Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_c.c
Location:line 457, column 5
Description:Value stored to 'sh_ewald' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: LennardJones
53 * Geometry: Water3-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83 real velec,felec,velecsum,facel,crf,krf,krf2;
84 real *charge;
85 int nvdwtype;
86 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
87 int *vdwtype;
88 real *vdwparam;
89 int ewitab;
90 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
91 real *ewtab;
92
93 x = xx[0];
94 f = ff[0];
95
96 nri = nlist->nri;
97 iinr = nlist->iinr;
98 jindex = nlist->jindex;
99 jjnr = nlist->jjnr;
100 shiftidx = nlist->shift;
101 gid = nlist->gid;
102 shiftvec = fr->shift_vec[0];
103 fshift = fr->fshift[0];
104 facel = fr->epsfac;
105 charge = mdatoms->chargeA;
106 nvdwtype = fr->ntype;
107 vdwparam = fr->nbfp;
108 vdwtype = mdatoms->typeA;
109
110 sh_ewald = fr->ic->sh_ewald;
111 ewtab = fr->ic->tabq_coul_FDV0;
112 ewtabscale = fr->ic->tabq_scale;
113 ewtabhalfspace = 0.5/ewtabscale;
114
115 /* Setup water-specific parameters */
116 inr = nlist->iinr[0];
117 iq0 = facel*charge[inr+0];
118 iq1 = facel*charge[inr+1];
119 iq2 = facel*charge[inr+2];
120 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
121
122 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
123 rcutoff = fr->rcoulomb;
124 rcutoff2 = rcutoff*rcutoff;
125
126 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
127 rvdw = fr->rvdw;
128
129 outeriter = 0;
130 inneriter = 0;
131
132 /* Start outer loop over neighborlists */
133 for(iidx=0; iidx<nri; iidx++)
134 {
135 /* Load shift vector for this list */
136 i_shift_offset = DIM3*shiftidx[iidx];
137 shX = shiftvec[i_shift_offset+XX0];
138 shY = shiftvec[i_shift_offset+YY1];
139 shZ = shiftvec[i_shift_offset+ZZ2];
140
141 /* Load limits for loop over neighbors */
142 j_index_start = jindex[iidx];
143 j_index_end = jindex[iidx+1];
144
145 /* Get outer coordinate index */
146 inr = iinr[iidx];
147 i_coord_offset = DIM3*inr;
148
149 /* Load i particle coords and add shift vector */
150 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
151 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
152 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
153 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
154 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
155 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
156 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
157 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
158 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
159
160 fix0 = 0.0;
161 fiy0 = 0.0;
162 fiz0 = 0.0;
163 fix1 = 0.0;
164 fiy1 = 0.0;
165 fiz1 = 0.0;
166 fix2 = 0.0;
167 fiy2 = 0.0;
168 fiz2 = 0.0;
169
170 /* Reset potential sums */
171 velecsum = 0.0;
172 vvdwsum = 0.0;
173
174 /* Start inner kernel loop */
175 for(jidx=j_index_start; jidx<j_index_end; jidx++)
176 {
177 /* Get j neighbor index, and coordinate index */
178 jnr = jjnr[jidx];
179 j_coord_offset = DIM3*jnr;
180
181 /* load j atom coordinates */
182 jx0 = x[j_coord_offset+DIM3*0+XX0];
183 jy0 = x[j_coord_offset+DIM3*0+YY1];
184 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
185
186 /* Calculate displacement vector */
187 dx00 = ix0 - jx0;
188 dy00 = iy0 - jy0;
189 dz00 = iz0 - jz0;
190 dx10 = ix1 - jx0;
191 dy10 = iy1 - jy0;
192 dz10 = iz1 - jz0;
193 dx20 = ix2 - jx0;
194 dy20 = iy2 - jy0;
195 dz20 = iz2 - jz0;
196
197 /* Calculate squared distance and things based on it */
198 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
199 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
200 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
201
202 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
203 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
204 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
205
206 rinvsq00 = rinv00*rinv00;
207 rinvsq10 = rinv10*rinv10;
208 rinvsq20 = rinv20*rinv20;
209
210 /* Load parameters for j particles */
211 jq0 = charge[jnr+0];
212 vdwjidx0 = 2*vdwtype[jnr+0];
213
214 /**************************
215 * CALCULATE INTERACTIONS *
216 **************************/
217
218 if (rsq00<rcutoff2)
219 {
220
221 r00 = rsq00*rinv00;
222
223 qq00 = iq0*jq0;
224 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
225 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
226
227 /* EWALD ELECTROSTATICS */
228
229 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
230 ewrt = r00*ewtabscale;
231 ewitab = ewrt;
232 eweps = ewrt-ewitab;
233 ewitab = 4*ewitab;
234 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
235 velec = qq00*((rinv00-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
236 felec = qq00*rinv00*(rinvsq00-felec);
237
238 /* LENNARD-JONES DISPERSION/REPULSION */
239
240 rinvsix = rinvsq00*rinvsq00*rinvsq00;
241 vvdw6 = c6_00*rinvsix;
242 vvdw12 = c12_00*rinvsix*rinvsix;
243 vvdw = (vvdw12 - c12_00*sh_vdw_invrcut6*sh_vdw_invrcut6)*(1.0/12.0) - (vvdw6 - c6_00*sh_vdw_invrcut6)*(1.0/6.0);
244 fvdw = (vvdw12-vvdw6)*rinvsq00;
245
246 /* Update potential sums from outer loop */
247 velecsum += velec;
248 vvdwsum += vvdw;
249
250 fscal = felec+fvdw;
251
252 /* Calculate temporary vectorial force */
253 tx = fscal*dx00;
254 ty = fscal*dy00;
255 tz = fscal*dz00;
256
257 /* Update vectorial force */
258 fix0 += tx;
259 fiy0 += ty;
260 fiz0 += tz;
261 f[j_coord_offset+DIM3*0+XX0] -= tx;
262 f[j_coord_offset+DIM3*0+YY1] -= ty;
263 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
264
265 }
266
267 /**************************
268 * CALCULATE INTERACTIONS *
269 **************************/
270
271 if (rsq10<rcutoff2)
272 {
273
274 r10 = rsq10*rinv10;
275
276 qq10 = iq1*jq0;
277
278 /* EWALD ELECTROSTATICS */
279
280 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
281 ewrt = r10*ewtabscale;
282 ewitab = ewrt;
283 eweps = ewrt-ewitab;
284 ewitab = 4*ewitab;
285 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
286 velec = qq10*((rinv10-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
287 felec = qq10*rinv10*(rinvsq10-felec);
288
289 /* Update potential sums from outer loop */
290 velecsum += velec;
291
292 fscal = felec;
293
294 /* Calculate temporary vectorial force */
295 tx = fscal*dx10;
296 ty = fscal*dy10;
297 tz = fscal*dz10;
298
299 /* Update vectorial force */
300 fix1 += tx;
301 fiy1 += ty;
302 fiz1 += tz;
303 f[j_coord_offset+DIM3*0+XX0] -= tx;
304 f[j_coord_offset+DIM3*0+YY1] -= ty;
305 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
306
307 }
308
309 /**************************
310 * CALCULATE INTERACTIONS *
311 **************************/
312
313 if (rsq20<rcutoff2)
314 {
315
316 r20 = rsq20*rinv20;
317
318 qq20 = iq2*jq0;
319
320 /* EWALD ELECTROSTATICS */
321
322 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
323 ewrt = r20*ewtabscale;
324 ewitab = ewrt;
325 eweps = ewrt-ewitab;
326 ewitab = 4*ewitab;
327 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
328 velec = qq20*((rinv20-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
329 felec = qq20*rinv20*(rinvsq20-felec);
330
331 /* Update potential sums from outer loop */
332 velecsum += velec;
333
334 fscal = felec;
335
336 /* Calculate temporary vectorial force */
337 tx = fscal*dx20;
338 ty = fscal*dy20;
339 tz = fscal*dz20;
340
341 /* Update vectorial force */
342 fix2 += tx;
343 fiy2 += ty;
344 fiz2 += tz;
345 f[j_coord_offset+DIM3*0+XX0] -= tx;
346 f[j_coord_offset+DIM3*0+YY1] -= ty;
347 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
348
349 }
350
351 /* Inner loop uses 143 flops */
352 }
353 /* End of innermost loop */
354
355 tx = ty = tz = 0;
356 f[i_coord_offset+DIM3*0+XX0] += fix0;
357 f[i_coord_offset+DIM3*0+YY1] += fiy0;
358 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
359 tx += fix0;
360 ty += fiy0;
361 tz += fiz0;
362 f[i_coord_offset+DIM3*1+XX0] += fix1;
363 f[i_coord_offset+DIM3*1+YY1] += fiy1;
364 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
365 tx += fix1;
366 ty += fiy1;
367 tz += fiz1;
368 f[i_coord_offset+DIM3*2+XX0] += fix2;
369 f[i_coord_offset+DIM3*2+YY1] += fiy2;
370 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
371 tx += fix2;
372 ty += fiy2;
373 tz += fiz2;
374 fshift[i_shift_offset+XX0] += tx;
375 fshift[i_shift_offset+YY1] += ty;
376 fshift[i_shift_offset+ZZ2] += tz;
377
378 ggid = gid[iidx];
379 /* Update potential energies */
380 kernel_data->energygrp_elec[ggid] += velecsum;
381 kernel_data->energygrp_vdw[ggid] += vvdwsum;
382
383 /* Increment number of inner iterations */
384 inneriter += j_index_end - j_index_start;
385
386 /* Outer loop uses 32 flops */
387 }
388
389 /* Increment number of outer iterations */
390 outeriter += nri;
391
392 /* Update outer/inner flops */
393
394 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*32 + inneriter*143)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_VF] += outeriter*32 + inneriter
*143
;
395}
396/*
397 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_c
398 * Electrostatics interaction: Ewald
399 * VdW interaction: LennardJones
400 * Geometry: Water3-Particle
401 * Calculate force/pot: Force
402 */
403void
404nb_kernel_ElecEwSh_VdwLJSh_GeomW3P1_F_c
405 (t_nblist * gmx_restrict__restrict nlist,
406 rvec * gmx_restrict__restrict xx,
407 rvec * gmx_restrict__restrict ff,
408 t_forcerec * gmx_restrict__restrict fr,
409 t_mdatoms * gmx_restrict__restrict mdatoms,
410 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
411 t_nrnb * gmx_restrict__restrict nrnb)
412{
413 int i_shift_offset,i_coord_offset,j_coord_offset;
414 int j_index_start,j_index_end;
415 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
416 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
417 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
418 real *shiftvec,*fshift,*x,*f;
419 int vdwioffset0;
420 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
421 int vdwioffset1;
422 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
423 int vdwioffset2;
424 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
425 int vdwjidx0;
426 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
427 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
428 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
429 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
430 real velec,felec,velecsum,facel,crf,krf,krf2;
431 real *charge;
432 int nvdwtype;
433 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
434 int *vdwtype;
435 real *vdwparam;
436 int ewitab;
437 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
438 real *ewtab;
439
440 x = xx[0];
441 f = ff[0];
442
443 nri = nlist->nri;
444 iinr = nlist->iinr;
445 jindex = nlist->jindex;
446 jjnr = nlist->jjnr;
447 shiftidx = nlist->shift;
448 gid = nlist->gid;
449 shiftvec = fr->shift_vec[0];
450 fshift = fr->fshift[0];
451 facel = fr->epsfac;
452 charge = mdatoms->chargeA;
453 nvdwtype = fr->ntype;
454 vdwparam = fr->nbfp;
455 vdwtype = mdatoms->typeA;
456
457 sh_ewald = fr->ic->sh_ewald;
Value stored to 'sh_ewald' is never read
458 ewtab = fr->ic->tabq_coul_F;
459 ewtabscale = fr->ic->tabq_scale;
460 ewtabhalfspace = 0.5/ewtabscale;
461
462 /* Setup water-specific parameters */
463 inr = nlist->iinr[0];
464 iq0 = facel*charge[inr+0];
465 iq1 = facel*charge[inr+1];
466 iq2 = facel*charge[inr+2];
467 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
468
469 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
470 rcutoff = fr->rcoulomb;
471 rcutoff2 = rcutoff*rcutoff;
472
473 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
474 rvdw = fr->rvdw;
475
476 outeriter = 0;
477 inneriter = 0;
478
479 /* Start outer loop over neighborlists */
480 for(iidx=0; iidx<nri; iidx++)
481 {
482 /* Load shift vector for this list */
483 i_shift_offset = DIM3*shiftidx[iidx];
484 shX = shiftvec[i_shift_offset+XX0];
485 shY = shiftvec[i_shift_offset+YY1];
486 shZ = shiftvec[i_shift_offset+ZZ2];
487
488 /* Load limits for loop over neighbors */
489 j_index_start = jindex[iidx];
490 j_index_end = jindex[iidx+1];
491
492 /* Get outer coordinate index */
493 inr = iinr[iidx];
494 i_coord_offset = DIM3*inr;
495
496 /* Load i particle coords and add shift vector */
497 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
498 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
499 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
500 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
501 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
502 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
503 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
504 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
505 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
506
507 fix0 = 0.0;
508 fiy0 = 0.0;
509 fiz0 = 0.0;
510 fix1 = 0.0;
511 fiy1 = 0.0;
512 fiz1 = 0.0;
513 fix2 = 0.0;
514 fiy2 = 0.0;
515 fiz2 = 0.0;
516
517 /* Start inner kernel loop */
518 for(jidx=j_index_start; jidx<j_index_end; jidx++)
519 {
520 /* Get j neighbor index, and coordinate index */
521 jnr = jjnr[jidx];
522 j_coord_offset = DIM3*jnr;
523
524 /* load j atom coordinates */
525 jx0 = x[j_coord_offset+DIM3*0+XX0];
526 jy0 = x[j_coord_offset+DIM3*0+YY1];
527 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
528
529 /* Calculate displacement vector */
530 dx00 = ix0 - jx0;
531 dy00 = iy0 - jy0;
532 dz00 = iz0 - jz0;
533 dx10 = ix1 - jx0;
534 dy10 = iy1 - jy0;
535 dz10 = iz1 - jz0;
536 dx20 = ix2 - jx0;
537 dy20 = iy2 - jy0;
538 dz20 = iz2 - jz0;
539
540 /* Calculate squared distance and things based on it */
541 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
542 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
543 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
544
545 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
546 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
547 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
548
549 rinvsq00 = rinv00*rinv00;
550 rinvsq10 = rinv10*rinv10;
551 rinvsq20 = rinv20*rinv20;
552
553 /* Load parameters for j particles */
554 jq0 = charge[jnr+0];
555 vdwjidx0 = 2*vdwtype[jnr+0];
556
557 /**************************
558 * CALCULATE INTERACTIONS *
559 **************************/
560
561 if (rsq00<rcutoff2)
562 {
563
564 r00 = rsq00*rinv00;
565
566 qq00 = iq0*jq0;
567 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
568 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
569
570 /* EWALD ELECTROSTATICS */
571
572 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
573 ewrt = r00*ewtabscale;
574 ewitab = ewrt;
575 eweps = ewrt-ewitab;
576 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
577 felec = qq00*rinv00*(rinvsq00-felec);
578
579 /* LENNARD-JONES DISPERSION/REPULSION */
580
581 rinvsix = rinvsq00*rinvsq00*rinvsq00;
582 fvdw = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
583
584 fscal = felec+fvdw;
585
586 /* Calculate temporary vectorial force */
587 tx = fscal*dx00;
588 ty = fscal*dy00;
589 tz = fscal*dz00;
590
591 /* Update vectorial force */
592 fix0 += tx;
593 fiy0 += ty;
594 fiz0 += tz;
595 f[j_coord_offset+DIM3*0+XX0] -= tx;
596 f[j_coord_offset+DIM3*0+YY1] -= ty;
597 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
598
599 }
600
601 /**************************
602 * CALCULATE INTERACTIONS *
603 **************************/
604
605 if (rsq10<rcutoff2)
606 {
607
608 r10 = rsq10*rinv10;
609
610 qq10 = iq1*jq0;
611
612 /* EWALD ELECTROSTATICS */
613
614 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
615 ewrt = r10*ewtabscale;
616 ewitab = ewrt;
617 eweps = ewrt-ewitab;
618 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
619 felec = qq10*rinv10*(rinvsq10-felec);
620
621 fscal = felec;
622
623 /* Calculate temporary vectorial force */
624 tx = fscal*dx10;
625 ty = fscal*dy10;
626 tz = fscal*dz10;
627
628 /* Update vectorial force */
629 fix1 += tx;
630 fiy1 += ty;
631 fiz1 += tz;
632 f[j_coord_offset+DIM3*0+XX0] -= tx;
633 f[j_coord_offset+DIM3*0+YY1] -= ty;
634 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
635
636 }
637
638 /**************************
639 * CALCULATE INTERACTIONS *
640 **************************/
641
642 if (rsq20<rcutoff2)
643 {
644
645 r20 = rsq20*rinv20;
646
647 qq20 = iq2*jq0;
648
649 /* EWALD ELECTROSTATICS */
650
651 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
652 ewrt = r20*ewtabscale;
653 ewitab = ewrt;
654 eweps = ewrt-ewitab;
655 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
656 felec = qq20*rinv20*(rinvsq20-felec);
657
658 fscal = felec;
659
660 /* Calculate temporary vectorial force */
661 tx = fscal*dx20;
662 ty = fscal*dy20;
663 tz = fscal*dz20;
664
665 /* Update vectorial force */
666 fix2 += tx;
667 fiy2 += ty;
668 fiz2 += tz;
669 f[j_coord_offset+DIM3*0+XX0] -= tx;
670 f[j_coord_offset+DIM3*0+YY1] -= ty;
671 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
672
673 }
674
675 /* Inner loop uses 109 flops */
676 }
677 /* End of innermost loop */
678
679 tx = ty = tz = 0;
680 f[i_coord_offset+DIM3*0+XX0] += fix0;
681 f[i_coord_offset+DIM3*0+YY1] += fiy0;
682 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
683 tx += fix0;
684 ty += fiy0;
685 tz += fiz0;
686 f[i_coord_offset+DIM3*1+XX0] += fix1;
687 f[i_coord_offset+DIM3*1+YY1] += fiy1;
688 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
689 tx += fix1;
690 ty += fiy1;
691 tz += fiz1;
692 f[i_coord_offset+DIM3*2+XX0] += fix2;
693 f[i_coord_offset+DIM3*2+YY1] += fiy2;
694 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
695 tx += fix2;
696 ty += fiy2;
697 tz += fiz2;
698 fshift[i_shift_offset+XX0] += tx;
699 fshift[i_shift_offset+YY1] += ty;
700 fshift[i_shift_offset+ZZ2] += tz;
701
702 /* Increment number of inner iterations */
703 inneriter += j_index_end - j_index_start;
704
705 /* Outer loop uses 30 flops */
706 }
707
708 /* Increment number of outer iterations */
709 outeriter += nri;
710
711 /* Update outer/inner flops */
712
713 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*30 + inneriter*109)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_F] += outeriter*30 + inneriter
*109
;
714}