */
935 F = vftab[vfitab+5];
936 Geps = vfeps*vftab[vfitab+6];
937 Heps2 = vfeps*vfeps*vftab[vfitab+7];
938 Fp = F+Geps+Heps2;
939 FF = Fp+Geps+2.0*Heps2;
940 fvdw12 = c12_00*FF;
941 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
942
943 fscal = felec+fvdw;
944
945 /* Calculate temporary vectorial force */
946 tx = fscal*dx00;
947 ty = fscal*dy00;
948 tz = fscal*dz00;
949
950 /* Update vectorial force */
951 fix0 += tx;
952 fiy0 += ty;
953 fiz0 += tz;
954 f[j_coord_offset+DIM3*0+XX0] -= tx;
955 f[j_coord_offset+DIM3*0+YY1] -= ty;
956 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
957
958 /**************************
959 * CALCULATE INTERACTIONS *
960 **************************/
961
962 r01 = rsq01*rinv01;
963
964 /* Calculate table index by multiplying r with table scale and truncate to integer */
965 rt = r01*vftabscale;
966 vfitab = rt;
967 vfeps = rt-vfitab;
968 vfitab = 3*4*vfitab;
969
970 /* CUBIC SPLINE TABLE ELECTROSTATICS */
971 F = vftab[vfitab+1];
972 Geps = vfeps*vftab[vfitab+2];
973 Heps2 = vfeps*vfeps*vftab[vfitab+3];
974 Fp = F+Geps+Heps2;
975 FF = Fp+Geps+2.0*Heps2;
976 felec = -qq01*FF*vftabscale*rinv01;
977
978 fscal = felec;
979
980 /* Calculate temporary vectorial force */
981 tx = fscal*dx01;
982 ty = fscal*dy01;
983 tz = fscal*dz01;
984
985 /* Update vectorial force */
986 fix0 += tx;
987 fiy0 += ty;
988 fiz0 += tz;
989 f[j_coord_offset+DIM3*1+XX0] -= tx;
990 f[j_coord_offset+DIM3*1+YY1] -= ty;
991 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
992
993 /**************************
994 * CALCULATE INTERACTIONS *
995 **************************/
996
997 r02 = rsq02*rinv02;
998
999 /* Calculate table index by multiplying r with table scale and truncate to integer */
1000 rt = r02*vftabscale;
1001 vfitab = rt;
1002 vfeps = rt-vfitab;
1003 vfitab = 3*4*vfitab;
1004
1005 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1006 F = vftab[vfitab+1];
1007 Geps = vfeps*vftab[vfitab+2];
1008 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1009 Fp = F+Geps+Heps2;
1010 FF = Fp+Geps+2.0*Heps2;
1011 felec = -qq02*FF*vftabscale*rinv02;
1012
1013 fscal = felec;
1014
1015 /* Calculate temporary vectorial force */
1016 tx = fscal*dx02;
1017 ty = fscal*dy02;
1018 tz = fscal*dz02;
1019
1020 /* Update vectorial force */
1021 fix0 += tx;
1022 fiy0 += ty;
1023 fiz0 += tz;
1024 f[j_coord_offset+DIM3*2+XX0] -= tx;
1025 f[j_coord_offset+DIM3*2+YY1] -= ty;
1026 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1027
1028 /**************************
1029 * CALCULATE INTERACTIONS *
1030 **************************/
1031
1032 r10 = rsq10*rinv10;
1033
1034 /* Calculate table index by multiplying r with table scale and truncate to integer */
1035 rt = r10*vftabscale;
1036 vfitab = rt;
1037 vfeps = rt-vfitab;
1038 vfitab = 3*4*vfitab;
1039
1040 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1041 F = vftab[vfitab+1];
1042 Geps = vfeps*vftab[vfitab+2];
1043 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1044 Fp = F+Geps+Heps2;
1045 FF = Fp+Geps+2.0*Heps2;
1046 felec = -qq10*FF*vftabscale*rinv10;
1047
1048 fscal = felec;
1049
1050 /* Calculate temporary vectorial force */
1051 tx = fscal*dx10;
1052 ty = fscal*dy10;
1053 tz = fscal*dz10;
1054
1055 /* Update vectorial force */
1056 fix1 += tx;
1057 fiy1 += ty;
1058 fiz1 += tz;
1059 f[j_coord_offset+DIM3*0+XX0] -= tx;
1060 f[j_coord_offset+DIM3*0+YY1] -= ty;
1061 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
1062
1063 /**************************
1064 * CALCULATE INTERACTIONS *
1065 **************************/
1066
1067 r11 = rsq11*rinv11;
1068
1069 /* Calculate table index by multiplying r with table scale and truncate to integer */
1070 rt = r11*vftabscale;
1071 vfitab = rt;
1072 vfeps = rt-vfitab;
1073 vfitab = 3*4*vfitab;
1074
1075 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1076 F = vftab[vfitab+1];
1077 Geps = vfeps*vftab[vfitab+2];
1078 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1079 Fp = F+Geps+Heps2;
1080 FF = Fp+Geps+2.0*Heps2;
1081 felec = -qq11*FF*vftabscale*rinv11;
1082
1083 fscal = felec;
1084
1085 /* Calculate temporary vectorial force */
1086 tx = fscal*dx11;
1087 ty = fscal*dy11;
1088 tz = fscal*dz11;
1089
1090 /* Update vectorial force */
1091 fix1 += tx;
1092 fiy1 += ty;
1093 fiz1 += tz;
1094 f[j_coord_offset+DIM3*1+XX0] -= tx;
1095 f[j_coord_offset+DIM3*1+YY1] -= ty;
1096 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1097
1098 /**************************
1099 * CALCULATE INTERACTIONS *
1100 **************************/
1101
1102 r12 = rsq12*rinv12;
1103
1104 /* Calculate table index by multiplying r with table scale and truncate to integer */
1105 rt = r12*vftabscale;
1106 vfitab = rt;
1107 vfeps = rt-vfitab;
1108 vfitab = 3*4*vfitab;
1109
1110 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1111 F = vftab[vfitab+1];
1112 Geps = vfeps*vftab[vfitab+2];
1113 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1114 Fp = F+Geps+Heps2;
1115 FF = Fp+Geps+2.0*Heps2;
1116 felec = -qq12*FF*vftabscale*rinv12;
1117
1118 fscal = felec;
1119
1120 /* Calculate temporary vectorial force */
1121 tx = fscal*dx12;
1122 ty = fscal*dy12;
1123 tz = fscal*dz12;
1124
1125 /* Update vectorial force */
1126 fix1 += tx;
1127 fiy1 += ty;
1128 fiz1 += tz;
1129 f[j_coord_offset+DIM3*2+XX0] -= tx;
1130 f[j_coord_offset+DIM3*2+YY1] -= ty;
1131 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1132
1133 /**************************
1134 * CALCULATE INTERACTIONS *
1135 **************************/
1136
1137 r20 = rsq20*rinv20;
1138
1139 /* Calculate table index by multiplying r with table scale and truncate to integer */
1140 rt = r20*vftabscale;
1141 vfitab = rt;
1142 vfeps = rt-vfitab;
1143 vfitab = 3*4*vfitab;
1144
1145 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1146 F = vftab[vfitab+1];
1147 Geps = vfeps*vftab[vfitab+2];
1148 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1149 Fp = F+Geps+Heps2;
1150 FF = Fp+Geps+2.0*Heps2;
1151 felec = -qq20*FF*vftabscale*rinv20;
1152
1153 fscal = felec;
1154
1155 /* Calculate temporary vectorial force */
1156 tx = fscal*dx20;
1157 ty = fscal*dy20;
1158 tz = fscal*dz20;
1159
1160 /* Update vectorial force */
1161 fix2 += tx;
1162 fiy2 += ty;
1163 fiz2 += tz;
1164 f[j_coord_offset+DIM3*0+XX0] -= tx;
1165 f[j_coord_offset+DIM3*0+YY1] -= ty;
1166 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
1167
1168 /**************************
1169 * CALCULATE INTERACTIONS *
1170 **************************/
1171
1172 r21 = rsq21*rinv21;
1173
1174 /* Calculate table index by multiplying r with table scale and truncate to integer */
1175 rt = r21*vftabscale;
1176 vfitab = rt;
1177 vfeps = rt-vfitab;
1178 vfitab = 3*4*vfitab;
1179
1180 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1181 F = vftab[vfitab+1];
1182 Geps = vfeps*vftab[vfitab+2];
1183 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1184 Fp = F+Geps+Heps2;
1185 FF = Fp+Geps+2.0*Heps2;
1186 felec = -qq21*FF*vftabscale*rinv21;
1187
1188 fscal = felec;
1189
1190 /* Calculate temporary vectorial force */
1191 tx = fscal*dx21;
1192 ty = fscal*dy21;
1193 tz = fscal*dz21;
1194
1195 /* Update vectorial force */
1196 fix2 += tx;
1197 fiy2 += ty;
1198 fiz2 += tz;
1199 f[j_coord_offset+DIM3*1+XX0] -= tx;
1200 f[j_coord_offset+DIM3*1+YY1] -= ty;
1201 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1202
1203 /**************************
1204 * CALCULATE INTERACTIONS *
1205 **************************/
1206
1207 r22 = rsq22*rinv22;
1208
1209 /* Calculate table index by multiplying r with table scale and truncate to integer */
1210 rt = r22*vftabscale;
1211 vfitab = rt;
1212 vfeps = rt-vfitab;
1213 vfitab = 3*4*vfitab;
1214
1215 /* CUBIC SPLINE TABLE ELECTROSTATICS */
1216 F = vftab[vfitab+1];
1217 Geps = vfeps*vftab[vfitab+2];
1218 Heps2 = vfeps*vfeps*vftab[vfitab+3];
1219 Fp = F+Geps+Heps2;
1220 FF = Fp+Geps+2.0*Heps2;
1221 felec = -qq22*FF*vftabscale*rinv22;
1222
1223 fscal = felec;
1224
1225 /* Calculate temporary vectorial force */
1226 tx = fscal*dx22;
1227 ty = fscal*dy22;
1228 tz = fscal*dz22;
1229
1230 /* Update vectorial force */
1231 fix2 += tx;
1232 fiy2 += ty;
1233 fiz2 += tz;
1234 f[j_coord_offset+DIM3*2+XX0] -= tx;
1235 f[j_coord_offset+DIM3*2+YY1] -= ty;
1236 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1237
1238 /* Inner loop uses 356 flops */
1239 }
1240 /* End of innermost loop */
1241
1242 tx = ty = tz = 0;
1243 f[i_coord_offset+DIM3*0+XX0] += fix0;
1244 f[i_coord_offset+DIM3*0+YY1] += fiy0;
1245 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
1246 tx += fix0;
1247 ty += fiy0;
1248 tz += fiz0;
1249 f[i_coord_offset+DIM3*1+XX0] += fix1;
1250 f[i_coord_offset+DIM3*1+YY1] += fiy1;
1251 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
1252 tx += fix1;
1253 ty += fiy1;
1254 tz += fiz1;
1255 f[i_coord_offset+DIM3*2+XX0] += fix2;
1256 f[i_coord_offset+DIM3*2+YY1] += fiy2;
1257 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
1258 tx += fix2;
1259 ty += fiy2;
1260 tz += fiz2;
1261 fshift[i_shift_offset+XX0] += tx;
1262 fshift[i_shift_offset+YY1] += ty;
1263 fshift[i_shift_offset+ZZ2] += tz;
1264
1265 /* Increment number of inner iterations */
1266 inneriter += j_index_end - j_index_start;
1267
1268 /* Outer loop uses 30 flops */
1269 }
1270
1271 /* Increment number of outer iterations */
1272 outeriter += nri;
1273
1274 /* Update outer/inner flops */
1275
1276 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*30 + inneriter*356)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_F] += outeriter*30 + inneriter
*356
;
1277}