Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_sse4_1_single.c
Location:line 510, column 5
Description:Value stored to 'krf' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_sse4_1_single
54 * Electrostatics interaction: ReactionField
55 * VdW interaction: LennardJones
56 * Geometry: Particle-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
91 real *charge;
92 int nvdwtype;
93 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
94 int *vdwtype;
95 real *vdwparam;
96 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
97 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
98 __m128 rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
99 real rswitch_scalar,d_scalar;
100 __m128 dummy_mask,cutoff_mask;
101 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
102 __m128 one = _mm_set1_ps(1.0);
103 __m128 two = _mm_set1_ps(2.0);
104 x = xx[0];
105 f = ff[0];
106
107 nri = nlist->nri;
108 iinr = nlist->iinr;
109 jindex = nlist->jindex;
110 jjnr = nlist->jjnr;
111 shiftidx = nlist->shift;
112 gid = nlist->gid;
113 shiftvec = fr->shift_vec[0];
114 fshift = fr->fshift[0];
115 facel = _mm_set1_ps(fr->epsfac);
116 charge = mdatoms->chargeA;
117 krf = _mm_set1_ps(fr->ic->k_rf);
118 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
119 crf = _mm_set1_ps(fr->ic->c_rf);
120 nvdwtype = fr->ntype;
121 vdwparam = fr->nbfp;
122 vdwtype = mdatoms->typeA;
123
124 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
125 rcutoff_scalar = fr->rcoulomb;
126 rcutoff = _mm_set1_ps(rcutoff_scalar);
127 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
128
129 rswitch_scalar = fr->rvdw_switch;
130 rswitch = _mm_set1_ps(rswitch_scalar);
131 /* Setup switch parameters */
132 d_scalar = rcutoff_scalar-rswitch_scalar;
133 d = _mm_set1_ps(d_scalar);
134 swV3 = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
135 swV4 = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
136 swV5 = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
137 swF2 = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
138 swF3 = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
139 swF4 = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
140
141 /* Avoid stupid compiler warnings */
142 jnrA = jnrB = jnrC = jnrD = 0;
143 j_coord_offsetA = 0;
144 j_coord_offsetB = 0;
145 j_coord_offsetC = 0;
146 j_coord_offsetD = 0;
147
148 outeriter = 0;
149 inneriter = 0;
150
151 for(iidx=0;iidx<4*DIM3;iidx++)
152 {
153 scratch[iidx] = 0.0;
154 }
155
156 /* Start outer loop over neighborlists */
157 for(iidx=0; iidx<nri; iidx++)
158 {
159 /* Load shift vector for this list */
160 i_shift_offset = DIM3*shiftidx[iidx];
161
162 /* Load limits for loop over neighbors */
163 j_index_start = jindex[iidx];
164 j_index_end = jindex[iidx+1];
165
166 /* Get outer coordinate index */
167 inr = iinr[iidx];
168 i_coord_offset = DIM3*inr;
169
170 /* Load i particle coords and add shift vector */
171 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
172
173 fix0 = _mm_setzero_ps();
174 fiy0 = _mm_setzero_ps();
175 fiz0 = _mm_setzero_ps();
176
177 /* Load parameters for i particles */
178 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
179 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
180
181 /* Reset potential sums */
182 velecsum = _mm_setzero_ps();
183 vvdwsum = _mm_setzero_ps();
184
185 /* Start inner kernel loop */
186 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
187 {
188
189 /* Get j neighbor index, and coordinate index */
190 jnrA = jjnr[jidx];
191 jnrB = jjnr[jidx+1];
192 jnrC = jjnr[jidx+2];
193 jnrD = jjnr[jidx+3];
194 j_coord_offsetA = DIM3*jnrA;
195 j_coord_offsetB = DIM3*jnrB;
196 j_coord_offsetC = DIM3*jnrC;
197 j_coord_offsetD = DIM3*jnrD;
198
199 /* load j atom coordinates */
200 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
201 x+j_coord_offsetC,x+j_coord_offsetD,
202 &jx0,&jy0,&jz0);
203
204 /* Calculate displacement vector */
205 dx00 = _mm_sub_ps(ix0,jx0);
206 dy00 = _mm_sub_ps(iy0,jy0);
207 dz00 = _mm_sub_ps(iz0,jz0);
208
209 /* Calculate squared distance and things based on it */
210 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
211
212 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
213
214 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
215
216 /* Load parameters for j particles */
217 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
218 charge+jnrC+0,charge+jnrD+0);
219 vdwjidx0A = 2*vdwtype[jnrA+0];
220 vdwjidx0B = 2*vdwtype[jnrB+0];
221 vdwjidx0C = 2*vdwtype[jnrC+0];
222 vdwjidx0D = 2*vdwtype[jnrD+0];
223
224 /**************************
225 * CALCULATE INTERACTIONS *
226 **************************/
227
228 if (gmx_mm_any_lt(rsq00,rcutoff2))
229 {
230
231 r00 = _mm_mul_ps(rsq00,rinv00);
232
233 /* Compute parameters for interactions between i and j atoms */
234 qq00 = _mm_mul_ps(iq0,jq0);
235 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
236 vdwparam+vdwioffset0+vdwjidx0B,
237 vdwparam+vdwioffset0+vdwjidx0C,
238 vdwparam+vdwioffset0+vdwjidx0D,
239 &c6_00,&c12_00);
240
241 /* REACTION-FIELD ELECTROSTATICS */
242 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
243 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
244
245 /* LENNARD-JONES DISPERSION/REPULSION */
246
247 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
248 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
249 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
250 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
251 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
252
253 d = _mm_sub_ps(r00,rswitch);
254 d = _mm_max_ps(d,_mm_setzero_ps());
255 d2 = _mm_mul_ps(d,d);
256 sw = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
257
258 dsw = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
259
260 /* Evaluate switch function */
261 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
262 fvdw = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
263 vvdw = _mm_mul_ps(vvdw,sw);
264 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
265
266 /* Update potential sum for this i atom from the interaction with this j atom. */
267 velec = _mm_and_ps(velec,cutoff_mask);
268 velecsum = _mm_add_ps(velecsum,velec);
269 vvdw = _mm_and_ps(vvdw,cutoff_mask);
270 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
271
272 fscal = _mm_add_ps(felec,fvdw);
273
274 fscal = _mm_and_ps(fscal,cutoff_mask);
275
276 /* Calculate temporary vectorial force */
277 tx = _mm_mul_ps(fscal,dx00);
278 ty = _mm_mul_ps(fscal,dy00);
279 tz = _mm_mul_ps(fscal,dz00);
280
281 /* Update vectorial force */
282 fix0 = _mm_add_ps(fix0,tx);
283 fiy0 = _mm_add_ps(fiy0,ty);
284 fiz0 = _mm_add_ps(fiz0,tz);
285
286 fjptrA = f+j_coord_offsetA;
287 fjptrB = f+j_coord_offsetB;
288 fjptrC = f+j_coord_offsetC;
289 fjptrD = f+j_coord_offsetD;
290 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
291
292 }
293
294 /* Inner loop uses 70 flops */
295 }
296
297 if(jidx<j_index_end)
298 {
299
300 /* Get j neighbor index, and coordinate index */
301 jnrlistA = jjnr[jidx];
302 jnrlistB = jjnr[jidx+1];
303 jnrlistC = jjnr[jidx+2];
304 jnrlistD = jjnr[jidx+3];
305 /* Sign of each element will be negative for non-real atoms.
306 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
307 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
308 */
309 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
310 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
311 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
312 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
313 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
314 j_coord_offsetA = DIM3*jnrA;
315 j_coord_offsetB = DIM3*jnrB;
316 j_coord_offsetC = DIM3*jnrC;
317 j_coord_offsetD = DIM3*jnrD;
318
319 /* load j atom coordinates */
320 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
321 x+j_coord_offsetC,x+j_coord_offsetD,
322 &jx0,&jy0,&jz0);
323
324 /* Calculate displacement vector */
325 dx00 = _mm_sub_ps(ix0,jx0);
326 dy00 = _mm_sub_ps(iy0,jy0);
327 dz00 = _mm_sub_ps(iz0,jz0);
328
329 /* Calculate squared distance and things based on it */
330 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
331
332 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
333
334 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
335
336 /* Load parameters for j particles */
337 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
338 charge+jnrC+0,charge+jnrD+0);
339 vdwjidx0A = 2*vdwtype[jnrA+0];
340 vdwjidx0B = 2*vdwtype[jnrB+0];
341 vdwjidx0C = 2*vdwtype[jnrC+0];
342 vdwjidx0D = 2*vdwtype[jnrD+0];
343
344 /**************************
345 * CALCULATE INTERACTIONS *
346 **************************/
347
348 if (gmx_mm_any_lt(rsq00,rcutoff2))
349 {
350
351 r00 = _mm_mul_ps(rsq00,rinv00);
352 r00 = _mm_andnot_ps(dummy_mask,r00);
353
354 /* Compute parameters for interactions between i and j atoms */
355 qq00 = _mm_mul_ps(iq0,jq0);
356 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
357 vdwparam+vdwioffset0+vdwjidx0B,
358 vdwparam+vdwioffset0+vdwjidx0C,
359 vdwparam+vdwioffset0+vdwjidx0D,
360 &c6_00,&c12_00);
361
362 /* REACTION-FIELD ELECTROSTATICS */
363 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
364 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
365
366 /* LENNARD-JONES DISPERSION/REPULSION */
367
368 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
369 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
370 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
371 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
372 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
373
374 d = _mm_sub_ps(r00,rswitch);
375 d = _mm_max_ps(d,_mm_setzero_ps());
376 d2 = _mm_mul_ps(d,d);
377 sw = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
378
379 dsw = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
380
381 /* Evaluate switch function */
382 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
383 fvdw = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
384 vvdw = _mm_mul_ps(vvdw,sw);
385 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
386
387 /* Update potential sum for this i atom from the interaction with this j atom. */
388 velec = _mm_and_ps(velec,cutoff_mask);
389 velec = _mm_andnot_ps(dummy_mask,velec);
390 velecsum = _mm_add_ps(velecsum,velec);
391 vvdw = _mm_and_ps(vvdw,cutoff_mask);
392 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
393 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
394
395 fscal = _mm_add_ps(felec,fvdw);
396
397 fscal = _mm_and_ps(fscal,cutoff_mask);
398
399 fscal = _mm_andnot_ps(dummy_mask,fscal);
400
401 /* Calculate temporary vectorial force */
402 tx = _mm_mul_ps(fscal,dx00);
403 ty = _mm_mul_ps(fscal,dy00);
404 tz = _mm_mul_ps(fscal,dz00);
405
406 /* Update vectorial force */
407 fix0 = _mm_add_ps(fix0,tx);
408 fiy0 = _mm_add_ps(fiy0,ty);
409 fiz0 = _mm_add_ps(fiz0,tz);
410
411 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
412 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
413 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
414 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
415 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
416
417 }
418
419 /* Inner loop uses 71 flops */
420 }
421
422 /* End of innermost loop */
423
424 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
425 f+i_coord_offset,fshift+i_shift_offset);
426
427 ggid = gid[iidx];
428 /* Update potential energies */
429 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
430 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
431
432 /* Increment number of inner iterations */
433 inneriter += j_index_end - j_index_start;
434
435 /* Outer loop uses 9 flops */
436 }
437
438 /* Increment number of outer iterations */
439 outeriter += nri;
440
441 /* Update outer/inner flops */
442
443 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*9 + inneriter*71)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_VF] += outeriter*9 + inneriter
*71
;
444}
445/*
446 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_sse4_1_single
447 * Electrostatics interaction: ReactionField
448 * VdW interaction: LennardJones
449 * Geometry: Particle-Particle
450 * Calculate force/pot: Force
451 */
452void
453nb_kernel_ElecRFCut_VdwLJSw_GeomP1P1_F_sse4_1_single
454 (t_nblist * gmx_restrict nlist,
455 rvec * gmx_restrict xx,
456 rvec * gmx_restrict ff,
457 t_forcerec * gmx_restrict fr,
458 t_mdatoms * gmx_restrict mdatoms,
459 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
460 t_nrnb * gmx_restrict nrnb)
461{
462 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
463 * just 0 for non-waters.
464 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
465 * jnr indices corresponding to data put in the four positions in the SIMD register.
466 */
467 int i_shift_offset,i_coord_offset,outeriter,inneriter;
468 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
469 int jnrA,jnrB,jnrC,jnrD;
470 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
471 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
472 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
473 real rcutoff_scalar;
474 real *shiftvec,*fshift,*x,*f;
475 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
476 real scratch[4*DIM3];
477 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
478 int vdwioffset0;
479 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
480 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
481 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
482 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
483 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
484 real *charge;
485 int nvdwtype;
486 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
487 int *vdwtype;
488 real *vdwparam;
489 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
490 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
491 __m128 rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
492 real rswitch_scalar,d_scalar;
493 __m128 dummy_mask,cutoff_mask;
494 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
495 __m128 one = _mm_set1_ps(1.0);
496 __m128 two = _mm_set1_ps(2.0);
497 x = xx[0];
498 f = ff[0];
499
500 nri = nlist->nri;
501 iinr = nlist->iinr;
502 jindex = nlist->jindex;
503 jjnr = nlist->jjnr;
504 shiftidx = nlist->shift;
505 gid = nlist->gid;
506 shiftvec = fr->shift_vec[0];
507 fshift = fr->fshift[0];
508 facel = _mm_set1_ps(fr->epsfac);
509 charge = mdatoms->chargeA;
510 krf = _mm_set1_ps(fr->ic->k_rf);
Value stored to 'krf' is never read
511 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
512 crf = _mm_set1_ps(fr->ic->c_rf);
513 nvdwtype = fr->ntype;
514 vdwparam = fr->nbfp;
515 vdwtype = mdatoms->typeA;
516
517 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
518 rcutoff_scalar = fr->rcoulomb;
519 rcutoff = _mm_set1_ps(rcutoff_scalar);
520 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
521
522 rswitch_scalar = fr->rvdw_switch;
523 rswitch = _mm_set1_ps(rswitch_scalar);
524 /* Setup switch parameters */
525 d_scalar = rcutoff_scalar-rswitch_scalar;
526 d = _mm_set1_ps(d_scalar);
527 swV3 = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
528 swV4 = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
529 swV5 = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
530 swF2 = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
531 swF3 = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
532 swF4 = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
533
534 /* Avoid stupid compiler warnings */
535 jnrA = jnrB = jnrC = jnrD = 0;
536 j_coord_offsetA = 0;
537 j_coord_offsetB = 0;
538 j_coord_offsetC = 0;
539 j_coord_offsetD = 0;
540
541 outeriter = 0;
542 inneriter = 0;
543
544 for(iidx=0;iidx<4*DIM3;iidx++)
545 {
546 scratch[iidx] = 0.0;
547 }
548
549 /* Start outer loop over neighborlists */
550 for(iidx=0; iidx<nri; iidx++)
551 {
552 /* Load shift vector for this list */
553 i_shift_offset = DIM3*shiftidx[iidx];
554
555 /* Load limits for loop over neighbors */
556 j_index_start = jindex[iidx];
557 j_index_end = jindex[iidx+1];
558
559 /* Get outer coordinate index */
560 inr = iinr[iidx];
561 i_coord_offset = DIM3*inr;
562
563 /* Load i particle coords and add shift vector */
564 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
565
566 fix0 = _mm_setzero_ps();
567 fiy0 = _mm_setzero_ps();
568 fiz0 = _mm_setzero_ps();
569
570 /* Load parameters for i particles */
571 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
572 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
573
574 /* Start inner kernel loop */
575 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
576 {
577
578 /* Get j neighbor index, and coordinate index */
579 jnrA = jjnr[jidx];
580 jnrB = jjnr[jidx+1];
581 jnrC = jjnr[jidx+2];
582 jnrD = jjnr[jidx+3];
583 j_coord_offsetA = DIM3*jnrA;
584 j_coord_offsetB = DIM3*jnrB;
585 j_coord_offsetC = DIM3*jnrC;
586 j_coord_offsetD = DIM3*jnrD;
587
588 /* load j atom coordinates */
589 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
590 x+j_coord_offsetC,x+j_coord_offsetD,
591 &jx0,&jy0,&jz0);
592
593 /* Calculate displacement vector */
594 dx00 = _mm_sub_ps(ix0,jx0);
595 dy00 = _mm_sub_ps(iy0,jy0);
596 dz00 = _mm_sub_ps(iz0,jz0);
597
598 /* Calculate squared distance and things based on it */
599 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
600
601 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
602
603 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
604
605 /* Load parameters for j particles */
606 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
607 charge+jnrC+0,charge+jnrD+0);
608 vdwjidx0A = 2*vdwtype[jnrA+0];
609 vdwjidx0B = 2*vdwtype[jnrB+0];
610 vdwjidx0C = 2*vdwtype[jnrC+0];
611 vdwjidx0D = 2*vdwtype[jnrD+0];
612
613 /**************************
614 * CALCULATE INTERACTIONS *
615 **************************/
616
617 if (gmx_mm_any_lt(rsq00,rcutoff2))
618 {
619
620 r00 = _mm_mul_ps(rsq00,rinv00);
621
622 /* Compute parameters for interactions between i and j atoms */
623 qq00 = _mm_mul_ps(iq0,jq0);
624 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
625 vdwparam+vdwioffset0+vdwjidx0B,
626 vdwparam+vdwioffset0+vdwjidx0C,
627 vdwparam+vdwioffset0+vdwjidx0D,
628 &c6_00,&c12_00);
629
630 /* REACTION-FIELD ELECTROSTATICS */
631 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
632
633 /* LENNARD-JONES DISPERSION/REPULSION */
634
635 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
636 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
637 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
638 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
639 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
640
641 d = _mm_sub_ps(r00,rswitch);
642 d = _mm_max_ps(d,_mm_setzero_ps());
643 d2 = _mm_mul_ps(d,d);
644 sw = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
645
646 dsw = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
647
648 /* Evaluate switch function */
649 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
650 fvdw = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
651 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
652
653 fscal = _mm_add_ps(felec,fvdw);
654
655 fscal = _mm_and_ps(fscal,cutoff_mask);
656
657 /* Calculate temporary vectorial force */
658 tx = _mm_mul_ps(fscal,dx00);
659 ty = _mm_mul_ps(fscal,dy00);
660 tz = _mm_mul_ps(fscal,dz00);
661
662 /* Update vectorial force */
663 fix0 = _mm_add_ps(fix0,tx);
664 fiy0 = _mm_add_ps(fiy0,ty);
665 fiz0 = _mm_add_ps(fiz0,tz);
666
667 fjptrA = f+j_coord_offsetA;
668 fjptrB = f+j_coord_offsetB;
669 fjptrC = f+j_coord_offsetC;
670 fjptrD = f+j_coord_offsetD;
671 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
672
673 }
674
675 /* Inner loop uses 61 flops */
676 }
677
678 if(jidx<j_index_end)
679 {
680
681 /* Get j neighbor index, and coordinate index */
682 jnrlistA = jjnr[jidx];
683 jnrlistB = jjnr[jidx+1];
684 jnrlistC = jjnr[jidx+2];
685 jnrlistD = jjnr[jidx+3];
686 /* Sign of each element will be negative for non-real atoms.
687 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
688 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
689 */
690 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
691 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
692 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
693 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
694 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
695 j_coord_offsetA = DIM3*jnrA;
696 j_coord_offsetB = DIM3*jnrB;
697 j_coord_offsetC = DIM3*jnrC;
698 j_coord_offsetD = DIM3*jnrD;
699
700 /* load j atom coordinates */
701 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
702 x+j_coord_offsetC,x+j_coord_offsetD,
703 &jx0,&jy0,&jz0);
704
705 /* Calculate displacement vector */
706 dx00 = _mm_sub_ps(ix0,jx0);
707 dy00 = _mm_sub_ps(iy0,jy0);
708 dz00 = _mm_sub_ps(iz0,jz0);
709
710 /* Calculate squared distance and things based on it */
711 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
712
713 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
714
715 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
716
717 /* Load parameters for j particles */
718 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
719 charge+jnrC+0,charge+jnrD+0);
720 vdwjidx0A = 2*vdwtype[jnrA+0];
721 vdwjidx0B = 2*vdwtype[jnrB+0];
722 vdwjidx0C = 2*vdwtype[jnrC+0];
723 vdwjidx0D = 2*vdwtype[jnrD+0];
724
725 /**************************
726 * CALCULATE INTERACTIONS *
727 **************************/
728
729 if (gmx_mm_any_lt(rsq00,rcutoff2))
730 {
731
732 r00 = _mm_mul_ps(rsq00,rinv00);
733 r00 = _mm_andnot_ps(dummy_mask,r00);
734
735 /* Compute parameters for interactions between i and j atoms */
736 qq00 = _mm_mul_ps(iq0,jq0);
737 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
738 vdwparam+vdwioffset0+vdwjidx0B,
739 vdwparam+vdwioffset0+vdwjidx0C,
740 vdwparam+vdwioffset0+vdwjidx0D,
741 &c6_00,&c12_00);
742
743 /* REACTION-FIELD ELECTROSTATICS */
744 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
745
746 /* LENNARD-JONES DISPERSION/REPULSION */
747
748 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
749 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
750 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
751 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
752 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
753
754 d = _mm_sub_ps(r00,rswitch);
755 d = _mm_max_ps(d,_mm_setzero_ps());
756 d2 = _mm_mul_ps(d,d);
757 sw = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
758
759 dsw = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
760
761 /* Evaluate switch function */
762 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
763 fvdw = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
764 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
765
766 fscal = _mm_add_ps(felec,fvdw);
767
768 fscal = _mm_and_ps(fscal,cutoff_mask);
769
770 fscal = _mm_andnot_ps(dummy_mask,fscal);
771
772 /* Calculate temporary vectorial force */
773 tx = _mm_mul_ps(fscal,dx00);
774 ty = _mm_mul_ps(fscal,dy00);
775 tz = _mm_mul_ps(fscal,dz00);
776
777 /* Update vectorial force */
778 fix0 = _mm_add_ps(fix0,tx);
779 fiy0 = _mm_add_ps(fiy0,ty);
780 fiz0 = _mm_add_ps(fiz0,tz);
781
782 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
783 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
784 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
785 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
786 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
787
788 }
789
790 /* Inner loop uses 62 flops */
791 }
792
793 /* End of innermost loop */
794
795 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
796 f+i_coord_offset,fshift+i_shift_offset);
797
798 /* Increment number of inner iterations */
799 inneriter += j_index_end - j_index_start;
800
801 /* Outer loop uses 7 flops */
802 }
803
804 /* Increment number of outer iterations */
805 outeriter += nri;
806
807 /* Update outer/inner flops */
808
809 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*7 + inneriter*62)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_F] += outeriter*7 + inneriter
*62
;
810}