Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEwSw_VdwNone_GeomP1P1_c.c
Location:line 98, column 5
Description:Value stored to 'sh_ewald' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: None
53 * Geometry: Particle-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEwSw_VdwNone_GeomP1P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwjidx0;
75 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77 real velec,felec,velecsum,facel,crf,krf,krf2;
78 real *charge;
79 int ewitab;
80 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
81 real *ewtab;
82 real rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
83
84 x = xx[0];
85 f = ff[0];
86
87 nri = nlist->nri;
88 iinr = nlist->iinr;
89 jindex = nlist->jindex;
90 jjnr = nlist->jjnr;
91 shiftidx = nlist->shift;
92 gid = nlist->gid;
93 shiftvec = fr->shift_vec[0];
94 fshift = fr->fshift[0];
95 facel = fr->epsfac;
96 charge = mdatoms->chargeA;
97
98 sh_ewald = fr->ic->sh_ewald;
Value stored to 'sh_ewald' is never read
99 ewtab = fr->ic->tabq_coul_FDV0;
100 ewtabscale = fr->ic->tabq_scale;
101 ewtabhalfspace = 0.5/ewtabscale;
102
103 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
104 rcutoff = fr->rcoulomb;
105 rcutoff2 = rcutoff*rcutoff;
106
107 rswitch = fr->rcoulomb_switch;
108 /* Setup switch parameters */
109 d = rcutoff-rswitch;
110 swV3 = -10.0/(d*d*d);
111 swV4 = 15.0/(d*d*d*d);
112 swV5 = -6.0/(d*d*d*d*d);
113 swF2 = -30.0/(d*d*d);
114 swF3 = 60.0/(d*d*d*d);
115 swF4 = -30.0/(d*d*d*d*d);
116
117 outeriter = 0;
118 inneriter = 0;
119
120 /* Start outer loop over neighborlists */
121 for(iidx=0; iidx<nri; iidx++)
122 {
123 /* Load shift vector for this list */
124 i_shift_offset = DIM3*shiftidx[iidx];
125 shX = shiftvec[i_shift_offset+XX0];
126 shY = shiftvec[i_shift_offset+YY1];
127 shZ = shiftvec[i_shift_offset+ZZ2];
128
129 /* Load limits for loop over neighbors */
130 j_index_start = jindex[iidx];
131 j_index_end = jindex[iidx+1];
132
133 /* Get outer coordinate index */
134 inr = iinr[iidx];
135 i_coord_offset = DIM3*inr;
136
137 /* Load i particle coords and add shift vector */
138 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
139 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
140 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
141
142 fix0 = 0.0;
143 fiy0 = 0.0;
144 fiz0 = 0.0;
145
146 /* Load parameters for i particles */
147 iq0 = facel*charge[inr+0];
148
149 /* Reset potential sums */
150 velecsum = 0.0;
151
152 /* Start inner kernel loop */
153 for(jidx=j_index_start; jidx<j_index_end; jidx++)
154 {
155 /* Get j neighbor index, and coordinate index */
156 jnr = jjnr[jidx];
157 j_coord_offset = DIM3*jnr;
158
159 /* load j atom coordinates */
160 jx0 = x[j_coord_offset+DIM3*0+XX0];
161 jy0 = x[j_coord_offset+DIM3*0+YY1];
162 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
163
164 /* Calculate displacement vector */
165 dx00 = ix0 - jx0;
166 dy00 = iy0 - jy0;
167 dz00 = iz0 - jz0;
168
169 /* Calculate squared distance and things based on it */
170 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
171
172 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
173
174 rinvsq00 = rinv00*rinv00;
175
176 /* Load parameters for j particles */
177 jq0 = charge[jnr+0];
178
179 /**************************
180 * CALCULATE INTERACTIONS *
181 **************************/
182
183 if (rsq00<rcutoff2)
184 {
185
186 r00 = rsq00*rinv00;
187
188 qq00 = iq0*jq0;
189
190 /* EWALD ELECTROSTATICS */
191
192 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
193 ewrt = r00*ewtabscale;
194 ewitab = ewrt;
195 eweps = ewrt-ewitab;
196 ewitab = 4*ewitab;
197 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
198 velec = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
199 felec = qq00*rinv00*(rinvsq00-felec);
200
201 d = r00-rswitch;
202 d = (d>0.0) ? d : 0.0;
203 d2 = d*d;
204 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
205
206 dsw = d2*(swF2+d*(swF3+d*swF4));
207
208 /* Evaluate switch function */
209 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
210 felec = felec*sw - rinv00*velec*dsw;
211 velec *= sw;
212
213 /* Update potential sums from outer loop */
214 velecsum += velec;
215
216 fscal = felec;
217
218 /* Calculate temporary vectorial force */
219 tx = fscal*dx00;
220 ty = fscal*dy00;
221 tz = fscal*dz00;
222
223 /* Update vectorial force */
224 fix0 += tx;
225 fiy0 += ty;
226 fiz0 += tz;
227 f[j_coord_offset+DIM3*0+XX0] -= tx;
228 f[j_coord_offset+DIM3*0+YY1] -= ty;
229 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
230
231 }
232
233 /* Inner loop uses 59 flops */
234 }
235 /* End of innermost loop */
236
237 tx = ty = tz = 0;
238 f[i_coord_offset+DIM3*0+XX0] += fix0;
239 f[i_coord_offset+DIM3*0+YY1] += fiy0;
240 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
241 tx += fix0;
242 ty += fiy0;
243 tz += fiz0;
244 fshift[i_shift_offset+XX0] += tx;
245 fshift[i_shift_offset+YY1] += ty;
246 fshift[i_shift_offset+ZZ2] += tz;
247
248 ggid = gid[iidx];
249 /* Update potential energies */
250 kernel_data->energygrp_elec[ggid] += velecsum;
251
252 /* Increment number of inner iterations */
253 inneriter += j_index_end - j_index_start;
254
255 /* Outer loop uses 14 flops */
256 }
257
258 /* Increment number of outer iterations */
259 outeriter += nri;
260
261 /* Update outer/inner flops */
262
263 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*14 + inneriter*59)(nrnb)->n[eNR_NBKERNEL_ELEC_VF] += outeriter*14 + inneriter
*59
;
264}
265/*
266 * Gromacs nonbonded kernel: nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_c
267 * Electrostatics interaction: Ewald
268 * VdW interaction: None
269 * Geometry: Particle-Particle
270 * Calculate force/pot: Force
271 */
272void
273nb_kernel_ElecEwSw_VdwNone_GeomP1P1_F_c
274 (t_nblist * gmx_restrict__restrict nlist,
275 rvec * gmx_restrict__restrict xx,
276 rvec * gmx_restrict__restrict ff,
277 t_forcerec * gmx_restrict__restrict fr,
278 t_mdatoms * gmx_restrict__restrict mdatoms,
279 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
280 t_nrnb * gmx_restrict__restrict nrnb)
281{
282 int i_shift_offset,i_coord_offset,j_coord_offset;
283 int j_index_start,j_index_end;
284 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
285 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
286 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
287 real *shiftvec,*fshift,*x,*f;
288 int vdwioffset0;
289 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
290 int vdwjidx0;
291 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
292 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
293 real velec,felec,velecsum,facel,crf,krf,krf2;
294 real *charge;
295 int ewitab;
296 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
297 real *ewtab;
298 real rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
299
300 x = xx[0];
301 f = ff[0];
302
303 nri = nlist->nri;
304 iinr = nlist->iinr;
305 jindex = nlist->jindex;
306 jjnr = nlist->jjnr;
307 shiftidx = nlist->shift;
308 gid = nlist->gid;
309 shiftvec = fr->shift_vec[0];
310 fshift = fr->fshift[0];
311 facel = fr->epsfac;
312 charge = mdatoms->chargeA;
313
314 sh_ewald = fr->ic->sh_ewald;
315 ewtab = fr->ic->tabq_coul_FDV0;
316 ewtabscale = fr->ic->tabq_scale;
317 ewtabhalfspace = 0.5/ewtabscale;
318
319 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
320 rcutoff = fr->rcoulomb;
321 rcutoff2 = rcutoff*rcutoff;
322
323 rswitch = fr->rcoulomb_switch;
324 /* Setup switch parameters */
325 d = rcutoff-rswitch;
326 swV3 = -10.0/(d*d*d);
327 swV4 = 15.0/(d*d*d*d);
328 swV5 = -6.0/(d*d*d*d*d);
329 swF2 = -30.0/(d*d*d);
330 swF3 = 60.0/(d*d*d*d);
331 swF4 = -30.0/(d*d*d*d*d);
332
333 outeriter = 0;
334 inneriter = 0;
335
336 /* Start outer loop over neighborlists */
337 for(iidx=0; iidx<nri; iidx++)
338 {
339 /* Load shift vector for this list */
340 i_shift_offset = DIM3*shiftidx[iidx];
341 shX = shiftvec[i_shift_offset+XX0];
342 shY = shiftvec[i_shift_offset+YY1];
343 shZ = shiftvec[i_shift_offset+ZZ2];
344
345 /* Load limits for loop over neighbors */
346 j_index_start = jindex[iidx];
347 j_index_end = jindex[iidx+1];
348
349 /* Get outer coordinate index */
350 inr = iinr[iidx];
351 i_coord_offset = DIM3*inr;
352
353 /* Load i particle coords and add shift vector */
354 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
355 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
356 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
357
358 fix0 = 0.0;
359 fiy0 = 0.0;
360 fiz0 = 0.0;
361
362 /* Load parameters for i particles */
363 iq0 = facel*charge[inr+0];
364
365 /* Start inner kernel loop */
366 for(jidx=j_index_start; jidx<j_index_end; jidx++)
367 {
368 /* Get j neighbor index, and coordinate index */
369 jnr = jjnr[jidx];
370 j_coord_offset = DIM3*jnr;
371
372 /* load j atom coordinates */
373 jx0 = x[j_coord_offset+DIM3*0+XX0];
374 jy0 = x[j_coord_offset+DIM3*0+YY1];
375 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
376
377 /* Calculate displacement vector */
378 dx00 = ix0 - jx0;
379 dy00 = iy0 - jy0;
380 dz00 = iz0 - jz0;
381
382 /* Calculate squared distance and things based on it */
383 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
384
385 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
386
387 rinvsq00 = rinv00*rinv00;
388
389 /* Load parameters for j particles */
390 jq0 = charge[jnr+0];
391
392 /**************************
393 * CALCULATE INTERACTIONS *
394 **************************/
395
396 if (rsq00<rcutoff2)
397 {
398
399 r00 = rsq00*rinv00;
400
401 qq00 = iq0*jq0;
402
403 /* EWALD ELECTROSTATICS */
404
405 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
406 ewrt = r00*ewtabscale;
407 ewitab = ewrt;
408 eweps = ewrt-ewitab;
409 ewitab = 4*ewitab;
410 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
411 velec = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
412 felec = qq00*rinv00*(rinvsq00-felec);
413
414 d = r00-rswitch;
415 d = (d>0.0) ? d : 0.0;
416 d2 = d*d;
417 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
418
419 dsw = d2*(swF2+d*(swF3+d*swF4));
420
421 /* Evaluate switch function */
422 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
423 felec = felec*sw - rinv00*velec*dsw;
424
425 fscal = felec;
426
427 /* Calculate temporary vectorial force */
428 tx = fscal*dx00;
429 ty = fscal*dy00;
430 tz = fscal*dz00;
431
432 /* Update vectorial force */
433 fix0 += tx;
434 fiy0 += ty;
435 fiz0 += tz;
436 f[j_coord_offset+DIM3*0+XX0] -= tx;
437 f[j_coord_offset+DIM3*0+YY1] -= ty;
438 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
439
440 }
441
442 /* Inner loop uses 57 flops */
443 }
444 /* End of innermost loop */
445
446 tx = ty = tz = 0;
447 f[i_coord_offset+DIM3*0+XX0] += fix0;
448 f[i_coord_offset+DIM3*0+YY1] += fiy0;
449 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
450 tx += fix0;
451 ty += fiy0;
452 tz += fiz0;
453 fshift[i_shift_offset+XX0] += tx;
454 fshift[i_shift_offset+YY1] += ty;
455 fshift[i_shift_offset+ZZ2] += tz;
456
457 /* Increment number of inner iterations */
458 inneriter += j_index_end - j_index_start;
459
460 /* Outer loop uses 13 flops */
461 }
462
463 /* Increment number of outer iterations */
464 outeriter += nri;
465
466 /* Update outer/inner flops */
467
468 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*13 + inneriter*57)(nrnb)->n[eNR_NBKERNEL_ELEC_F] += outeriter*13 + inneriter
*57
;
469}