Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecRF_VdwLJ_GeomW3P1_sse4_1_single.c
Location:line 107, column 22
Description:Value stored to 'two' during its initialization is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_sse4_1_single
54 * Electrostatics interaction: ReactionField
55 * VdW interaction: LennardJones
56 * Geometry: Water3-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecRF_VdwLJ_GeomW3P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwioffset1;
88 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89 int vdwioffset2;
90 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
97 real *charge;
98 int nvdwtype;
99 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100 int *vdwtype;
101 real *vdwparam;
102 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
103 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
104 __m128 dummy_mask,cutoff_mask;
105 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
106 __m128 one = _mm_set1_ps(1.0);
107 __m128 two = _mm_set1_ps(2.0);
Value stored to 'two' during its initialization is never read
108 x = xx[0];
109 f = ff[0];
110
111 nri = nlist->nri;
112 iinr = nlist->iinr;
113 jindex = nlist->jindex;
114 jjnr = nlist->jjnr;
115 shiftidx = nlist->shift;
116 gid = nlist->gid;
117 shiftvec = fr->shift_vec[0];
118 fshift = fr->fshift[0];
119 facel = _mm_set1_ps(fr->epsfac);
120 charge = mdatoms->chargeA;
121 krf = _mm_set1_ps(fr->ic->k_rf);
122 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
123 crf = _mm_set1_ps(fr->ic->c_rf);
124 nvdwtype = fr->ntype;
125 vdwparam = fr->nbfp;
126 vdwtype = mdatoms->typeA;
127
128 /* Setup water-specific parameters */
129 inr = nlist->iinr[0];
130 iq0 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
131 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
132 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
133 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
134
135 /* Avoid stupid compiler warnings */
136 jnrA = jnrB = jnrC = jnrD = 0;
137 j_coord_offsetA = 0;
138 j_coord_offsetB = 0;
139 j_coord_offsetC = 0;
140 j_coord_offsetD = 0;
141
142 outeriter = 0;
143 inneriter = 0;
144
145 for(iidx=0;iidx<4*DIM3;iidx++)
146 {
147 scratch[iidx] = 0.0;
148 }
149
150 /* Start outer loop over neighborlists */
151 for(iidx=0; iidx<nri; iidx++)
152 {
153 /* Load shift vector for this list */
154 i_shift_offset = DIM3*shiftidx[iidx];
155
156 /* Load limits for loop over neighbors */
157 j_index_start = jindex[iidx];
158 j_index_end = jindex[iidx+1];
159
160 /* Get outer coordinate index */
161 inr = iinr[iidx];
162 i_coord_offset = DIM3*inr;
163
164 /* Load i particle coords and add shift vector */
165 gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
166 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
167
168 fix0 = _mm_setzero_ps();
169 fiy0 = _mm_setzero_ps();
170 fiz0 = _mm_setzero_ps();
171 fix1 = _mm_setzero_ps();
172 fiy1 = _mm_setzero_ps();
173 fiz1 = _mm_setzero_ps();
174 fix2 = _mm_setzero_ps();
175 fiy2 = _mm_setzero_ps();
176 fiz2 = _mm_setzero_ps();
177
178 /* Reset potential sums */
179 velecsum = _mm_setzero_ps();
180 vvdwsum = _mm_setzero_ps();
181
182 /* Start inner kernel loop */
183 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
184 {
185
186 /* Get j neighbor index, and coordinate index */
187 jnrA = jjnr[jidx];
188 jnrB = jjnr[jidx+1];
189 jnrC = jjnr[jidx+2];
190 jnrD = jjnr[jidx+3];
191 j_coord_offsetA = DIM3*jnrA;
192 j_coord_offsetB = DIM3*jnrB;
193 j_coord_offsetC = DIM3*jnrC;
194 j_coord_offsetD = DIM3*jnrD;
195
196 /* load j atom coordinates */
197 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
198 x+j_coord_offsetC,x+j_coord_offsetD,
199 &jx0,&jy0,&jz0);
200
201 /* Calculate displacement vector */
202 dx00 = _mm_sub_ps(ix0,jx0);
203 dy00 = _mm_sub_ps(iy0,jy0);
204 dz00 = _mm_sub_ps(iz0,jz0);
205 dx10 = _mm_sub_ps(ix1,jx0);
206 dy10 = _mm_sub_ps(iy1,jy0);
207 dz10 = _mm_sub_ps(iz1,jz0);
208 dx20 = _mm_sub_ps(ix2,jx0);
209 dy20 = _mm_sub_ps(iy2,jy0);
210 dz20 = _mm_sub_ps(iz2,jz0);
211
212 /* Calculate squared distance and things based on it */
213 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
214 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
215 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
216
217 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
218 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
219 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
220
221 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
222 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
223 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
224
225 /* Load parameters for j particles */
226 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
227 charge+jnrC+0,charge+jnrD+0);
228 vdwjidx0A = 2*vdwtype[jnrA+0];
229 vdwjidx0B = 2*vdwtype[jnrB+0];
230 vdwjidx0C = 2*vdwtype[jnrC+0];
231 vdwjidx0D = 2*vdwtype[jnrD+0];
232
233 fjx0 = _mm_setzero_ps();
234 fjy0 = _mm_setzero_ps();
235 fjz0 = _mm_setzero_ps();
236
237 /**************************
238 * CALCULATE INTERACTIONS *
239 **************************/
240
241 /* Compute parameters for interactions between i and j atoms */
242 qq00 = _mm_mul_ps(iq0,jq0);
243 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
244 vdwparam+vdwioffset0+vdwjidx0B,
245 vdwparam+vdwioffset0+vdwjidx0C,
246 vdwparam+vdwioffset0+vdwjidx0D,
247 &c6_00,&c12_00);
248
249 /* REACTION-FIELD ELECTROSTATICS */
250 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
251 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
252
253 /* LENNARD-JONES DISPERSION/REPULSION */
254
255 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
256 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
257 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
258 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
259 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
260
261 /* Update potential sum for this i atom from the interaction with this j atom. */
262 velecsum = _mm_add_ps(velecsum,velec);
263 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
264
265 fscal = _mm_add_ps(felec,fvdw);
266
267 /* Calculate temporary vectorial force */
268 tx = _mm_mul_ps(fscal,dx00);
269 ty = _mm_mul_ps(fscal,dy00);
270 tz = _mm_mul_ps(fscal,dz00);
271
272 /* Update vectorial force */
273 fix0 = _mm_add_ps(fix0,tx);
274 fiy0 = _mm_add_ps(fiy0,ty);
275 fiz0 = _mm_add_ps(fiz0,tz);
276
277 fjx0 = _mm_add_ps(fjx0,tx);
278 fjy0 = _mm_add_ps(fjy0,ty);
279 fjz0 = _mm_add_ps(fjz0,tz);
280
281 /**************************
282 * CALCULATE INTERACTIONS *
283 **************************/
284
285 /* Compute parameters for interactions between i and j atoms */
286 qq10 = _mm_mul_ps(iq1,jq0);
287
288 /* REACTION-FIELD ELECTROSTATICS */
289 velec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
290 felec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
291
292 /* Update potential sum for this i atom from the interaction with this j atom. */
293 velecsum = _mm_add_ps(velecsum,velec);
294
295 fscal = felec;
296
297 /* Calculate temporary vectorial force */
298 tx = _mm_mul_ps(fscal,dx10);
299 ty = _mm_mul_ps(fscal,dy10);
300 tz = _mm_mul_ps(fscal,dz10);
301
302 /* Update vectorial force */
303 fix1 = _mm_add_ps(fix1,tx);
304 fiy1 = _mm_add_ps(fiy1,ty);
305 fiz1 = _mm_add_ps(fiz1,tz);
306
307 fjx0 = _mm_add_ps(fjx0,tx);
308 fjy0 = _mm_add_ps(fjy0,ty);
309 fjz0 = _mm_add_ps(fjz0,tz);
310
311 /**************************
312 * CALCULATE INTERACTIONS *
313 **************************/
314
315 /* Compute parameters for interactions between i and j atoms */
316 qq20 = _mm_mul_ps(iq2,jq0);
317
318 /* REACTION-FIELD ELECTROSTATICS */
319 velec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
320 felec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
321
322 /* Update potential sum for this i atom from the interaction with this j atom. */
323 velecsum = _mm_add_ps(velecsum,velec);
324
325 fscal = felec;
326
327 /* Calculate temporary vectorial force */
328 tx = _mm_mul_ps(fscal,dx20);
329 ty = _mm_mul_ps(fscal,dy20);
330 tz = _mm_mul_ps(fscal,dz20);
331
332 /* Update vectorial force */
333 fix2 = _mm_add_ps(fix2,tx);
334 fiy2 = _mm_add_ps(fiy2,ty);
335 fiz2 = _mm_add_ps(fiz2,tz);
336
337 fjx0 = _mm_add_ps(fjx0,tx);
338 fjy0 = _mm_add_ps(fjy0,ty);
339 fjz0 = _mm_add_ps(fjz0,tz);
340
341 fjptrA = f+j_coord_offsetA;
342 fjptrB = f+j_coord_offsetB;
343 fjptrC = f+j_coord_offsetC;
344 fjptrD = f+j_coord_offsetD;
345
346 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
347
348 /* Inner loop uses 108 flops */
349 }
350
351 if(jidx<j_index_end)
352 {
353
354 /* Get j neighbor index, and coordinate index */
355 jnrlistA = jjnr[jidx];
356 jnrlistB = jjnr[jidx+1];
357 jnrlistC = jjnr[jidx+2];
358 jnrlistD = jjnr[jidx+3];
359 /* Sign of each element will be negative for non-real atoms.
360 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
361 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
362 */
363 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
364 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
365 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
366 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
367 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
368 j_coord_offsetA = DIM3*jnrA;
369 j_coord_offsetB = DIM3*jnrB;
370 j_coord_offsetC = DIM3*jnrC;
371 j_coord_offsetD = DIM3*jnrD;
372
373 /* load j atom coordinates */
374 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
375 x+j_coord_offsetC,x+j_coord_offsetD,
376 &jx0,&jy0,&jz0);
377
378 /* Calculate displacement vector */
379 dx00 = _mm_sub_ps(ix0,jx0);
380 dy00 = _mm_sub_ps(iy0,jy0);
381 dz00 = _mm_sub_ps(iz0,jz0);
382 dx10 = _mm_sub_ps(ix1,jx0);
383 dy10 = _mm_sub_ps(iy1,jy0);
384 dz10 = _mm_sub_ps(iz1,jz0);
385 dx20 = _mm_sub_ps(ix2,jx0);
386 dy20 = _mm_sub_ps(iy2,jy0);
387 dz20 = _mm_sub_ps(iz2,jz0);
388
389 /* Calculate squared distance and things based on it */
390 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
391 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
392 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
393
394 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
395 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
396 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
397
398 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
399 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
400 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
401
402 /* Load parameters for j particles */
403 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
404 charge+jnrC+0,charge+jnrD+0);
405 vdwjidx0A = 2*vdwtype[jnrA+0];
406 vdwjidx0B = 2*vdwtype[jnrB+0];
407 vdwjidx0C = 2*vdwtype[jnrC+0];
408 vdwjidx0D = 2*vdwtype[jnrD+0];
409
410 fjx0 = _mm_setzero_ps();
411 fjy0 = _mm_setzero_ps();
412 fjz0 = _mm_setzero_ps();
413
414 /**************************
415 * CALCULATE INTERACTIONS *
416 **************************/
417
418 /* Compute parameters for interactions between i and j atoms */
419 qq00 = _mm_mul_ps(iq0,jq0);
420 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
421 vdwparam+vdwioffset0+vdwjidx0B,
422 vdwparam+vdwioffset0+vdwjidx0C,
423 vdwparam+vdwioffset0+vdwjidx0D,
424 &c6_00,&c12_00);
425
426 /* REACTION-FIELD ELECTROSTATICS */
427 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
428 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
429
430 /* LENNARD-JONES DISPERSION/REPULSION */
431
432 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
433 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
434 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
435 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
436 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
437
438 /* Update potential sum for this i atom from the interaction with this j atom. */
439 velec = _mm_andnot_ps(dummy_mask,velec);
440 velecsum = _mm_add_ps(velecsum,velec);
441 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
442 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
443
444 fscal = _mm_add_ps(felec,fvdw);
445
446 fscal = _mm_andnot_ps(dummy_mask,fscal);
447
448 /* Calculate temporary vectorial force */
449 tx = _mm_mul_ps(fscal,dx00);
450 ty = _mm_mul_ps(fscal,dy00);
451 tz = _mm_mul_ps(fscal,dz00);
452
453 /* Update vectorial force */
454 fix0 = _mm_add_ps(fix0,tx);
455 fiy0 = _mm_add_ps(fiy0,ty);
456 fiz0 = _mm_add_ps(fiz0,tz);
457
458 fjx0 = _mm_add_ps(fjx0,tx);
459 fjy0 = _mm_add_ps(fjy0,ty);
460 fjz0 = _mm_add_ps(fjz0,tz);
461
462 /**************************
463 * CALCULATE INTERACTIONS *
464 **************************/
465
466 /* Compute parameters for interactions between i and j atoms */
467 qq10 = _mm_mul_ps(iq1,jq0);
468
469 /* REACTION-FIELD ELECTROSTATICS */
470 velec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
471 felec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
472
473 /* Update potential sum for this i atom from the interaction with this j atom. */
474 velec = _mm_andnot_ps(dummy_mask,velec);
475 velecsum = _mm_add_ps(velecsum,velec);
476
477 fscal = felec;
478
479 fscal = _mm_andnot_ps(dummy_mask,fscal);
480
481 /* Calculate temporary vectorial force */
482 tx = _mm_mul_ps(fscal,dx10);
483 ty = _mm_mul_ps(fscal,dy10);
484 tz = _mm_mul_ps(fscal,dz10);
485
486 /* Update vectorial force */
487 fix1 = _mm_add_ps(fix1,tx);
488 fiy1 = _mm_add_ps(fiy1,ty);
489 fiz1 = _mm_add_ps(fiz1,tz);
490
491 fjx0 = _mm_add_ps(fjx0,tx);
492 fjy0 = _mm_add_ps(fjy0,ty);
493 fjz0 = _mm_add_ps(fjz0,tz);
494
495 /**************************
496 * CALCULATE INTERACTIONS *
497 **************************/
498
499 /* Compute parameters for interactions between i and j atoms */
500 qq20 = _mm_mul_ps(iq2,jq0);
501
502 /* REACTION-FIELD ELECTROSTATICS */
503 velec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
504 felec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
505
506 /* Update potential sum for this i atom from the interaction with this j atom. */
507 velec = _mm_andnot_ps(dummy_mask,velec);
508 velecsum = _mm_add_ps(velecsum,velec);
509
510 fscal = felec;
511
512 fscal = _mm_andnot_ps(dummy_mask,fscal);
513
514 /* Calculate temporary vectorial force */
515 tx = _mm_mul_ps(fscal,dx20);
516 ty = _mm_mul_ps(fscal,dy20);
517 tz = _mm_mul_ps(fscal,dz20);
518
519 /* Update vectorial force */
520 fix2 = _mm_add_ps(fix2,tx);
521 fiy2 = _mm_add_ps(fiy2,ty);
522 fiz2 = _mm_add_ps(fiz2,tz);
523
524 fjx0 = _mm_add_ps(fjx0,tx);
525 fjy0 = _mm_add_ps(fjy0,ty);
526 fjz0 = _mm_add_ps(fjz0,tz);
527
528 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
529 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
530 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
531 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
532
533 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
534
535 /* Inner loop uses 108 flops */
536 }
537
538 /* End of innermost loop */
539
540 gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
541 f+i_coord_offset,fshift+i_shift_offset);
542
543 ggid = gid[iidx];
544 /* Update potential energies */
545 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
546 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
547
548 /* Increment number of inner iterations */
549 inneriter += j_index_end - j_index_start;
550
551 /* Outer loop uses 20 flops */
552 }
553
554 /* Increment number of outer iterations */
555 outeriter += nri;
556
557 /* Update outer/inner flops */
558
559 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*108)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_VF] += outeriter*20 + inneriter
*108
;
560}
561/*
562 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_sse4_1_single
563 * Electrostatics interaction: ReactionField
564 * VdW interaction: LennardJones
565 * Geometry: Water3-Particle
566 * Calculate force/pot: Force
567 */
568void
569nb_kernel_ElecRF_VdwLJ_GeomW3P1_F_sse4_1_single
570 (t_nblist * gmx_restrict nlist,
571 rvec * gmx_restrict xx,
572 rvec * gmx_restrict ff,
573 t_forcerec * gmx_restrict fr,
574 t_mdatoms * gmx_restrict mdatoms,
575 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
576 t_nrnb * gmx_restrict nrnb)
577{
578 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
579 * just 0 for non-waters.
580 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
581 * jnr indices corresponding to data put in the four positions in the SIMD register.
582 */
583 int i_shift_offset,i_coord_offset,outeriter,inneriter;
584 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
585 int jnrA,jnrB,jnrC,jnrD;
586 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
587 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
588 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
589 real rcutoff_scalar;
590 real *shiftvec,*fshift,*x,*f;
591 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
592 real scratch[4*DIM3];
593 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
594 int vdwioffset0;
595 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
596 int vdwioffset1;
597 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
598 int vdwioffset2;
599 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
600 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
601 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
602 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
603 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
604 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
605 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
606 real *charge;
607 int nvdwtype;
608 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
609 int *vdwtype;
610 real *vdwparam;
611 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
612 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
613 __m128 dummy_mask,cutoff_mask;
614 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
615 __m128 one = _mm_set1_ps(1.0);
616 __m128 two = _mm_set1_ps(2.0);
617 x = xx[0];
618 f = ff[0];
619
620 nri = nlist->nri;
621 iinr = nlist->iinr;
622 jindex = nlist->jindex;
623 jjnr = nlist->jjnr;
624 shiftidx = nlist->shift;
625 gid = nlist->gid;
626 shiftvec = fr->shift_vec[0];
627 fshift = fr->fshift[0];
628 facel = _mm_set1_ps(fr->epsfac);
629 charge = mdatoms->chargeA;
630 krf = _mm_set1_ps(fr->ic->k_rf);
631 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
632 crf = _mm_set1_ps(fr->ic->c_rf);
633 nvdwtype = fr->ntype;
634 vdwparam = fr->nbfp;
635 vdwtype = mdatoms->typeA;
636
637 /* Setup water-specific parameters */
638 inr = nlist->iinr[0];
639 iq0 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
640 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
641 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
642 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
643
644 /* Avoid stupid compiler warnings */
645 jnrA = jnrB = jnrC = jnrD = 0;
646 j_coord_offsetA = 0;
647 j_coord_offsetB = 0;
648 j_coord_offsetC = 0;
649 j_coord_offsetD = 0;
650
651 outeriter = 0;
652 inneriter = 0;
653
654 for(iidx=0;iidx<4*DIM3;iidx++)
655 {
656 scratch[iidx] = 0.0;
657 }
658
659 /* Start outer loop over neighborlists */
660 for(iidx=0; iidx<nri; iidx++)
661 {
662 /* Load shift vector for this list */
663 i_shift_offset = DIM3*shiftidx[iidx];
664
665 /* Load limits for loop over neighbors */
666 j_index_start = jindex[iidx];
667 j_index_end = jindex[iidx+1];
668
669 /* Get outer coordinate index */
670 inr = iinr[iidx];
671 i_coord_offset = DIM3*inr;
672
673 /* Load i particle coords and add shift vector */
674 gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
675 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
676
677 fix0 = _mm_setzero_ps();
678 fiy0 = _mm_setzero_ps();
679 fiz0 = _mm_setzero_ps();
680 fix1 = _mm_setzero_ps();
681 fiy1 = _mm_setzero_ps();
682 fiz1 = _mm_setzero_ps();
683 fix2 = _mm_setzero_ps();
684 fiy2 = _mm_setzero_ps();
685 fiz2 = _mm_setzero_ps();
686
687 /* Start inner kernel loop */
688 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
689 {
690
691 /* Get j neighbor index, and coordinate index */
692 jnrA = jjnr[jidx];
693 jnrB = jjnr[jidx+1];
694 jnrC = jjnr[jidx+2];
695 jnrD = jjnr[jidx+3];
696 j_coord_offsetA = DIM3*jnrA;
697 j_coord_offsetB = DIM3*jnrB;
698 j_coord_offsetC = DIM3*jnrC;
699 j_coord_offsetD = DIM3*jnrD;
700
701 /* load j atom coordinates */
702 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
703 x+j_coord_offsetC,x+j_coord_offsetD,
704 &jx0,&jy0,&jz0);
705
706 /* Calculate displacement vector */
707 dx00 = _mm_sub_ps(ix0,jx0);
708 dy00 = _mm_sub_ps(iy0,jy0);
709 dz00 = _mm_sub_ps(iz0,jz0);
710 dx10 = _mm_sub_ps(ix1,jx0);
711 dy10 = _mm_sub_ps(iy1,jy0);
712 dz10 = _mm_sub_ps(iz1,jz0);
713 dx20 = _mm_sub_ps(ix2,jx0);
714 dy20 = _mm_sub_ps(iy2,jy0);
715 dz20 = _mm_sub_ps(iz2,jz0);
716
717 /* Calculate squared distance and things based on it */
718 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
719 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
720 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
721
722 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
723 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
724 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
725
726 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
727 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
728 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
729
730 /* Load parameters for j particles */
731 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
732 charge+jnrC+0,charge+jnrD+0);
733 vdwjidx0A = 2*vdwtype[jnrA+0];
734 vdwjidx0B = 2*vdwtype[jnrB+0];
735 vdwjidx0C = 2*vdwtype[jnrC+0];
736 vdwjidx0D = 2*vdwtype[jnrD+0];
737
738 fjx0 = _mm_setzero_ps();
739 fjy0 = _mm_setzero_ps();
740 fjz0 = _mm_setzero_ps();
741
742 /**************************
743 * CALCULATE INTERACTIONS *
744 **************************/
745
746 /* Compute parameters for interactions between i and j atoms */
747 qq00 = _mm_mul_ps(iq0,jq0);
748 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
749 vdwparam+vdwioffset0+vdwjidx0B,
750 vdwparam+vdwioffset0+vdwjidx0C,
751 vdwparam+vdwioffset0+vdwjidx0D,
752 &c6_00,&c12_00);
753
754 /* REACTION-FIELD ELECTROSTATICS */
755 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
756
757 /* LENNARD-JONES DISPERSION/REPULSION */
758
759 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
760 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
761
762 fscal = _mm_add_ps(felec,fvdw);
763
764 /* Calculate temporary vectorial force */
765 tx = _mm_mul_ps(fscal,dx00);
766 ty = _mm_mul_ps(fscal,dy00);
767 tz = _mm_mul_ps(fscal,dz00);
768
769 /* Update vectorial force */
770 fix0 = _mm_add_ps(fix0,tx);
771 fiy0 = _mm_add_ps(fiy0,ty);
772 fiz0 = _mm_add_ps(fiz0,tz);
773
774 fjx0 = _mm_add_ps(fjx0,tx);
775 fjy0 = _mm_add_ps(fjy0,ty);
776 fjz0 = _mm_add_ps(fjz0,tz);
777
778 /**************************
779 * CALCULATE INTERACTIONS *
780 **************************/
781
782 /* Compute parameters for interactions between i and j atoms */
783 qq10 = _mm_mul_ps(iq1,jq0);
784
785 /* REACTION-FIELD ELECTROSTATICS */
786 felec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
787
788 fscal = felec;
789
790 /* Calculate temporary vectorial force */
791 tx = _mm_mul_ps(fscal,dx10);
792 ty = _mm_mul_ps(fscal,dy10);
793 tz = _mm_mul_ps(fscal,dz10);
794
795 /* Update vectorial force */
796 fix1 = _mm_add_ps(fix1,tx);
797 fiy1 = _mm_add_ps(fiy1,ty);
798 fiz1 = _mm_add_ps(fiz1,tz);
799
800 fjx0 = _mm_add_ps(fjx0,tx);
801 fjy0 = _mm_add_ps(fjy0,ty);
802 fjz0 = _mm_add_ps(fjz0,tz);
803
804 /**************************
805 * CALCULATE INTERACTIONS *
806 **************************/
807
808 /* Compute parameters for interactions between i and j atoms */
809 qq20 = _mm_mul_ps(iq2,jq0);
810
811 /* REACTION-FIELD ELECTROSTATICS */
812 felec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
813
814 fscal = felec;
815
816 /* Calculate temporary vectorial force */
817 tx = _mm_mul_ps(fscal,dx20);
818 ty = _mm_mul_ps(fscal,dy20);
819 tz = _mm_mul_ps(fscal,dz20);
820
821 /* Update vectorial force */
822 fix2 = _mm_add_ps(fix2,tx);
823 fiy2 = _mm_add_ps(fiy2,ty);
824 fiz2 = _mm_add_ps(fiz2,tz);
825
826 fjx0 = _mm_add_ps(fjx0,tx);
827 fjy0 = _mm_add_ps(fjy0,ty);
828 fjz0 = _mm_add_ps(fjz0,tz);
829
830 fjptrA = f+j_coord_offsetA;
831 fjptrB = f+j_coord_offsetB;
832 fjptrC = f+j_coord_offsetC;
833 fjptrD = f+j_coord_offsetD;
834
835 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
836
837 /* Inner loop uses 88 flops */
838 }
839
840 if(jidx<j_index_end)
841 {
842
843 /* Get j neighbor index, and coordinate index */
844 jnrlistA = jjnr[jidx];
845 jnrlistB = jjnr[jidx+1];
846 jnrlistC = jjnr[jidx+2];
847 jnrlistD = jjnr[jidx+3];
848 /* Sign of each element will be negative for non-real atoms.
849 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
850 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
851 */
852 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
853 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
854 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
855 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
856 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
857 j_coord_offsetA = DIM3*jnrA;
858 j_coord_offsetB = DIM3*jnrB;
859 j_coord_offsetC = DIM3*jnrC;
860 j_coord_offsetD = DIM3*jnrD;
861
862 /* load j atom coordinates */
863 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
864 x+j_coord_offsetC,x+j_coord_offsetD,
865 &jx0,&jy0,&jz0);
866
867 /* Calculate displacement vector */
868 dx00 = _mm_sub_ps(ix0,jx0);
869 dy00 = _mm_sub_ps(iy0,jy0);
870 dz00 = _mm_sub_ps(iz0,jz0);
871 dx10 = _mm_sub_ps(ix1,jx0);
872 dy10 = _mm_sub_ps(iy1,jy0);
873 dz10 = _mm_sub_ps(iz1,jz0);
874 dx20 = _mm_sub_ps(ix2,jx0);
875 dy20 = _mm_sub_ps(iy2,jy0);
876 dz20 = _mm_sub_ps(iz2,jz0);
877
878 /* Calculate squared distance and things based on it */
879 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
880 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
881 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
882
883 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
884 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
885 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
886
887 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
888 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
889 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
890
891 /* Load parameters for j particles */
892 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
893 charge+jnrC+0,charge+jnrD+0);
894 vdwjidx0A = 2*vdwtype[jnrA+0];
895 vdwjidx0B = 2*vdwtype[jnrB+0];
896 vdwjidx0C = 2*vdwtype[jnrC+0];
897 vdwjidx0D = 2*vdwtype[jnrD+0];
898
899 fjx0 = _mm_setzero_ps();
900 fjy0 = _mm_setzero_ps();
901 fjz0 = _mm_setzero_ps();
902
903 /**************************
904 * CALCULATE INTERACTIONS *
905 **************************/
906
907 /* Compute parameters for interactions between i and j atoms */
908 qq00 = _mm_mul_ps(iq0,jq0);
909 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
910 vdwparam+vdwioffset0+vdwjidx0B,
911 vdwparam+vdwioffset0+vdwjidx0C,
912 vdwparam+vdwioffset0+vdwjidx0D,
913 &c6_00,&c12_00);
914
915 /* REACTION-FIELD ELECTROSTATICS */
916 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
917
918 /* LENNARD-JONES DISPERSION/REPULSION */
919
920 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
921 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
922
923 fscal = _mm_add_ps(felec,fvdw);
924
925 fscal = _mm_andnot_ps(dummy_mask,fscal);
926
927 /* Calculate temporary vectorial force */
928 tx = _mm_mul_ps(fscal,dx00);
929 ty = _mm_mul_ps(fscal,dy00);
930 tz = _mm_mul_ps(fscal,dz00);
931
932 /* Update vectorial force */
933 fix0 = _mm_add_ps(fix0,tx);
934 fiy0 = _mm_add_ps(fiy0,ty);
935 fiz0 = _mm_add_ps(fiz0,tz);
936
937 fjx0 = _mm_add_ps(fjx0,tx);
938 fjy0 = _mm_add_ps(fjy0,ty);
939 fjz0 = _mm_add_ps(fjz0,tz);
940
941 /**************************
942 * CALCULATE INTERACTIONS *
943 **************************/
944
945 /* Compute parameters for interactions between i and j atoms */
946 qq10 = _mm_mul_ps(iq1,jq0);
947
948 /* REACTION-FIELD ELECTROSTATICS */
949 felec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
950
951 fscal = felec;
952
953 fscal = _mm_andnot_ps(dummy_mask,fscal);
954
955 /* Calculate temporary vectorial force */
956 tx = _mm_mul_ps(fscal,dx10);
957 ty = _mm_mul_ps(fscal,dy10);
958 tz = _mm_mul_ps(fscal,dz10);
959
960 /* Update vectorial force */
961 fix1 = _mm_add_ps(fix1,tx);
962 fiy1 = _mm_add_ps(fiy1,ty);
963 fiz1 = _mm_add_ps(fiz1,tz);
964
965 fjx0 = _mm_add_ps(fjx0,tx);
966 fjy0 = _mm_add_ps(fjy0,ty);
967 fjz0 = _mm_add_ps(fjz0,tz);
968
969 /**************************
970 * CALCULATE INTERACTIONS *
971 **************************/
972
973 /* Compute parameters for interactions between i and j atoms */
974 qq20 = _mm_mul_ps(iq2,jq0);
975
976 /* REACTION-FIELD ELECTROSTATICS */
977 felec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
978
979 fscal = felec;
980
981 fscal = _mm_andnot_ps(dummy_mask,fscal);
982
983 /* Calculate temporary vectorial force */
984 tx = _mm_mul_ps(fscal,dx20);
985 ty = _mm_mul_ps(fscal,dy20);
986 tz = _mm_mul_ps(fscal,dz20);
987
988 /* Update vectorial force */
989 fix2 = _mm_add_ps(fix2,tx);
990 fiy2 = _mm_add_ps(fiy2,ty);
991 fiz2 = _mm_add_ps(fiz2,tz);
992
993 fjx0 = _mm_add_ps(fjx0,tx);
994 fjy0 = _mm_add_ps(fjy0,ty);
995 fjz0 = _mm_add_ps(fjz0,tz);
996
997 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
998 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
999 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1000 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1001
1002 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1003
1004 /* Inner loop uses 88 flops */
1005 }
1006
1007 /* End of innermost loop */
1008
1009 gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1010 f+i_coord_offset,fshift+i_shift_offset);
1011
1012 /* Increment number of inner iterations */
1013 inneriter += j_index_end - j_index_start;
1014
1015 /* Outer loop uses 18 flops */
1016 }
1017
1018 /* Increment number of outer iterations */
1019 outeriter += nri;
1020
1021 /* Update outer/inner flops */
1022
1023 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*88)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_F] += outeriter*18 + inneriter
*88
;
1024}