Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3W3_c.c
Location:line 793, column 5
Description:Value stored to 'sh_lj_ewald' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3W3_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: LJEwald
53 * Geometry: Water3-Water3
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3W3_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 int vdwjidx1;
81 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
82 int vdwjidx2;
83 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
84 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
85 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
86 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
87 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
88 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
89 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
90 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
91 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
92 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
93 real velec,felec,velecsum,facel,crf,krf,krf2;
94 real *charge;
95 int nvdwtype;
96 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
97 int *vdwtype;
98 real *vdwparam;
99 real c6grid_00;
100 real c6grid_01;
101 real c6grid_02;
102 real c6grid_10;
103 real c6grid_11;
104 real c6grid_12;
105 real c6grid_20;
106 real c6grid_21;
107 real c6grid_22;
108 real ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,sh_lj_ewald;
109 real *vdwgridparam;
110 int ewitab;
111 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
112 real *ewtab;
113
114 x = xx[0];
115 f = ff[0];
116
117 nri = nlist->nri;
118 iinr = nlist->iinr;
119 jindex = nlist->jindex;
120 jjnr = nlist->jjnr;
121 shiftidx = nlist->shift;
122 gid = nlist->gid;
123 shiftvec = fr->shift_vec[0];
124 fshift = fr->fshift[0];
125 facel = fr->epsfac;
126 charge = mdatoms->chargeA;
127 nvdwtype = fr->ntype;
128 vdwparam = fr->nbfp;
129 vdwtype = mdatoms->typeA;
130 vdwgridparam = fr->ljpme_c6grid;
131 ewclj = fr->ewaldcoeff_lj;
132 sh_lj_ewald = fr->ic->sh_lj_ewald;
133 ewclj2 = ewclj*ewclj;
134 ewclj6 = ewclj2*ewclj2*ewclj2;
135
136 sh_ewald = fr->ic->sh_ewald;
137 ewtab = fr->ic->tabq_coul_FDV0;
138 ewtabscale = fr->ic->tabq_scale;
139 ewtabhalfspace = 0.5/ewtabscale;
140
141 /* Setup water-specific parameters */
142 inr = nlist->iinr[0];
143 iq0 = facel*charge[inr+0];
144 iq1 = facel*charge[inr+1];
145 iq2 = facel*charge[inr+2];
146 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
147
148 jq0 = charge[inr+0];
149 jq1 = charge[inr+1];
150 jq2 = charge[inr+2];
151 vdwjidx0 = 2*vdwtype[inr+0];
152 qq00 = iq0*jq0;
153 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
154 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
155 c6grid_00 = vdwgridparam[vdwioffset0+vdwjidx0];
156 qq01 = iq0*jq1;
157 qq02 = iq0*jq2;
158 qq10 = iq1*jq0;
159 qq11 = iq1*jq1;
160 qq12 = iq1*jq2;
161 qq20 = iq2*jq0;
162 qq21 = iq2*jq1;
163 qq22 = iq2*jq2;
164
165 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
166 rcutoff = fr->rcoulomb;
167 rcutoff2 = rcutoff*rcutoff;
168
169 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
170 rvdw = fr->rvdw;
171
172 outeriter = 0;
173 inneriter = 0;
174
175 /* Start outer loop over neighborlists */
176 for(iidx=0; iidx<nri; iidx++)
177 {
178 /* Load shift vector for this list */
179 i_shift_offset = DIM3*shiftidx[iidx];
180 shX = shiftvec[i_shift_offset+XX0];
181 shY = shiftvec[i_shift_offset+YY1];
182 shZ = shiftvec[i_shift_offset+ZZ2];
183
184 /* Load limits for loop over neighbors */
185 j_index_start = jindex[iidx];
186 j_index_end = jindex[iidx+1];
187
188 /* Get outer coordinate index */
189 inr = iinr[iidx];
190 i_coord_offset = DIM3*inr;
191
192 /* Load i particle coords and add shift vector */
193 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
194 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
195 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
196 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
197 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
198 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
199 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
200 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
201 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
202
203 fix0 = 0.0;
204 fiy0 = 0.0;
205 fiz0 = 0.0;
206 fix1 = 0.0;
207 fiy1 = 0.0;
208 fiz1 = 0.0;
209 fix2 = 0.0;
210 fiy2 = 0.0;
211 fiz2 = 0.0;
212
213 /* Reset potential sums */
214 velecsum = 0.0;
215 vvdwsum = 0.0;
216
217 /* Start inner kernel loop */
218 for(jidx=j_index_start; jidx<j_index_end; jidx++)
219 {
220 /* Get j neighbor index, and coordinate index */
221 jnr = jjnr[jidx];
222 j_coord_offset = DIM3*jnr;
223
224 /* load j atom coordinates */
225 jx0 = x[j_coord_offset+DIM3*0+XX0];
226 jy0 = x[j_coord_offset+DIM3*0+YY1];
227 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
228 jx1 = x[j_coord_offset+DIM3*1+XX0];
229 jy1 = x[j_coord_offset+DIM3*1+YY1];
230 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
231 jx2 = x[j_coord_offset+DIM3*2+XX0];
232 jy2 = x[j_coord_offset+DIM3*2+YY1];
233 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
234
235 /* Calculate displacement vector */
236 dx00 = ix0 - jx0;
237 dy00 = iy0 - jy0;
238 dz00 = iz0 - jz0;
239 dx01 = ix0 - jx1;
240 dy01 = iy0 - jy1;
241 dz01 = iz0 - jz1;
242 dx02 = ix0 - jx2;
243 dy02 = iy0 - jy2;
244 dz02 = iz0 - jz2;
245 dx10 = ix1 - jx0;
246 dy10 = iy1 - jy0;
247 dz10 = iz1 - jz0;
248 dx11 = ix1 - jx1;
249 dy11 = iy1 - jy1;
250 dz11 = iz1 - jz1;
251 dx12 = ix1 - jx2;
252 dy12 = iy1 - jy2;
253 dz12 = iz1 - jz2;
254 dx20 = ix2 - jx0;
255 dy20 = iy2 - jy0;
256 dz20 = iz2 - jz0;
257 dx21 = ix2 - jx1;
258 dy21 = iy2 - jy1;
259 dz21 = iz2 - jz1;
260 dx22 = ix2 - jx2;
261 dy22 = iy2 - jy2;
262 dz22 = iz2 - jz2;
263
264 /* Calculate squared distance and things based on it */
265 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
266 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
267 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
268 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
269 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
270 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
271 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
272 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
273 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
274
275 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
276 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
277 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
278 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
279 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
280 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
281 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
282 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
283 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
284
285 rinvsq00 = rinv00*rinv00;
286 rinvsq01 = rinv01*rinv01;
287 rinvsq02 = rinv02*rinv02;
288 rinvsq10 = rinv10*rinv10;
289 rinvsq11 = rinv11*rinv11;
290 rinvsq12 = rinv12*rinv12;
291 rinvsq20 = rinv20*rinv20;
292 rinvsq21 = rinv21*rinv21;
293 rinvsq22 = rinv22*rinv22;
294
295 /**************************
296 * CALCULATE INTERACTIONS *
297 **************************/
298
299 if (rsq00<rcutoff2)
300 {
301
302 r00 = rsq00*rinv00;
303
304 /* EWALD ELECTROSTATICS */
305
306 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
307 ewrt = r00*ewtabscale;
308 ewitab = ewrt;
309 eweps = ewrt-ewitab;
310 ewitab = 4*ewitab;
311 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
312 velec = qq00*((rinv00-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
313 felec = qq00*rinv00*(rinvsq00-felec);
314
315 rinvsix = rinvsq00*rinvsq00*rinvsq00;
316 ewcljrsq = ewclj2*rsq00;
317 exponent = exp(-ewcljrsq);
318 poly = exponent*(1.0 + ewcljrsq + ewcljrsq*ewcljrsq*0.5);
319 vvdw6 = (c6_00-c6grid_00*(1.0-poly))*rinvsix;
320 vvdw12 = c12_00*rinvsix*rinvsix;
321 vvdw = (vvdw12 - c12_00*sh_vdw_invrcut6*sh_vdw_invrcut6)*(1.0/12.0) - (vvdw6 - c6_00*sh_vdw_invrcut6 - c6grid_00*sh_lj_ewald)*(1.0/6.0);
322 fvdw = (vvdw12 - vvdw6 - c6grid_00*(1.0/6.0)*exponent*ewclj6)*rinvsq00;
323
324 /* Update potential sums from outer loop */
325 velecsum += velec;
326 vvdwsum += vvdw;
327
328 fscal = felec+fvdw;
329
330 /* Calculate temporary vectorial force */
331 tx = fscal*dx00;
332 ty = fscal*dy00;
333 tz = fscal*dz00;
334
335 /* Update vectorial force */
336 fix0 += tx;
337 fiy0 += ty;
338 fiz0 += tz;
339 f[j_coord_offset+DIM3*0+XX0] -= tx;
340 f[j_coord_offset+DIM3*0+YY1] -= ty;
341 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
342
343 }
344
345 /**************************
346 * CALCULATE INTERACTIONS *
347 **************************/
348
349 if (rsq01<rcutoff2)
350 {
351
352 r01 = rsq01*rinv01;
353
354 /* EWALD ELECTROSTATICS */
355
356 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
357 ewrt = r01*ewtabscale;
358 ewitab = ewrt;
359 eweps = ewrt-ewitab;
360 ewitab = 4*ewitab;
361 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
362 velec = qq01*((rinv01-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
363 felec = qq01*rinv01*(rinvsq01-felec);
364
365 /* Update potential sums from outer loop */
366 velecsum += velec;
367
368 fscal = felec;
369
370 /* Calculate temporary vectorial force */
371 tx = fscal*dx01;
372 ty = fscal*dy01;
373 tz = fscal*dz01;
374
375 /* Update vectorial force */
376 fix0 += tx;
377 fiy0 += ty;
378 fiz0 += tz;
379 f[j_coord_offset+DIM3*1+XX0] -= tx;
380 f[j_coord_offset+DIM3*1+YY1] -= ty;
381 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
382
383 }
384
385 /**************************
386 * CALCULATE INTERACTIONS *
387 **************************/
388
389 if (rsq02<rcutoff2)
390 {
391
392 r02 = rsq02*rinv02;
393
394 /* EWALD ELECTROSTATICS */
395
396 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
397 ewrt = r02*ewtabscale;
398 ewitab = ewrt;
399 eweps = ewrt-ewitab;
400 ewitab = 4*ewitab;
401 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
402 velec = qq02*((rinv02-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
403 felec = qq02*rinv02*(rinvsq02-felec);
404
405 /* Update potential sums from outer loop */
406 velecsum += velec;
407
408 fscal = felec;
409
410 /* Calculate temporary vectorial force */
411 tx = fscal*dx02;
412 ty = fscal*dy02;
413 tz = fscal*dz02;
414
415 /* Update vectorial force */
416 fix0 += tx;
417 fiy0 += ty;
418 fiz0 += tz;
419 f[j_coord_offset+DIM3*2+XX0] -= tx;
420 f[j_coord_offset+DIM3*2+YY1] -= ty;
421 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
422
423 }
424
425 /**************************
426 * CALCULATE INTERACTIONS *
427 **************************/
428
429 if (rsq10<rcutoff2)
430 {
431
432 r10 = rsq10*rinv10;
433
434 /* EWALD ELECTROSTATICS */
435
436 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
437 ewrt = r10*ewtabscale;
438 ewitab = ewrt;
439 eweps = ewrt-ewitab;
440 ewitab = 4*ewitab;
441 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
442 velec = qq10*((rinv10-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
443 felec = qq10*rinv10*(rinvsq10-felec);
444
445 /* Update potential sums from outer loop */
446 velecsum += velec;
447
448 fscal = felec;
449
450 /* Calculate temporary vectorial force */
451 tx = fscal*dx10;
452 ty = fscal*dy10;
453 tz = fscal*dz10;
454
455 /* Update vectorial force */
456 fix1 += tx;
457 fiy1 += ty;
458 fiz1 += tz;
459 f[j_coord_offset+DIM3*0+XX0] -= tx;
460 f[j_coord_offset+DIM3*0+YY1] -= ty;
461 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
462
463 }
464
465 /**************************
466 * CALCULATE INTERACTIONS *
467 **************************/
468
469 if (rsq11<rcutoff2)
470 {
471
472 r11 = rsq11*rinv11;
473
474 /* EWALD ELECTROSTATICS */
475
476 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
477 ewrt = r11*ewtabscale;
478 ewitab = ewrt;
479 eweps = ewrt-ewitab;
480 ewitab = 4*ewitab;
481 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
482 velec = qq11*((rinv11-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
483 felec = qq11*rinv11*(rinvsq11-felec);
484
485 /* Update potential sums from outer loop */
486 velecsum += velec;
487
488 fscal = felec;
489
490 /* Calculate temporary vectorial force */
491 tx = fscal*dx11;
492 ty = fscal*dy11;
493 tz = fscal*dz11;
494
495 /* Update vectorial force */
496 fix1 += tx;
497 fiy1 += ty;
498 fiz1 += tz;
499 f[j_coord_offset+DIM3*1+XX0] -= tx;
500 f[j_coord_offset+DIM3*1+YY1] -= ty;
501 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
502
503 }
504
505 /**************************
506 * CALCULATE INTERACTIONS *
507 **************************/
508
509 if (rsq12<rcutoff2)
510 {
511
512 r12 = rsq12*rinv12;
513
514 /* EWALD ELECTROSTATICS */
515
516 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
517 ewrt = r12*ewtabscale;
518 ewitab = ewrt;
519 eweps = ewrt-ewitab;
520 ewitab = 4*ewitab;
521 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
522 velec = qq12*((rinv12-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
523 felec = qq12*rinv12*(rinvsq12-felec);
524
525 /* Update potential sums from outer loop */
526 velecsum += velec;
527
528 fscal = felec;
529
530 /* Calculate temporary vectorial force */
531 tx = fscal*dx12;
532 ty = fscal*dy12;
533 tz = fscal*dz12;
534
535 /* Update vectorial force */
536 fix1 += tx;
537 fiy1 += ty;
538 fiz1 += tz;
539 f[j_coord_offset+DIM3*2+XX0] -= tx;
540 f[j_coord_offset+DIM3*2+YY1] -= ty;
541 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
542
543 }
544
545 /**************************
546 * CALCULATE INTERACTIONS *
547 **************************/
548
549 if (rsq20<rcutoff2)
550 {
551
552 r20 = rsq20*rinv20;
553
554 /* EWALD ELECTROSTATICS */
555
556 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
557 ewrt = r20*ewtabscale;
558 ewitab = ewrt;
559 eweps = ewrt-ewitab;
560 ewitab = 4*ewitab;
561 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
562 velec = qq20*((rinv20-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
563 felec = qq20*rinv20*(rinvsq20-felec);
564
565 /* Update potential sums from outer loop */
566 velecsum += velec;
567
568 fscal = felec;
569
570 /* Calculate temporary vectorial force */
571 tx = fscal*dx20;
572 ty = fscal*dy20;
573 tz = fscal*dz20;
574
575 /* Update vectorial force */
576 fix2 += tx;
577 fiy2 += ty;
578 fiz2 += tz;
579 f[j_coord_offset+DIM3*0+XX0] -= tx;
580 f[j_coord_offset+DIM3*0+YY1] -= ty;
581 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
582
583 }
584
585 /**************************
586 * CALCULATE INTERACTIONS *
587 **************************/
588
589 if (rsq21<rcutoff2)
590 {
591
592 r21 = rsq21*rinv21;
593
594 /* EWALD ELECTROSTATICS */
595
596 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
597 ewrt = r21*ewtabscale;
598 ewitab = ewrt;
599 eweps = ewrt-ewitab;
600 ewitab = 4*ewitab;
601 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
602 velec = qq21*((rinv21-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
603 felec = qq21*rinv21*(rinvsq21-felec);
604
605 /* Update potential sums from outer loop */
606 velecsum += velec;
607
608 fscal = felec;
609
610 /* Calculate temporary vectorial force */
611 tx = fscal*dx21;
612 ty = fscal*dy21;
613 tz = fscal*dz21;
614
615 /* Update vectorial force */
616 fix2 += tx;
617 fiy2 += ty;
618 fiz2 += tz;
619 f[j_coord_offset+DIM3*1+XX0] -= tx;
620 f[j_coord_offset+DIM3*1+YY1] -= ty;
621 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
622
623 }
624
625 /**************************
626 * CALCULATE INTERACTIONS *
627 **************************/
628
629 if (rsq22<rcutoff2)
630 {
631
632 r22 = rsq22*rinv22;
633
634 /* EWALD ELECTROSTATICS */
635
636 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
637 ewrt = r22*ewtabscale;
638 ewitab = ewrt;
639 eweps = ewrt-ewitab;
640 ewitab = 4*ewitab;
641 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
642 velec = qq22*((rinv22-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
643 felec = qq22*rinv22*(rinvsq22-felec);
644
645 /* Update potential sums from outer loop */
646 velecsum += velec;
647
648 fscal = felec;
649
650 /* Calculate temporary vectorial force */
651 tx = fscal*dx22;
652 ty = fscal*dy22;
653 tz = fscal*dz22;
654
655 /* Update vectorial force */
656 fix2 += tx;
657 fiy2 += ty;
658 fiz2 += tz;
659 f[j_coord_offset+DIM3*2+XX0] -= tx;
660 f[j_coord_offset+DIM3*2+YY1] -= ty;
661 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
662
663 }
664
665 /* Inner loop uses 401 flops */
666 }
667 /* End of innermost loop */
668
669 tx = ty = tz = 0;
670 f[i_coord_offset+DIM3*0+XX0] += fix0;
671 f[i_coord_offset+DIM3*0+YY1] += fiy0;
672 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
673 tx += fix0;
674 ty += fiy0;
675 tz += fiz0;
676 f[i_coord_offset+DIM3*1+XX0] += fix1;
677 f[i_coord_offset+DIM3*1+YY1] += fiy1;
678 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
679 tx += fix1;
680 ty += fiy1;
681 tz += fiz1;
682 f[i_coord_offset+DIM3*2+XX0] += fix2;
683 f[i_coord_offset+DIM3*2+YY1] += fiy2;
684 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
685 tx += fix2;
686 ty += fiy2;
687 tz += fiz2;
688 fshift[i_shift_offset+XX0] += tx;
689 fshift[i_shift_offset+YY1] += ty;
690 fshift[i_shift_offset+ZZ2] += tz;
691
692 ggid = gid[iidx];
693 /* Update potential energies */
694 kernel_data->energygrp_elec[ggid] += velecsum;
695 kernel_data->energygrp_vdw[ggid] += vvdwsum;
696
697 /* Increment number of inner iterations */
698 inneriter += j_index_end - j_index_start;
699
700 /* Outer loop uses 32 flops */
701 }
702
703 /* Increment number of outer iterations */
704 outeriter += nri;
705
706 /* Update outer/inner flops */
707
708 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*32 + inneriter*401)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_VF] += outeriter*32 +
inneriter*401
;
709}
710/*
711 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3W3_F_c
712 * Electrostatics interaction: Ewald
713 * VdW interaction: LJEwald
714 * Geometry: Water3-Water3
715 * Calculate force/pot: Force
716 */
717void
718nb_kernel_ElecEwSh_VdwLJEwSh_GeomW3W3_F_c
719 (t_nblist * gmx_restrict__restrict nlist,
720 rvec * gmx_restrict__restrict xx,
721 rvec * gmx_restrict__restrict ff,
722 t_forcerec * gmx_restrict__restrict fr,
723 t_mdatoms * gmx_restrict__restrict mdatoms,
724 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
725 t_nrnb * gmx_restrict__restrict nrnb)
726{
727 int i_shift_offset,i_coord_offset,j_coord_offset;
728 int j_index_start,j_index_end;
729 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
730 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
731 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
732 real *shiftvec,*fshift,*x,*f;
733 int vdwioffset0;
734 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
735 int vdwioffset1;
736 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
737 int vdwioffset2;
738 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
739 int vdwjidx0;
740 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
741 int vdwjidx1;
742 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
743 int vdwjidx2;
744 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
745 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
746 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
747 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
748 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
749 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
750 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
751 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
752 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
753 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
754 real velec,felec,velecsum,facel,crf,krf,krf2;
755 real *charge;
756 int nvdwtype;
757 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
758 int *vdwtype;
759 real *vdwparam;
760 real c6grid_00;
761 real c6grid_01;
762 real c6grid_02;
763 real c6grid_10;
764 real c6grid_11;
765 real c6grid_12;
766 real c6grid_20;
767 real c6grid_21;
768 real c6grid_22;
769 real ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,sh_lj_ewald;
770 real *vdwgridparam;
771 int ewitab;
772 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
773 real *ewtab;
774
775 x = xx[0];
776 f = ff[0];
777
778 nri = nlist->nri;
779 iinr = nlist->iinr;
780 jindex = nlist->jindex;
781 jjnr = nlist->jjnr;
782 shiftidx = nlist->shift;
783 gid = nlist->gid;
784 shiftvec = fr->shift_vec[0];
785 fshift = fr->fshift[0];
786 facel = fr->epsfac;
787 charge = mdatoms->chargeA;
788 nvdwtype = fr->ntype;
789 vdwparam = fr->nbfp;
790 vdwtype = mdatoms->typeA;
791 vdwgridparam = fr->ljpme_c6grid;
792 ewclj = fr->ewaldcoeff_lj;
793 sh_lj_ewald = fr->ic->sh_lj_ewald;
Value stored to 'sh_lj_ewald' is never read
794 ewclj2 = ewclj*ewclj;
795 ewclj6 = ewclj2*ewclj2*ewclj2;
796
797 sh_ewald = fr->ic->sh_ewald;
798 ewtab = fr->ic->tabq_coul_F;
799 ewtabscale = fr->ic->tabq_scale;
800 ewtabhalfspace = 0.5/ewtabscale;
801
802 /* Setup water-specific parameters */
803 inr = nlist->iinr[0];
804 iq0 = facel*charge[inr+0];
805 iq1 = facel*charge[inr+1];
806 iq2 = facel*charge[inr+2];
807 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
808
809 jq0 = charge[inr+0];
810 jq1 = charge[inr+1];
811 jq2 = charge[inr+2];
812 vdwjidx0 = 2*vdwtype[inr+0];
813 qq00 = iq0*jq0;
814 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
815 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
816 c6grid_00 = vdwgridparam[vdwioffset0+vdwjidx0];
817 qq01 = iq0*jq1;
818 qq02 = iq0*jq2;
819 qq10 = iq1*jq0;
820 qq11 = iq1*jq1;
821 qq12 = iq1*jq2;
822 qq20 = iq2*jq0;
823 qq21 = iq2*jq1;
824 qq22 = iq2*jq2;
825
826 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
827 rcutoff = fr->rcoulomb;
828 rcutoff2 = rcutoff*rcutoff;
829
830 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
831 rvdw = fr->rvdw;
832
833 outeriter = 0;
834 inneriter = 0;
835
836 /* Start outer loop over neighborlists */
837 for(iidx=0; iidx<nri; iidx++)
838 {
839 /* Load shift vector for this list */
840 i_shift_offset = DIM3*shiftidx[iidx];
841 shX = shiftvec[i_shift_offset+XX0];
842 shY = shiftvec[i_shift_offset+YY1];
843 shZ = shiftvec[i_shift_offset+ZZ2];
844
845 /* Load limits for loop over neighbors */
846 j_index_start = jindex[iidx];
847 j_index_end = jindex[iidx+1];
848
849 /* Get outer coordinate index */
850 inr = iinr[iidx];
851 i_coord_offset = DIM3*inr;
852
853 /* Load i particle coords and add shift vector */
854 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
855 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
856 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
857 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
858 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
859 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
860 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
861 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
862 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
863
864 fix0 = 0.0;
865 fiy0 = 0.0;
866 fiz0 = 0.0;
867 fix1 = 0.0;
868 fiy1 = 0.0;
869 fiz1 = 0.0;
870 fix2 = 0.0;
871 fiy2 = 0.0;
872 fiz2 = 0.0;
873
874 /* Start inner kernel loop */
875 for(jidx=j_index_start; jidx<j_index_end; jidx++)
876 {
877 /* Get j neighbor index, and coordinate index */
878 jnr = jjnr[jidx];
879 j_coord_offset = DIM3*jnr;
880
881 /* load j atom coordinates */
882 jx0 = x[j_coord_offset+DIM3*0+XX0];
883 jy0 = x[j_coord_offset+DIM3*0+YY1];
884 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
885 jx1 = x[j_coord_offset+DIM3*1+XX0];
886 jy1 = x[j_coord_offset+DIM3*1+YY1];
887 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
888 jx2 = x[j_coord_offset+DIM3*2+XX0];
889 jy2 = x[j_coord_offset+DIM3*2+YY1];
890 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
891
892 /* Calculate displacement vector */
893 dx00 = ix0 - jx0;
894 dy00 = iy0 - jy0;
895 dz00 = iz0 - jz0;
896 dx01 = ix0 - jx1;
897 dy01 = iy0 - jy1;
898 dz01 = iz0 - jz1;
899 dx02 = ix0 - jx2;
900 dy02 = iy0 - jy2;
901 dz02 = iz0 - jz2;
902 dx10 = ix1 - jx0;
903 dy10 = iy1 - jy0;
904 dz10 = iz1 - jz0;
905 dx11 = ix1 - jx1;
906 dy11 = iy1 - jy1;
907 dz11 = iz1 - jz1;
908 dx12 = ix1 - jx2;
909 dy12 = iy1 - jy2;
910 dz12 = iz1 - jz2;
911 dx20 = ix2 - jx0;
912 dy20 = iy2 - jy0;
913 dz20 = iz2 - jz0;
914 dx21 = ix2 - jx1;
915 dy21 = iy2 - jy1;
916 dz21 = iz2 - jz1;
917 dx22 = ix2 - jx2;
918 dy22 = iy2 - jy2;
919 dz22 = iz2 - jz2;
920
921 /* Calculate squared distance and things based on it */
922 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
923 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
924 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
925 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
926 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
927 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
928 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
929 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
930 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
931
932 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
933 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
934 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
935 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
936 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
937 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
938 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
939 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
940 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
941
942 rinvsq00 = rinv00*rinv00;
943 rinvsq01 = rinv01*rinv01;
944 rinvsq02 = rinv02*rinv02;
945 rinvsq10 = rinv10*rinv10;
946 rinvsq11 = rinv11*rinv11;
947 rinvsq12 = rinv12*rinv12;
948 rinvsq20 = rinv20*rinv20;
949 rinvsq21 = rinv21*rinv21;
950 rinvsq22 = rinv22*rinv22;
951
952 /**************************
953 * CALCULATE INTERACTIONS *
954 **************************/
955
956 if (rsq00<rcutoff2)
957 {
958
959 r00 = rsq00*rinv00;
960
961 /* EWALD ELECTROSTATICS */
962
963 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
964 ewrt = r00*ewtabscale;
965 ewitab = ewrt;
966 eweps = ewrt-ewitab;
967 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
968 felec = qq00*rinv00*(rinvsq00-felec);
969
970 rinvsix = rinvsq00*rinvsq00*rinvsq00;
971 ewcljrsq = ewclj2*rsq00;
972 exponent = exp(-ewcljrsq);
973 poly = exponent*(1.0 + ewcljrsq + ewcljrsq*ewcljrsq*0.5);
974 fvdw = (((c12_00*rinvsix - c6_00 + c6grid_00*(1.0-poly))*rinvsix) - c6grid_00*(1.0/6.0)*exponent*ewclj6)*rinvsq00;
975
976 fscal = felec+fvdw;
977
978 /* Calculate temporary vectorial force */
979 tx = fscal*dx00;
980 ty = fscal*dy00;
981 tz = fscal*dz00;
982
983 /* Update vectorial force */
984 fix0 += tx;
985 fiy0 += ty;
986 fiz0 += tz;
987 f[j_coord_offset+DIM3*0+XX0] -= tx;
988 f[j_coord_offset+DIM3*0+YY1] -= ty;
989 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
990
991 }
992
993 /**************************
994 * CALCULATE INTERACTIONS *
995 **************************/
996
997 if (rsq01<rcutoff2)
998 {
999
1000 r01 = rsq01*rinv01;
1001
1002 /* EWALD ELECTROSTATICS */
1003
1004 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1005 ewrt = r01*ewtabscale;
1006 ewitab = ewrt;
1007 eweps = ewrt-ewitab;
1008 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1009 felec = qq01*rinv01*(rinvsq01-felec);
1010
1011 fscal = felec;
1012
1013 /* Calculate temporary vectorial force */
1014 tx = fscal*dx01;
1015 ty = fscal*dy01;
1016 tz = fscal*dz01;
1017
1018 /* Update vectorial force */
1019 fix0 += tx;
1020 fiy0 += ty;
1021 fiz0 += tz;
1022 f[j_coord_offset+DIM3*1+XX0] -= tx;
1023 f[j_coord_offset+DIM3*1+YY1] -= ty;
1024 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1025
1026 }
1027
1028 /**************************
1029 * CALCULATE INTERACTIONS *
1030 **************************/
1031
1032 if (rsq02<rcutoff2)
1033 {
1034
1035 r02 = rsq02*rinv02;
1036
1037 /* EWALD ELECTROSTATICS */
1038
1039 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1040 ewrt = r02*ewtabscale;
1041 ewitab = ewrt;
1042 eweps = ewrt-ewitab;
1043 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1044 felec = qq02*rinv02*(rinvsq02-felec);
1045
1046 fscal = felec;
1047
1048 /* Calculate temporary vectorial force */
1049 tx = fscal*dx02;
1050 ty = fscal*dy02;
1051 tz = fscal*dz02;
1052
1053 /* Update vectorial force */
1054 fix0 += tx;
1055 fiy0 += ty;
1056 fiz0 += tz;
1057 f[j_coord_offset+DIM3*2+XX0] -= tx;
1058 f[j_coord_offset+DIM3*2+YY1] -= ty;
1059 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1060
1061 }
1062
1063 /**************************
1064 * CALCULATE INTERACTIONS *
1065 **************************/
1066
1067 if (rsq10<rcutoff2)
1068 {
1069
1070 r10 = rsq10*rinv10;
1071
1072 /* EWALD ELECTROSTATICS */
1073
1074 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1075 ewrt = r10*ewtabscale;
1076 ewitab = ewrt;
1077 eweps = ewrt-ewitab;
1078 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1079 felec = qq10*rinv10*(rinvsq10-felec);
1080
1081 fscal = felec;
1082
1083 /* Calculate temporary vectorial force */
1084 tx = fscal*dx10;
1085 ty = fscal*dy10;
1086 tz = fscal*dz10;
1087
1088 /* Update vectorial force */
1089 fix1 += tx;
1090 fiy1 += ty;
1091 fiz1 += tz;
1092 f[j_coord_offset+DIM3*0+XX0] -= tx;
1093 f[j_coord_offset+DIM3*0+YY1] -= ty;
1094 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
1095
1096 }
1097
1098 /**************************
1099 * CALCULATE INTERACTIONS *
1100 **************************/
1101
1102 if (rsq11<rcutoff2)
1103 {
1104
1105 r11 = rsq11*rinv11;
1106
1107 /* EWALD ELECTROSTATICS */
1108
1109 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1110 ewrt = r11*ewtabscale;
1111 ewitab = ewrt;
1112 eweps = ewrt-ewitab;
1113 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1114 felec = qq11*rinv11*(rinvsq11-felec);
1115
1116 fscal = felec;
1117
1118 /* Calculate temporary vectorial force */
1119 tx = fscal*dx11;
1120 ty = fscal*dy11;
1121 tz = fscal*dz11;
1122
1123 /* Update vectorial force */
1124 fix1 += tx;
1125 fiy1 += ty;
1126 fiz1 += tz;
1127 f[j_coord_offset+DIM3*1+XX0] -= tx;
1128 f[j_coord_offset+DIM3*1+YY1] -= ty;
1129 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1130
1131 }
1132
1133 /**************************
1134 * CALCULATE INTERACTIONS *
1135 **************************/
1136
1137 if (rsq12<rcutoff2)
1138 {
1139
1140 r12 = rsq12*rinv12;
1141
1142 /* EWALD ELECTROSTATICS */
1143
1144 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1145 ewrt = r12*ewtabscale;
1146 ewitab = ewrt;
1147 eweps = ewrt-ewitab;
1148 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1149 felec = qq12*rinv12*(rinvsq12-felec);
1150
1151 fscal = felec;
1152
1153 /* Calculate temporary vectorial force */
1154 tx = fscal*dx12;
1155 ty = fscal*dy12;
1156 tz = fscal*dz12;
1157
1158 /* Update vectorial force */
1159 fix1 += tx;
1160 fiy1 += ty;
1161 fiz1 += tz;
1162 f[j_coord_offset+DIM3*2+XX0] -= tx;
1163 f[j_coord_offset+DIM3*2+YY1] -= ty;
1164 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1165
1166 }
1167
1168 /**************************
1169 * CALCULATE INTERACTIONS *
1170 **************************/
1171
1172 if (rsq20<rcutoff2)
1173 {
1174
1175 r20 = rsq20*rinv20;
1176
1177 /* EWALD ELECTROSTATICS */
1178
1179 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1180 ewrt = r20*ewtabscale;
1181 ewitab = ewrt;
1182 eweps = ewrt-ewitab;
1183 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1184 felec = qq20*rinv20*(rinvsq20-felec);
1185
1186 fscal = felec;
1187
1188 /* Calculate temporary vectorial force */
1189 tx = fscal*dx20;
1190 ty = fscal*dy20;
1191 tz = fscal*dz20;
1192
1193 /* Update vectorial force */
1194 fix2 += tx;
1195 fiy2 += ty;
1196 fiz2 += tz;
1197 f[j_coord_offset+DIM3*0+XX0] -= tx;
1198 f[j_coord_offset+DIM3*0+YY1] -= ty;
1199 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
1200
1201 }
1202
1203 /**************************
1204 * CALCULATE INTERACTIONS *
1205 **************************/
1206
1207 if (rsq21<rcutoff2)
1208 {
1209
1210 r21 = rsq21*rinv21;
1211
1212 /* EWALD ELECTROSTATICS */
1213
1214 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1215 ewrt = r21*ewtabscale;
1216 ewitab = ewrt;
1217 eweps = ewrt-ewitab;
1218 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1219 felec = qq21*rinv21*(rinvsq21-felec);
1220
1221 fscal = felec;
1222
1223 /* Calculate temporary vectorial force */
1224 tx = fscal*dx21;
1225 ty = fscal*dy21;
1226 tz = fscal*dz21;
1227
1228 /* Update vectorial force */
1229 fix2 += tx;
1230 fiy2 += ty;
1231 fiz2 += tz;
1232 f[j_coord_offset+DIM3*1+XX0] -= tx;
1233 f[j_coord_offset+DIM3*1+YY1] -= ty;
1234 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1235
1236 }
1237
1238 /**************************
1239 * CALCULATE INTERACTIONS *
1240 **************************/
1241
1242 if (rsq22<rcutoff2)
1243 {
1244
1245 r22 = rsq22*rinv22;
1246
1247 /* EWALD ELECTROSTATICS */
1248
1249 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1250 ewrt = r22*ewtabscale;
1251 ewitab = ewrt;
1252 eweps = ewrt-ewitab;
1253 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1254 felec = qq22*rinv22*(rinvsq22-felec);
1255
1256 fscal = felec;
1257
1258 /* Calculate temporary vectorial force */
1259 tx = fscal*dx22;
1260 ty = fscal*dy22;
1261 tz = fscal*dz22;
1262
1263 /* Update vectorial force */
1264 fix2 += tx;
1265 fiy2 += ty;
1266 fiz2 += tz;
1267 f[j_coord_offset+DIM3*2+XX0] -= tx;
1268 f[j_coord_offset+DIM3*2+YY1] -= ty;
1269 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1270
1271 }
1272
1273 /* Inner loop uses 318 flops */
1274 }
1275 /* End of innermost loop */
1276
1277 tx = ty = tz = 0;
1278 f[i_coord_offset+DIM3*0+XX0] += fix0;
1279 f[i_coord_offset+DIM3*0+YY1] += fiy0;
1280 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
1281 tx += fix0;
1282 ty += fiy0;
1283 tz += fiz0;
1284 f[i_coord_offset+DIM3*1+XX0] += fix1;
1285 f[i_coord_offset+DIM3*1+YY1] += fiy1;
1286 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
1287 tx += fix1;
1288 ty += fiy1;
1289 tz += fiz1;
1290 f[i_coord_offset+DIM3*2+XX0] += fix2;
1291 f[i_coord_offset+DIM3*2+YY1] += fiy2;
1292 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
1293 tx += fix2;
1294 ty += fiy2;
1295 tz += fiz2;
1296 fshift[i_shift_offset+XX0] += tx;
1297 fshift[i_shift_offset+YY1] += ty;
1298 fshift[i_shift_offset+ZZ2] += tz;
1299
1300 /* Increment number of inner iterations */
1301 inneriter += j_index_end - j_index_start;
1302
1303 /* Outer loop uses 30 flops */
1304 }
1305
1306 /* Increment number of outer iterations */
1307 outeriter += nri;
1308
1309 /* Update outer/inner flops */
1310
1311 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*30 + inneriter*318)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_F] += outeriter*30 + inneriter
*318
;
1312}