Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecRF_VdwCSTab_GeomW4W4_c.c
Location:line 705, column 5
Description:Value stored to 'crf' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwCSTab_GeomW4W4_VF_c
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: CubicSplineTable
53 * Geometry: Water4-Water4
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecRF_VdwCSTab_GeomW4W4_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwioffset3;
79 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80 int vdwjidx0;
81 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82 int vdwjidx1;
83 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
84 int vdwjidx2;
85 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
86 int vdwjidx3;
87 real jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
88 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
89 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
90 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
91 real dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
92 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
93 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
94 real dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
95 real dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
96 real dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
97 real dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
98 real velec,felec,velecsum,facel,crf,krf,krf2;
99 real *charge;
100 int nvdwtype;
101 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
102 int *vdwtype;
103 real *vdwparam;
104 int vfitab;
105 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
106 real *vftab;
107
108 x = xx[0];
109 f = ff[0];
110
111 nri = nlist->nri;
112 iinr = nlist->iinr;
113 jindex = nlist->jindex;
114 jjnr = nlist->jjnr;
115 shiftidx = nlist->shift;
116 gid = nlist->gid;
117 shiftvec = fr->shift_vec[0];
118 fshift = fr->fshift[0];
119 facel = fr->epsfac;
120 charge = mdatoms->chargeA;
121 krf = fr->ic->k_rf;
122 krf2 = krf*2.0;
123 crf = fr->ic->c_rf;
124 nvdwtype = fr->ntype;
125 vdwparam = fr->nbfp;
126 vdwtype = mdatoms->typeA;
127
128 vftab = kernel_data->table_vdw->data;
129 vftabscale = kernel_data->table_vdw->scale;
130
131 /* Setup water-specific parameters */
132 inr = nlist->iinr[0];
133 iq1 = facel*charge[inr+1];
134 iq2 = facel*charge[inr+2];
135 iq3 = facel*charge[inr+3];
136 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
137
138 jq1 = charge[inr+1];
139 jq2 = charge[inr+2];
140 jq3 = charge[inr+3];
141 vdwjidx0 = 2*vdwtype[inr+0];
142 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
143 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
144 qq11 = iq1*jq1;
145 qq12 = iq1*jq2;
146 qq13 = iq1*jq3;
147 qq21 = iq2*jq1;
148 qq22 = iq2*jq2;
149 qq23 = iq2*jq3;
150 qq31 = iq3*jq1;
151 qq32 = iq3*jq2;
152 qq33 = iq3*jq3;
153
154 outeriter = 0;
155 inneriter = 0;
156
157 /* Start outer loop over neighborlists */
158 for(iidx=0; iidx<nri; iidx++)
159 {
160 /* Load shift vector for this list */
161 i_shift_offset = DIM3*shiftidx[iidx];
162 shX = shiftvec[i_shift_offset+XX0];
163 shY = shiftvec[i_shift_offset+YY1];
164 shZ = shiftvec[i_shift_offset+ZZ2];
165
166 /* Load limits for loop over neighbors */
167 j_index_start = jindex[iidx];
168 j_index_end = jindex[iidx+1];
169
170 /* Get outer coordinate index */
171 inr = iinr[iidx];
172 i_coord_offset = DIM3*inr;
173
174 /* Load i particle coords and add shift vector */
175 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
176 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
177 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
178 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
179 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
180 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
181 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
182 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
183 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
184 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
185 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
186 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
187
188 fix0 = 0.0;
189 fiy0 = 0.0;
190 fiz0 = 0.0;
191 fix1 = 0.0;
192 fiy1 = 0.0;
193 fiz1 = 0.0;
194 fix2 = 0.0;
195 fiy2 = 0.0;
196 fiz2 = 0.0;
197 fix3 = 0.0;
198 fiy3 = 0.0;
199 fiz3 = 0.0;
200
201 /* Reset potential sums */
202 velecsum = 0.0;
203 vvdwsum = 0.0;
204
205 /* Start inner kernel loop */
206 for(jidx=j_index_start; jidx<j_index_end; jidx++)
207 {
208 /* Get j neighbor index, and coordinate index */
209 jnr = jjnr[jidx];
210 j_coord_offset = DIM3*jnr;
211
212 /* load j atom coordinates */
213 jx0 = x[j_coord_offset+DIM3*0+XX0];
214 jy0 = x[j_coord_offset+DIM3*0+YY1];
215 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
216 jx1 = x[j_coord_offset+DIM3*1+XX0];
217 jy1 = x[j_coord_offset+DIM3*1+YY1];
218 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
219 jx2 = x[j_coord_offset+DIM3*2+XX0];
220 jy2 = x[j_coord_offset+DIM3*2+YY1];
221 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
222 jx3 = x[j_coord_offset+DIM3*3+XX0];
223 jy3 = x[j_coord_offset+DIM3*3+YY1];
224 jz3 = x[j_coord_offset+DIM3*3+ZZ2];
225
226 /* Calculate displacement vector */
227 dx00 = ix0 - jx0;
228 dy00 = iy0 - jy0;
229 dz00 = iz0 - jz0;
230 dx11 = ix1 - jx1;
231 dy11 = iy1 - jy1;
232 dz11 = iz1 - jz1;
233 dx12 = ix1 - jx2;
234 dy12 = iy1 - jy2;
235 dz12 = iz1 - jz2;
236 dx13 = ix1 - jx3;
237 dy13 = iy1 - jy3;
238 dz13 = iz1 - jz3;
239 dx21 = ix2 - jx1;
240 dy21 = iy2 - jy1;
241 dz21 = iz2 - jz1;
242 dx22 = ix2 - jx2;
243 dy22 = iy2 - jy2;
244 dz22 = iz2 - jz2;
245 dx23 = ix2 - jx3;
246 dy23 = iy2 - jy3;
247 dz23 = iz2 - jz3;
248 dx31 = ix3 - jx1;
249 dy31 = iy3 - jy1;
250 dz31 = iz3 - jz1;
251 dx32 = ix3 - jx2;
252 dy32 = iy3 - jy2;
253 dz32 = iz3 - jz2;
254 dx33 = ix3 - jx3;
255 dy33 = iy3 - jy3;
256 dz33 = iz3 - jz3;
257
258 /* Calculate squared distance and things based on it */
259 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
260 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
261 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
262 rsq13 = dx13*dx13+dy13*dy13+dz13*dz13;
263 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
264 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
265 rsq23 = dx23*dx23+dy23*dy23+dz23*dz23;
266 rsq31 = dx31*dx31+dy31*dy31+dz31*dz31;
267 rsq32 = dx32*dx32+dy32*dy32+dz32*dz32;
268 rsq33 = dx33*dx33+dy33*dy33+dz33*dz33;
269
270 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
271 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
272 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
273 rinv13 = gmx_invsqrt(rsq13)gmx_software_invsqrt(rsq13);
274 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
275 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
276 rinv23 = gmx_invsqrt(rsq23)gmx_software_invsqrt(rsq23);
277 rinv31 = gmx_invsqrt(rsq31)gmx_software_invsqrt(rsq31);
278 rinv32 = gmx_invsqrt(rsq32)gmx_software_invsqrt(rsq32);
279 rinv33 = gmx_invsqrt(rsq33)gmx_software_invsqrt(rsq33);
280
281 rinvsq11 = rinv11*rinv11;
282 rinvsq12 = rinv12*rinv12;
283 rinvsq13 = rinv13*rinv13;
284 rinvsq21 = rinv21*rinv21;
285 rinvsq22 = rinv22*rinv22;
286 rinvsq23 = rinv23*rinv23;
287 rinvsq31 = rinv31*rinv31;
288 rinvsq32 = rinv32*rinv32;
289 rinvsq33 = rinv33*rinv33;
290
291 /**************************
292 * CALCULATE INTERACTIONS *
293 **************************/
294
295 r00 = rsq00*rinv00;
296
297 /* Calculate table index by multiplying r with table scale and truncate to integer */
298 rt = r00*vftabscale;
299 vfitab = rt;
300 vfeps = rt-vfitab;
301 vfitab = 2*4*vfitab;
302
303 /* CUBIC SPLINE TABLE DISPERSION */
304 vfitab += 0;
305 Y = vftab[vfitab];
306 F = vftab[vfitab+1];
307 Geps = vfeps*vftab[vfitab+2];
308 Heps2 = vfeps*vfeps*vftab[vfitab+3];
309 Fp = F+Geps+Heps2;
310 VV = Y+vfeps*Fp;
311 vvdw6 = c6_00*VV;
312 FF = Fp+Geps+2.0*Heps2;
313 fvdw6 = c6_00*FF;
314
315 /* CUBIC SPLINE TABLE REPULSION */
316 Y = vftab[vfitab+4];
317 F = vftab[vfitab+5];
318 Geps = vfeps*vftab[vfitab+6];
319 Heps2 = vfeps*vfeps*vftab[vfitab+7];
320 Fp = F+Geps+Heps2;
321 VV = Y+vfeps*Fp;
322 vvdw12 = c12_00*VV;
323 FF = Fp+Geps+2.0*Heps2;
324 fvdw12 = c12_00*FF;
325 vvdw = vvdw12+vvdw6;
326 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
327
328 /* Update potential sums from outer loop */
329 vvdwsum += vvdw;
330
331 fscal = fvdw;
332
333 /* Calculate temporary vectorial force */
334 tx = fscal*dx00;
335 ty = fscal*dy00;
336 tz = fscal*dz00;
337
338 /* Update vectorial force */
339 fix0 += tx;
340 fiy0 += ty;
341 fiz0 += tz;
342 f[j_coord_offset+DIM3*0+XX0] -= tx;
343 f[j_coord_offset+DIM3*0+YY1] -= ty;
344 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
345
346 /**************************
347 * CALCULATE INTERACTIONS *
348 **************************/
349
350 /* REACTION-FIELD ELECTROSTATICS */
351 velec = qq11*(rinv11+krf*rsq11-crf);
352 felec = qq11*(rinv11*rinvsq11-krf2);
353
354 /* Update potential sums from outer loop */
355 velecsum += velec;
356
357 fscal = felec;
358
359 /* Calculate temporary vectorial force */
360 tx = fscal*dx11;
361 ty = fscal*dy11;
362 tz = fscal*dz11;
363
364 /* Update vectorial force */
365 fix1 += tx;
366 fiy1 += ty;
367 fiz1 += tz;
368 f[j_coord_offset+DIM3*1+XX0] -= tx;
369 f[j_coord_offset+DIM3*1+YY1] -= ty;
370 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
371
372 /**************************
373 * CALCULATE INTERACTIONS *
374 **************************/
375
376 /* REACTION-FIELD ELECTROSTATICS */
377 velec = qq12*(rinv12+krf*rsq12-crf);
378 felec = qq12*(rinv12*rinvsq12-krf2);
379
380 /* Update potential sums from outer loop */
381 velecsum += velec;
382
383 fscal = felec;
384
385 /* Calculate temporary vectorial force */
386 tx = fscal*dx12;
387 ty = fscal*dy12;
388 tz = fscal*dz12;
389
390 /* Update vectorial force */
391 fix1 += tx;
392 fiy1 += ty;
393 fiz1 += tz;
394 f[j_coord_offset+DIM3*2+XX0] -= tx;
395 f[j_coord_offset+DIM3*2+YY1] -= ty;
396 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
397
398 /**************************
399 * CALCULATE INTERACTIONS *
400 **************************/
401
402 /* REACTION-FIELD ELECTROSTATICS */
403 velec = qq13*(rinv13+krf*rsq13-crf);
404 felec = qq13*(rinv13*rinvsq13-krf2);
405
406 /* Update potential sums from outer loop */
407 velecsum += velec;
408
409 fscal = felec;
410
411 /* Calculate temporary vectorial force */
412 tx = fscal*dx13;
413 ty = fscal*dy13;
414 tz = fscal*dz13;
415
416 /* Update vectorial force */
417 fix1 += tx;
418 fiy1 += ty;
419 fiz1 += tz;
420 f[j_coord_offset+DIM3*3+XX0] -= tx;
421 f[j_coord_offset+DIM3*3+YY1] -= ty;
422 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
423
424 /**************************
425 * CALCULATE INTERACTIONS *
426 **************************/
427
428 /* REACTION-FIELD ELECTROSTATICS */
429 velec = qq21*(rinv21+krf*rsq21-crf);
430 felec = qq21*(rinv21*rinvsq21-krf2);
431
432 /* Update potential sums from outer loop */
433 velecsum += velec;
434
435 fscal = felec;
436
437 /* Calculate temporary vectorial force */
438 tx = fscal*dx21;
439 ty = fscal*dy21;
440 tz = fscal*dz21;
441
442 /* Update vectorial force */
443 fix2 += tx;
444 fiy2 += ty;
445 fiz2 += tz;
446 f[j_coord_offset+DIM3*1+XX0] -= tx;
447 f[j_coord_offset+DIM3*1+YY1] -= ty;
448 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
449
450 /**************************
451 * CALCULATE INTERACTIONS *
452 **************************/
453
454 /* REACTION-FIELD ELECTROSTATICS */
455 velec = qq22*(rinv22+krf*rsq22-crf);
456 felec = qq22*(rinv22*rinvsq22-krf2);
457
458 /* Update potential sums from outer loop */
459 velecsum += velec;
460
461 fscal = felec;
462
463 /* Calculate temporary vectorial force */
464 tx = fscal*dx22;
465 ty = fscal*dy22;
466 tz = fscal*dz22;
467
468 /* Update vectorial force */
469 fix2 += tx;
470 fiy2 += ty;
471 fiz2 += tz;
472 f[j_coord_offset+DIM3*2+XX0] -= tx;
473 f[j_coord_offset+DIM3*2+YY1] -= ty;
474 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
475
476 /**************************
477 * CALCULATE INTERACTIONS *
478 **************************/
479
480 /* REACTION-FIELD ELECTROSTATICS */
481 velec = qq23*(rinv23+krf*rsq23-crf);
482 felec = qq23*(rinv23*rinvsq23-krf2);
483
484 /* Update potential sums from outer loop */
485 velecsum += velec;
486
487 fscal = felec;
488
489 /* Calculate temporary vectorial force */
490 tx = fscal*dx23;
491 ty = fscal*dy23;
492 tz = fscal*dz23;
493
494 /* Update vectorial force */
495 fix2 += tx;
496 fiy2 += ty;
497 fiz2 += tz;
498 f[j_coord_offset+DIM3*3+XX0] -= tx;
499 f[j_coord_offset+DIM3*3+YY1] -= ty;
500 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
501
502 /**************************
503 * CALCULATE INTERACTIONS *
504 **************************/
505
506 /* REACTION-FIELD ELECTROSTATICS */
507 velec = qq31*(rinv31+krf*rsq31-crf);
508 felec = qq31*(rinv31*rinvsq31-krf2);
509
510 /* Update potential sums from outer loop */
511 velecsum += velec;
512
513 fscal = felec;
514
515 /* Calculate temporary vectorial force */
516 tx = fscal*dx31;
517 ty = fscal*dy31;
518 tz = fscal*dz31;
519
520 /* Update vectorial force */
521 fix3 += tx;
522 fiy3 += ty;
523 fiz3 += tz;
524 f[j_coord_offset+DIM3*1+XX0] -= tx;
525 f[j_coord_offset+DIM3*1+YY1] -= ty;
526 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
527
528 /**************************
529 * CALCULATE INTERACTIONS *
530 **************************/
531
532 /* REACTION-FIELD ELECTROSTATICS */
533 velec = qq32*(rinv32+krf*rsq32-crf);
534 felec = qq32*(rinv32*rinvsq32-krf2);
535
536 /* Update potential sums from outer loop */
537 velecsum += velec;
538
539 fscal = felec;
540
541 /* Calculate temporary vectorial force */
542 tx = fscal*dx32;
543 ty = fscal*dy32;
544 tz = fscal*dz32;
545
546 /* Update vectorial force */
547 fix3 += tx;
548 fiy3 += ty;
549 fiz3 += tz;
550 f[j_coord_offset+DIM3*2+XX0] -= tx;
551 f[j_coord_offset+DIM3*2+YY1] -= ty;
552 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
553
554 /**************************
555 * CALCULATE INTERACTIONS *
556 **************************/
557
558 /* REACTION-FIELD ELECTROSTATICS */
559 velec = qq33*(rinv33+krf*rsq33-crf);
560 felec = qq33*(rinv33*rinvsq33-krf2);
561
562 /* Update potential sums from outer loop */
563 velecsum += velec;
564
565 fscal = felec;
566
567 /* Calculate temporary vectorial force */
568 tx = fscal*dx33;
569 ty = fscal*dy33;
570 tz = fscal*dz33;
571
572 /* Update vectorial force */
573 fix3 += tx;
574 fiy3 += ty;
575 fiz3 += tz;
576 f[j_coord_offset+DIM3*3+XX0] -= tx;
577 f[j_coord_offset+DIM3*3+YY1] -= ty;
578 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
579
580 /* Inner loop uses 334 flops */
581 }
582 /* End of innermost loop */
583
584 tx = ty = tz = 0;
585 f[i_coord_offset+DIM3*0+XX0] += fix0;
586 f[i_coord_offset+DIM3*0+YY1] += fiy0;
587 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
588 tx += fix0;
589 ty += fiy0;
590 tz += fiz0;
591 f[i_coord_offset+DIM3*1+XX0] += fix1;
592 f[i_coord_offset+DIM3*1+YY1] += fiy1;
593 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
594 tx += fix1;
595 ty += fiy1;
596 tz += fiz1;
597 f[i_coord_offset+DIM3*2+XX0] += fix2;
598 f[i_coord_offset+DIM3*2+YY1] += fiy2;
599 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
600 tx += fix2;
601 ty += fiy2;
602 tz += fiz2;
603 f[i_coord_offset+DIM3*3+XX0] += fix3;
604 f[i_coord_offset+DIM3*3+YY1] += fiy3;
605 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
606 tx += fix3;
607 ty += fiy3;
608 tz += fiz3;
609 fshift[i_shift_offset+XX0] += tx;
610 fshift[i_shift_offset+YY1] += ty;
611 fshift[i_shift_offset+ZZ2] += tz;
612
613 ggid = gid[iidx];
614 /* Update potential energies */
615 kernel_data->energygrp_elec[ggid] += velecsum;
616 kernel_data->energygrp_vdw[ggid] += vvdwsum;
617
618 /* Increment number of inner iterations */
619 inneriter += j_index_end - j_index_start;
620
621 /* Outer loop uses 41 flops */
622 }
623
624 /* Increment number of outer iterations */
625 outeriter += nri;
626
627 /* Update outer/inner flops */
628
629 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*41 + inneriter*334)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4W4_VF] += outeriter*41 +
inneriter*334
;
630}
631/*
632 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwCSTab_GeomW4W4_F_c
633 * Electrostatics interaction: ReactionField
634 * VdW interaction: CubicSplineTable
635 * Geometry: Water4-Water4
636 * Calculate force/pot: Force
637 */
638void
639nb_kernel_ElecRF_VdwCSTab_GeomW4W4_F_c
640 (t_nblist * gmx_restrict__restrict nlist,
641 rvec * gmx_restrict__restrict xx,
642 rvec * gmx_restrict__restrict ff,
643 t_forcerec * gmx_restrict__restrict fr,
644 t_mdatoms * gmx_restrict__restrict mdatoms,
645 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
646 t_nrnb * gmx_restrict__restrict nrnb)
647{
648 int i_shift_offset,i_coord_offset,j_coord_offset;
649 int j_index_start,j_index_end;
650 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
651 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
652 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
653 real *shiftvec,*fshift,*x,*f;
654 int vdwioffset0;
655 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
656 int vdwioffset1;
657 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
658 int vdwioffset2;
659 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
660 int vdwioffset3;
661 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
662 int vdwjidx0;
663 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
664 int vdwjidx1;
665 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
666 int vdwjidx2;
667 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
668 int vdwjidx3;
669 real jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
670 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
671 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
672 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
673 real dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
674 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
675 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
676 real dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
677 real dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
678 real dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
679 real dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
680 real velec,felec,velecsum,facel,crf,krf,krf2;
681 real *charge;
682 int nvdwtype;
683 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
684 int *vdwtype;
685 real *vdwparam;
686 int vfitab;
687 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
688 real *vftab;
689
690 x = xx[0];
691 f = ff[0];
692
693 nri = nlist->nri;
694 iinr = nlist->iinr;
695 jindex = nlist->jindex;
696 jjnr = nlist->jjnr;
697 shiftidx = nlist->shift;
698 gid = nlist->gid;
699 shiftvec = fr->shift_vec[0];
700 fshift = fr->fshift[0];
701 facel = fr->epsfac;
702 charge = mdatoms->chargeA;
703 krf = fr->ic->k_rf;
704 krf2 = krf*2.0;
705 crf = fr->ic->c_rf;
Value stored to 'crf' is never read
706 nvdwtype = fr->ntype;
707 vdwparam = fr->nbfp;
708 vdwtype = mdatoms->typeA;
709
710 vftab = kernel_data->table_vdw->data;
711 vftabscale = kernel_data->table_vdw->scale;
712
713 /* Setup water-specific parameters */
714 inr = nlist->iinr[0];
715 iq1 = facel*charge[inr+1];
716 iq2 = facel*charge[inr+2];
717 iq3 = facel*charge[inr+3];
718 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
719
720 jq1 = charge[inr+1];
721 jq2 = charge[inr+2];
722 jq3 = charge[inr+3];
723 vdwjidx0 = 2*vdwtype[inr+0];
724 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
725 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
726 qq11 = iq1*jq1;
727 qq12 = iq1*jq2;
728 qq13 = iq1*jq3;
729 qq21 = iq2*jq1;
730 qq22 = iq2*jq2;
731 qq23 = iq2*jq3;
732 qq31 = iq3*jq1;
733 qq32 = iq3*jq2;
734 qq33 = iq3*jq3;
735
736 outeriter = 0;
737 inneriter = 0;
738
739 /* Start outer loop over neighborlists */
740 for(iidx=0; iidx<nri; iidx++)
741 {
742 /* Load shift vector for this list */
743 i_shift_offset = DIM3*shiftidx[iidx];
744 shX = shiftvec[i_shift_offset+XX0];
745 shY = shiftvec[i_shift_offset+YY1];
746 shZ = shiftvec[i_shift_offset+ZZ2];
747
748 /* Load limits for loop over neighbors */
749 j_index_start = jindex[iidx];
750 j_index_end = jindex[iidx+1];
751
752 /* Get outer coordinate index */
753 inr = iinr[iidx];
754 i_coord_offset = DIM3*inr;
755
756 /* Load i particle coords and add shift vector */
757 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
758 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
759 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
760 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
761 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
762 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
763 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
764 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
765 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
766 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
767 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
768 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
769
770 fix0 = 0.0;
771 fiy0 = 0.0;
772 fiz0 = 0.0;
773 fix1 = 0.0;
774 fiy1 = 0.0;
775 fiz1 = 0.0;
776 fix2 = 0.0;
777 fiy2 = 0.0;
778 fiz2 = 0.0;
779 fix3 = 0.0;
780 fiy3 = 0.0;
781 fiz3 = 0.0;
782
783 /* Start inner kernel loop */
784 for(jidx=j_index_start; jidx<j_index_end; jidx++)
785 {
786 /* Get j neighbor index, and coordinate index */
787 jnr = jjnr[jidx];
788 j_coord_offset = DIM3*jnr;
789
790 /* load j atom coordinates */
791 jx0 = x[j_coord_offset+DIM3*0+XX0];
792 jy0 = x[j_coord_offset+DIM3*0+YY1];
793 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
794 jx1 = x[j_coord_offset+DIM3*1+XX0];
795 jy1 = x[j_coord_offset+DIM3*1+YY1];
796 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
797 jx2 = x[j_coord_offset+DIM3*2+XX0];
798 jy2 = x[j_coord_offset+DIM3*2+YY1];
799 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
800 jx3 = x[j_coord_offset+DIM3*3+XX0];
801 jy3 = x[j_coord_offset+DIM3*3+YY1];
802 jz3 = x[j_coord_offset+DIM3*3+ZZ2];
803
804 /* Calculate displacement vector */
805 dx00 = ix0 - jx0;
806 dy00 = iy0 - jy0;
807 dz00 = iz0 - jz0;
808 dx11 = ix1 - jx1;
809 dy11 = iy1 - jy1;
810 dz11 = iz1 - jz1;
811 dx12 = ix1 - jx2;
812 dy12 = iy1 - jy2;
813 dz12 = iz1 - jz2;
814 dx13 = ix1 - jx3;
815 dy13 = iy1 - jy3;
816 dz13 = iz1 - jz3;
817 dx21 = ix2 - jx1;
818 dy21 = iy2 - jy1;
819 dz21 = iz2 - jz1;
820 dx22 = ix2 - jx2;
821 dy22 = iy2 - jy2;
822 dz22 = iz2 - jz2;
823 dx23 = ix2 - jx3;
824 dy23 = iy2 - jy3;
825 dz23 = iz2 - jz3;
826 dx31 = ix3 - jx1;
827 dy31 = iy3 - jy1;
828 dz31 = iz3 - jz1;
829 dx32 = ix3 - jx2;
830 dy32 = iy3 - jy2;
831 dz32 = iz3 - jz2;
832 dx33 = ix3 - jx3;
833 dy33 = iy3 - jy3;
834 dz33 = iz3 - jz3;
835
836 /* Calculate squared distance and things based on it */
837 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
838 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
839 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
840 rsq13 = dx13*dx13+dy13*dy13+dz13*dz13;
841 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
842 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
843 rsq23 = dx23*dx23+dy23*dy23+dz23*dz23;
844 rsq31 = dx31*dx31+dy31*dy31+dz31*dz31;
845 rsq32 = dx32*dx32+dy32*dy32+dz32*dz32;
846 rsq33 = dx33*dx33+dy33*dy33+dz33*dz33;
847
848 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
849 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
850 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
851 rinv13 = gmx_invsqrt(rsq13)gmx_software_invsqrt(rsq13);
852 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
853 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
854 rinv23 = gmx_invsqrt(rsq23)gmx_software_invsqrt(rsq23);
855 rinv31 = gmx_invsqrt(rsq31)gmx_software_invsqrt(rsq31);
856 rinv32 = gmx_invsqrt(rsq32)gmx_software_invsqrt(rsq32);
857 rinv33 = gmx_invsqrt(rsq33)gmx_software_invsqrt(rsq33);
858
859 rinvsq11 = rinv11*rinv11;
860 rinvsq12 = rinv12*rinv12;
861 rinvsq13 = rinv13*rinv13;
862 rinvsq21 = rinv21*rinv21;
863 rinvsq22 = rinv22*rinv22;
864 rinvsq23 = rinv23*rinv23;
865 rinvsq31 = rinv31*rinv31;
866 rinvsq32 = rinv32*rinv32;
867 rinvsq33 = rinv33*rinv33;
868
869 /**************************
870 * CALCULATE INTERACTIONS *
871 **************************/
872
873 r00 = rsq00*rinv00;
874
875 /* Calculate table index by multiplying r with table scale and truncate to integer */
876 rt = r00*vftabscale;
877 vfitab = rt;
878 vfeps = rt-vfitab;
879 vfitab = 2*4*vfitab;
880
881 /* CUBIC SPLINE TABLE DISPERSION */
882 vfitab += 0;
883 F = vftab[vfitab+1];
884 Geps = vfeps*vftab[vfitab+2];
885 Heps2 = vfeps*vfeps*vftab[vfitab+3];
886 Fp = F+Geps+Heps2;
887 FF = Fp+Geps+2.0*Heps2;
888 fvdw6 = c6_00*FF;
889
890 /* CUBIC SPLINE TABLE REPULSION */
891 F = vftab[vfitab+5];
892 Geps = vfeps*vftab[vfitab+6];
893 Heps2 = vfeps*vfeps*vftab[vfitab+7];
894 Fp = F+Geps+Heps2;
895 FF = Fp+Geps+2.0*Heps2;
896 fvdw12 = c12_00*FF;
897 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
898
899 fscal = fvdw;
900
901 /* Calculate temporary vectorial force */
902 tx = fscal*dx00;
903 ty = fscal*dy00;
904 tz = fscal*dz00;
905
906 /* Update vectorial force */
907 fix0 += tx;
908 fiy0 += ty;
909 fiz0 += tz;
910 f[j_coord_offset+DIM3*0+XX0] -= tx;
911 f[j_coord_offset+DIM3*0+YY1] -= ty;
912 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
913
914 /**************************
915 * CALCULATE INTERACTIONS *
916 **************************/
917
918 /* REACTION-FIELD ELECTROSTATICS */
919 felec = qq11*(rinv11*rinvsq11-krf2);
920
921 fscal = felec;
922
923 /* Calculate temporary vectorial force */
924 tx = fscal*dx11;
925 ty = fscal*dy11;
926 tz = fscal*dz11;
927
928 /* Update vectorial force */
929 fix1 += tx;
930 fiy1 += ty;
931 fiz1 += tz;
932 f[j_coord_offset+DIM3*1+XX0] -= tx;
933 f[j_coord_offset+DIM3*1+YY1] -= ty;
934 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
935
936 /**************************
937 * CALCULATE INTERACTIONS *
938 **************************/
939
940 /* REACTION-FIELD ELECTROSTATICS */
941 felec = qq12*(rinv12*rinvsq12-krf2);
942
943 fscal = felec;
944
945 /* Calculate temporary vectorial force */
946 tx = fscal*dx12;
947 ty = fscal*dy12;
948 tz = fscal*dz12;
949
950 /* Update vectorial force */
951 fix1 += tx;
952 fiy1 += ty;
953 fiz1 += tz;
954 f[j_coord_offset+DIM3*2+XX0] -= tx;
955 f[j_coord_offset+DIM3*2+YY1] -= ty;
956 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
957
958 /**************************
959 * CALCULATE INTERACTIONS *
960 **************************/
961
962 /* REACTION-FIELD ELECTROSTATICS */
963 felec = qq13*(rinv13*rinvsq13-krf2);
964
965 fscal = felec;
966
967 /* Calculate temporary vectorial force */
968 tx = fscal*dx13;
969 ty = fscal*dy13;
970 tz = fscal*dz13;
971
972 /* Update vectorial force */
973 fix1 += tx;
974 fiy1 += ty;
975 fiz1 += tz;
976 f[j_coord_offset+DIM3*3+XX0] -= tx;
977 f[j_coord_offset+DIM3*3+YY1] -= ty;
978 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
979
980 /**************************
981 * CALCULATE INTERACTIONS *
982 **************************/
983
984 /* REACTION-FIELD ELECTROSTATICS */
985 felec = qq21*(rinv21*rinvsq21-krf2);
986
987 fscal = felec;
988
989 /* Calculate temporary vectorial force */
990 tx = fscal*dx21;
991 ty = fscal*dy21;
992 tz = fscal*dz21;
993
994 /* Update vectorial force */
995 fix2 += tx;
996 fiy2 += ty;
997 fiz2 += tz;
998 f[j_coord_offset+DIM3*1+XX0] -= tx;
999 f[j_coord_offset+DIM3*1+YY1] -= ty;
1000 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1001
1002 /**************************
1003 * CALCULATE INTERACTIONS *
1004 **************************/
1005
1006 /* REACTION-FIELD ELECTROSTATICS */
1007 felec = qq22*(rinv22*rinvsq22-krf2);
1008
1009 fscal = felec;
1010
1011 /* Calculate temporary vectorial force */
1012 tx = fscal*dx22;
1013 ty = fscal*dy22;
1014 tz = fscal*dz22;
1015
1016 /* Update vectorial force */
1017 fix2 += tx;
1018 fiy2 += ty;
1019 fiz2 += tz;
1020 f[j_coord_offset+DIM3*2+XX0] -= tx;
1021 f[j_coord_offset+DIM3*2+YY1] -= ty;
1022 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1023
1024 /**************************
1025 * CALCULATE INTERACTIONS *
1026 **************************/
1027
1028 /* REACTION-FIELD ELECTROSTATICS */
1029 felec = qq23*(rinv23*rinvsq23-krf2);
1030
1031 fscal = felec;
1032
1033 /* Calculate temporary vectorial force */
1034 tx = fscal*dx23;
1035 ty = fscal*dy23;
1036 tz = fscal*dz23;
1037
1038 /* Update vectorial force */
1039 fix2 += tx;
1040 fiy2 += ty;
1041 fiz2 += tz;
1042 f[j_coord_offset+DIM3*3+XX0] -= tx;
1043 f[j_coord_offset+DIM3*3+YY1] -= ty;
1044 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1045
1046 /**************************
1047 * CALCULATE INTERACTIONS *
1048 **************************/
1049
1050 /* REACTION-FIELD ELECTROSTATICS */
1051 felec = qq31*(rinv31*rinvsq31-krf2);
1052
1053 fscal = felec;
1054
1055 /* Calculate temporary vectorial force */
1056 tx = fscal*dx31;
1057 ty = fscal*dy31;
1058 tz = fscal*dz31;
1059
1060 /* Update vectorial force */
1061 fix3 += tx;
1062 fiy3 += ty;
1063 fiz3 += tz;
1064 f[j_coord_offset+DIM3*1+XX0] -= tx;
1065 f[j_coord_offset+DIM3*1+YY1] -= ty;
1066 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1067
1068 /**************************
1069 * CALCULATE INTERACTIONS *
1070 **************************/
1071
1072 /* REACTION-FIELD ELECTROSTATICS */
1073 felec = qq32*(rinv32*rinvsq32-krf2);
1074
1075 fscal = felec;
1076
1077 /* Calculate temporary vectorial force */
1078 tx = fscal*dx32;
1079 ty = fscal*dy32;
1080 tz = fscal*dz32;
1081
1082 /* Update vectorial force */
1083 fix3 += tx;
1084 fiy3 += ty;
1085 fiz3 += tz;
1086 f[j_coord_offset+DIM3*2+XX0] -= tx;
1087 f[j_coord_offset+DIM3*2+YY1] -= ty;
1088 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1089
1090 /**************************
1091 * CALCULATE INTERACTIONS *
1092 **************************/
1093
1094 /* REACTION-FIELD ELECTROSTATICS */
1095 felec = qq33*(rinv33*rinvsq33-krf2);
1096
1097 fscal = felec;
1098
1099 /* Calculate temporary vectorial force */
1100 tx = fscal*dx33;
1101 ty = fscal*dy33;
1102 tz = fscal*dz33;
1103
1104 /* Update vectorial force */
1105 fix3 += tx;
1106 fiy3 += ty;
1107 fiz3 += tz;
1108 f[j_coord_offset+DIM3*3+XX0] -= tx;
1109 f[j_coord_offset+DIM3*3+YY1] -= ty;
1110 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1111
1112 /* Inner loop uses 281 flops */
1113 }
1114 /* End of innermost loop */
1115
1116 tx = ty = tz = 0;
1117 f[i_coord_offset+DIM3*0+XX0] += fix0;
1118 f[i_coord_offset+DIM3*0+YY1] += fiy0;
1119 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
1120 tx += fix0;
1121 ty += fiy0;
1122 tz += fiz0;
1123 f[i_coord_offset+DIM3*1+XX0] += fix1;
1124 f[i_coord_offset+DIM3*1+YY1] += fiy1;
1125 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
1126 tx += fix1;
1127 ty += fiy1;
1128 tz += fiz1;
1129 f[i_coord_offset+DIM3*2+XX0] += fix2;
1130 f[i_coord_offset+DIM3*2+YY1] += fiy2;
1131 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
1132 tx += fix2;
1133 ty += fiy2;
1134 tz += fiz2;
1135 f[i_coord_offset+DIM3*3+XX0] += fix3;
1136 f[i_coord_offset+DIM3*3+YY1] += fiy3;
1137 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
1138 tx += fix3;
1139 ty += fiy3;
1140 tz += fiz3;
1141 fshift[i_shift_offset+XX0] += tx;
1142 fshift[i_shift_offset+YY1] += ty;
1143 fshift[i_shift_offset+ZZ2] += tz;
1144
1145 /* Increment number of inner iterations */
1146 inneriter += j_index_end - j_index_start;
1147
1148 /* Outer loop uses 39 flops */
1149 }
1150
1151 /* Increment number of outer iterations */
1152 outeriter += nri;
1153
1154 /* Update outer/inner flops */
1155
1156 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*39 + inneriter*281)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4W4_F] += outeriter*39 + inneriter
*281
;
1157}