Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecRF_VdwLJ_GeomW4P1_c.c
Location:line 443, column 5
Description:Value stored to 'crf' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwLJ_GeomW4P1_VF_c
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: LennardJones
53 * Geometry: Water4-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecRF_VdwLJ_GeomW4P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwioffset3;
79 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80 int vdwjidx0;
81 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
83 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
84 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
85 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
86 real velec,felec,velecsum,facel,crf,krf,krf2;
87 real *charge;
88 int nvdwtype;
89 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
90 int *vdwtype;
91 real *vdwparam;
92
93 x = xx[0];
94 f = ff[0];
95
96 nri = nlist->nri;
97 iinr = nlist->iinr;
98 jindex = nlist->jindex;
99 jjnr = nlist->jjnr;
100 shiftidx = nlist->shift;
101 gid = nlist->gid;
102 shiftvec = fr->shift_vec[0];
103 fshift = fr->fshift[0];
104 facel = fr->epsfac;
105 charge = mdatoms->chargeA;
106 krf = fr->ic->k_rf;
107 krf2 = krf*2.0;
108 crf = fr->ic->c_rf;
109 nvdwtype = fr->ntype;
110 vdwparam = fr->nbfp;
111 vdwtype = mdatoms->typeA;
112
113 /* Setup water-specific parameters */
114 inr = nlist->iinr[0];
115 iq1 = facel*charge[inr+1];
116 iq2 = facel*charge[inr+2];
117 iq3 = facel*charge[inr+3];
118 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
119
120 outeriter = 0;
121 inneriter = 0;
122
123 /* Start outer loop over neighborlists */
124 for(iidx=0; iidx<nri; iidx++)
125 {
126 /* Load shift vector for this list */
127 i_shift_offset = DIM3*shiftidx[iidx];
128 shX = shiftvec[i_shift_offset+XX0];
129 shY = shiftvec[i_shift_offset+YY1];
130 shZ = shiftvec[i_shift_offset+ZZ2];
131
132 /* Load limits for loop over neighbors */
133 j_index_start = jindex[iidx];
134 j_index_end = jindex[iidx+1];
135
136 /* Get outer coordinate index */
137 inr = iinr[iidx];
138 i_coord_offset = DIM3*inr;
139
140 /* Load i particle coords and add shift vector */
141 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
142 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
143 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
144 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
145 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
146 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
147 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
148 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
149 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
150 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
151 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
152 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
153
154 fix0 = 0.0;
155 fiy0 = 0.0;
156 fiz0 = 0.0;
157 fix1 = 0.0;
158 fiy1 = 0.0;
159 fiz1 = 0.0;
160 fix2 = 0.0;
161 fiy2 = 0.0;
162 fiz2 = 0.0;
163 fix3 = 0.0;
164 fiy3 = 0.0;
165 fiz3 = 0.0;
166
167 /* Reset potential sums */
168 velecsum = 0.0;
169 vvdwsum = 0.0;
170
171 /* Start inner kernel loop */
172 for(jidx=j_index_start; jidx<j_index_end; jidx++)
173 {
174 /* Get j neighbor index, and coordinate index */
175 jnr = jjnr[jidx];
176 j_coord_offset = DIM3*jnr;
177
178 /* load j atom coordinates */
179 jx0 = x[j_coord_offset+DIM3*0+XX0];
180 jy0 = x[j_coord_offset+DIM3*0+YY1];
181 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
182
183 /* Calculate displacement vector */
184 dx00 = ix0 - jx0;
185 dy00 = iy0 - jy0;
186 dz00 = iz0 - jz0;
187 dx10 = ix1 - jx0;
188 dy10 = iy1 - jy0;
189 dz10 = iz1 - jz0;
190 dx20 = ix2 - jx0;
191 dy20 = iy2 - jy0;
192 dz20 = iz2 - jz0;
193 dx30 = ix3 - jx0;
194 dy30 = iy3 - jy0;
195 dz30 = iz3 - jz0;
196
197 /* Calculate squared distance and things based on it */
198 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
199 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
200 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
201 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
202
203 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
204 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
205 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
206
207 rinvsq00 = 1.0/rsq00;
208 rinvsq10 = rinv10*rinv10;
209 rinvsq20 = rinv20*rinv20;
210 rinvsq30 = rinv30*rinv30;
211
212 /* Load parameters for j particles */
213 jq0 = charge[jnr+0];
214 vdwjidx0 = 2*vdwtype[jnr+0];
215
216 /**************************
217 * CALCULATE INTERACTIONS *
218 **************************/
219
220 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
221 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
222
223 /* LENNARD-JONES DISPERSION/REPULSION */
224
225 rinvsix = rinvsq00*rinvsq00*rinvsq00;
226 vvdw6 = c6_00*rinvsix;
227 vvdw12 = c12_00*rinvsix*rinvsix;
228 vvdw = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
229 fvdw = (vvdw12-vvdw6)*rinvsq00;
230
231 /* Update potential sums from outer loop */
232 vvdwsum += vvdw;
233
234 fscal = fvdw;
235
236 /* Calculate temporary vectorial force */
237 tx = fscal*dx00;
238 ty = fscal*dy00;
239 tz = fscal*dz00;
240
241 /* Update vectorial force */
242 fix0 += tx;
243 fiy0 += ty;
244 fiz0 += tz;
245 f[j_coord_offset+DIM3*0+XX0] -= tx;
246 f[j_coord_offset+DIM3*0+YY1] -= ty;
247 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
248
249 /**************************
250 * CALCULATE INTERACTIONS *
251 **************************/
252
253 qq10 = iq1*jq0;
254
255 /* REACTION-FIELD ELECTROSTATICS */
256 velec = qq10*(rinv10+krf*rsq10-crf);
257 felec = qq10*(rinv10*rinvsq10-krf2);
258
259 /* Update potential sums from outer loop */
260 velecsum += velec;
261
262 fscal = felec;
263
264 /* Calculate temporary vectorial force */
265 tx = fscal*dx10;
266 ty = fscal*dy10;
267 tz = fscal*dz10;
268
269 /* Update vectorial force */
270 fix1 += tx;
271 fiy1 += ty;
272 fiz1 += tz;
273 f[j_coord_offset+DIM3*0+XX0] -= tx;
274 f[j_coord_offset+DIM3*0+YY1] -= ty;
275 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
276
277 /**************************
278 * CALCULATE INTERACTIONS *
279 **************************/
280
281 qq20 = iq2*jq0;
282
283 /* REACTION-FIELD ELECTROSTATICS */
284 velec = qq20*(rinv20+krf*rsq20-crf);
285 felec = qq20*(rinv20*rinvsq20-krf2);
286
287 /* Update potential sums from outer loop */
288 velecsum += velec;
289
290 fscal = felec;
291
292 /* Calculate temporary vectorial force */
293 tx = fscal*dx20;
294 ty = fscal*dy20;
295 tz = fscal*dz20;
296
297 /* Update vectorial force */
298 fix2 += tx;
299 fiy2 += ty;
300 fiz2 += tz;
301 f[j_coord_offset+DIM3*0+XX0] -= tx;
302 f[j_coord_offset+DIM3*0+YY1] -= ty;
303 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
304
305 /**************************
306 * CALCULATE INTERACTIONS *
307 **************************/
308
309 qq30 = iq3*jq0;
310
311 /* REACTION-FIELD ELECTROSTATICS */
312 velec = qq30*(rinv30+krf*rsq30-crf);
313 felec = qq30*(rinv30*rinvsq30-krf2);
314
315 /* Update potential sums from outer loop */
316 velecsum += velec;
317
318 fscal = felec;
319
320 /* Calculate temporary vectorial force */
321 tx = fscal*dx30;
322 ty = fscal*dy30;
323 tz = fscal*dz30;
324
325 /* Update vectorial force */
326 fix3 += tx;
327 fiy3 += ty;
328 fiz3 += tz;
329 f[j_coord_offset+DIM3*0+XX0] -= tx;
330 f[j_coord_offset+DIM3*0+YY1] -= ty;
331 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
332
333 /* Inner loop uses 128 flops */
334 }
335 /* End of innermost loop */
336
337 tx = ty = tz = 0;
338 f[i_coord_offset+DIM3*0+XX0] += fix0;
339 f[i_coord_offset+DIM3*0+YY1] += fiy0;
340 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
341 tx += fix0;
342 ty += fiy0;
343 tz += fiz0;
344 f[i_coord_offset+DIM3*1+XX0] += fix1;
345 f[i_coord_offset+DIM3*1+YY1] += fiy1;
346 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
347 tx += fix1;
348 ty += fiy1;
349 tz += fiz1;
350 f[i_coord_offset+DIM3*2+XX0] += fix2;
351 f[i_coord_offset+DIM3*2+YY1] += fiy2;
352 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
353 tx += fix2;
354 ty += fiy2;
355 tz += fiz2;
356 f[i_coord_offset+DIM3*3+XX0] += fix3;
357 f[i_coord_offset+DIM3*3+YY1] += fiy3;
358 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
359 tx += fix3;
360 ty += fiy3;
361 tz += fiz3;
362 fshift[i_shift_offset+XX0] += tx;
363 fshift[i_shift_offset+YY1] += ty;
364 fshift[i_shift_offset+ZZ2] += tz;
365
366 ggid = gid[iidx];
367 /* Update potential energies */
368 kernel_data->energygrp_elec[ggid] += velecsum;
369 kernel_data->energygrp_vdw[ggid] += vvdwsum;
370
371 /* Increment number of inner iterations */
372 inneriter += j_index_end - j_index_start;
373
374 /* Outer loop uses 41 flops */
375 }
376
377 /* Increment number of outer iterations */
378 outeriter += nri;
379
380 /* Update outer/inner flops */
381
382 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*41 + inneriter*128)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_VF] += outeriter*41 + inneriter
*128
;
383}
384/*
385 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwLJ_GeomW4P1_F_c
386 * Electrostatics interaction: ReactionField
387 * VdW interaction: LennardJones
388 * Geometry: Water4-Particle
389 * Calculate force/pot: Force
390 */
391void
392nb_kernel_ElecRF_VdwLJ_GeomW4P1_F_c
393 (t_nblist * gmx_restrict__restrict nlist,
394 rvec * gmx_restrict__restrict xx,
395 rvec * gmx_restrict__restrict ff,
396 t_forcerec * gmx_restrict__restrict fr,
397 t_mdatoms * gmx_restrict__restrict mdatoms,
398 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
399 t_nrnb * gmx_restrict__restrict nrnb)
400{
401 int i_shift_offset,i_coord_offset,j_coord_offset;
402 int j_index_start,j_index_end;
403 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
404 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
405 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
406 real *shiftvec,*fshift,*x,*f;
407 int vdwioffset0;
408 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
409 int vdwioffset1;
410 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
411 int vdwioffset2;
412 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
413 int vdwioffset3;
414 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
415 int vdwjidx0;
416 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
417 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
418 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
419 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
420 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
421 real velec,felec,velecsum,facel,crf,krf,krf2;
422 real *charge;
423 int nvdwtype;
424 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
425 int *vdwtype;
426 real *vdwparam;
427
428 x = xx[0];
429 f = ff[0];
430
431 nri = nlist->nri;
432 iinr = nlist->iinr;
433 jindex = nlist->jindex;
434 jjnr = nlist->jjnr;
435 shiftidx = nlist->shift;
436 gid = nlist->gid;
437 shiftvec = fr->shift_vec[0];
438 fshift = fr->fshift[0];
439 facel = fr->epsfac;
440 charge = mdatoms->chargeA;
441 krf = fr->ic->k_rf;
442 krf2 = krf*2.0;
443 crf = fr->ic->c_rf;
Value stored to 'crf' is never read
444 nvdwtype = fr->ntype;
445 vdwparam = fr->nbfp;
446 vdwtype = mdatoms->typeA;
447
448 /* Setup water-specific parameters */
449 inr = nlist->iinr[0];
450 iq1 = facel*charge[inr+1];
451 iq2 = facel*charge[inr+2];
452 iq3 = facel*charge[inr+3];
453 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
454
455 outeriter = 0;
456 inneriter = 0;
457
458 /* Start outer loop over neighborlists */
459 for(iidx=0; iidx<nri; iidx++)
460 {
461 /* Load shift vector for this list */
462 i_shift_offset = DIM3*shiftidx[iidx];
463 shX = shiftvec[i_shift_offset+XX0];
464 shY = shiftvec[i_shift_offset+YY1];
465 shZ = shiftvec[i_shift_offset+ZZ2];
466
467 /* Load limits for loop over neighbors */
468 j_index_start = jindex[iidx];
469 j_index_end = jindex[iidx+1];
470
471 /* Get outer coordinate index */
472 inr = iinr[iidx];
473 i_coord_offset = DIM3*inr;
474
475 /* Load i particle coords and add shift vector */
476 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
477 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
478 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
479 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
480 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
481 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
482 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
483 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
484 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
485 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
486 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
487 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
488
489 fix0 = 0.0;
490 fiy0 = 0.0;
491 fiz0 = 0.0;
492 fix1 = 0.0;
493 fiy1 = 0.0;
494 fiz1 = 0.0;
495 fix2 = 0.0;
496 fiy2 = 0.0;
497 fiz2 = 0.0;
498 fix3 = 0.0;
499 fiy3 = 0.0;
500 fiz3 = 0.0;
501
502 /* Start inner kernel loop */
503 for(jidx=j_index_start; jidx<j_index_end; jidx++)
504 {
505 /* Get j neighbor index, and coordinate index */
506 jnr = jjnr[jidx];
507 j_coord_offset = DIM3*jnr;
508
509 /* load j atom coordinates */
510 jx0 = x[j_coord_offset+DIM3*0+XX0];
511 jy0 = x[j_coord_offset+DIM3*0+YY1];
512 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
513
514 /* Calculate displacement vector */
515 dx00 = ix0 - jx0;
516 dy00 = iy0 - jy0;
517 dz00 = iz0 - jz0;
518 dx10 = ix1 - jx0;
519 dy10 = iy1 - jy0;
520 dz10 = iz1 - jz0;
521 dx20 = ix2 - jx0;
522 dy20 = iy2 - jy0;
523 dz20 = iz2 - jz0;
524 dx30 = ix3 - jx0;
525 dy30 = iy3 - jy0;
526 dz30 = iz3 - jz0;
527
528 /* Calculate squared distance and things based on it */
529 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
530 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
531 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
532 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
533
534 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
535 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
536 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
537
538 rinvsq00 = 1.0/rsq00;
539 rinvsq10 = rinv10*rinv10;
540 rinvsq20 = rinv20*rinv20;
541 rinvsq30 = rinv30*rinv30;
542
543 /* Load parameters for j particles */
544 jq0 = charge[jnr+0];
545 vdwjidx0 = 2*vdwtype[jnr+0];
546
547 /**************************
548 * CALCULATE INTERACTIONS *
549 **************************/
550
551 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
552 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
553
554 /* LENNARD-JONES DISPERSION/REPULSION */
555
556 rinvsix = rinvsq00*rinvsq00*rinvsq00;
557 fvdw = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
558
559 fscal = fvdw;
560
561 /* Calculate temporary vectorial force */
562 tx = fscal*dx00;
563 ty = fscal*dy00;
564 tz = fscal*dz00;
565
566 /* Update vectorial force */
567 fix0 += tx;
568 fiy0 += ty;
569 fiz0 += tz;
570 f[j_coord_offset+DIM3*0+XX0] -= tx;
571 f[j_coord_offset+DIM3*0+YY1] -= ty;
572 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
573
574 /**************************
575 * CALCULATE INTERACTIONS *
576 **************************/
577
578 qq10 = iq1*jq0;
579
580 /* REACTION-FIELD ELECTROSTATICS */
581 felec = qq10*(rinv10*rinvsq10-krf2);
582
583 fscal = felec;
584
585 /* Calculate temporary vectorial force */
586 tx = fscal*dx10;
587 ty = fscal*dy10;
588 tz = fscal*dz10;
589
590 /* Update vectorial force */
591 fix1 += tx;
592 fiy1 += ty;
593 fiz1 += tz;
594 f[j_coord_offset+DIM3*0+XX0] -= tx;
595 f[j_coord_offset+DIM3*0+YY1] -= ty;
596 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
597
598 /**************************
599 * CALCULATE INTERACTIONS *
600 **************************/
601
602 qq20 = iq2*jq0;
603
604 /* REACTION-FIELD ELECTROSTATICS */
605 felec = qq20*(rinv20*rinvsq20-krf2);
606
607 fscal = felec;
608
609 /* Calculate temporary vectorial force */
610 tx = fscal*dx20;
611 ty = fscal*dy20;
612 tz = fscal*dz20;
613
614 /* Update vectorial force */
615 fix2 += tx;
616 fiy2 += ty;
617 fiz2 += tz;
618 f[j_coord_offset+DIM3*0+XX0] -= tx;
619 f[j_coord_offset+DIM3*0+YY1] -= ty;
620 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
621
622 /**************************
623 * CALCULATE INTERACTIONS *
624 **************************/
625
626 qq30 = iq3*jq0;
627
628 /* REACTION-FIELD ELECTROSTATICS */
629 felec = qq30*(rinv30*rinvsq30-krf2);
630
631 fscal = felec;
632
633 /* Calculate temporary vectorial force */
634 tx = fscal*dx30;
635 ty = fscal*dy30;
636 tz = fscal*dz30;
637
638 /* Update vectorial force */
639 fix3 += tx;
640 fiy3 += ty;
641 fiz3 += tz;
642 f[j_coord_offset+DIM3*0+XX0] -= tx;
643 f[j_coord_offset+DIM3*0+YY1] -= ty;
644 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
645
646 /* Inner loop uses 108 flops */
647 }
648 /* End of innermost loop */
649
650 tx = ty = tz = 0;
651 f[i_coord_offset+DIM3*0+XX0] += fix0;
652 f[i_coord_offset+DIM3*0+YY1] += fiy0;
653 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
654 tx += fix0;
655 ty += fiy0;
656 tz += fiz0;
657 f[i_coord_offset+DIM3*1+XX0] += fix1;
658 f[i_coord_offset+DIM3*1+YY1] += fiy1;
659 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
660 tx += fix1;
661 ty += fiy1;
662 tz += fiz1;
663 f[i_coord_offset+DIM3*2+XX0] += fix2;
664 f[i_coord_offset+DIM3*2+YY1] += fiy2;
665 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
666 tx += fix2;
667 ty += fiy2;
668 tz += fiz2;
669 f[i_coord_offset+DIM3*3+XX0] += fix3;
670 f[i_coord_offset+DIM3*3+YY1] += fiy3;
671 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
672 tx += fix3;
673 ty += fiy3;
674 tz += fiz3;
675 fshift[i_shift_offset+XX0] += tx;
676 fshift[i_shift_offset+YY1] += ty;
677 fshift[i_shift_offset+ZZ2] += tz;
678
679 /* Increment number of inner iterations */
680 inneriter += j_index_end - j_index_start;
681
682 /* Outer loop uses 39 flops */
683 }
684
685 /* Increment number of outer iterations */
686 outeriter += nri;
687
688 /* Update outer/inner flops */
689
690 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*39 + inneriter*108)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_F] += outeriter*39 + inneriter
*108
;
691}