Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_c.c
Location:line 312, column 5
Description:Value stored to 'sh_vdw_invrcut6' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_c
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: LennardJones
53 * Geometry: Particle-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwjidx0;
75 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77 real velec,felec,velecsum,facel,crf,krf,krf2;
78 real *charge;
79 int nvdwtype;
80 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
81 int *vdwtype;
82 real *vdwparam;
83
84 x = xx[0];
85 f = ff[0];
86
87 nri = nlist->nri;
88 iinr = nlist->iinr;
89 jindex = nlist->jindex;
90 jjnr = nlist->jjnr;
91 shiftidx = nlist->shift;
92 gid = nlist->gid;
93 shiftvec = fr->shift_vec[0];
94 fshift = fr->fshift[0];
95 facel = fr->epsfac;
96 charge = mdatoms->chargeA;
97 krf = fr->ic->k_rf;
98 krf2 = krf*2.0;
99 crf = fr->ic->c_rf;
100 nvdwtype = fr->ntype;
101 vdwparam = fr->nbfp;
102 vdwtype = mdatoms->typeA;
103
104 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
105 rcutoff = fr->rcoulomb;
106 rcutoff2 = rcutoff*rcutoff;
107
108 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
109 rvdw = fr->rvdw;
110
111 outeriter = 0;
112 inneriter = 0;
113
114 /* Start outer loop over neighborlists */
115 for(iidx=0; iidx<nri; iidx++)
116 {
117 /* Load shift vector for this list */
118 i_shift_offset = DIM3*shiftidx[iidx];
119 shX = shiftvec[i_shift_offset+XX0];
120 shY = shiftvec[i_shift_offset+YY1];
121 shZ = shiftvec[i_shift_offset+ZZ2];
122
123 /* Load limits for loop over neighbors */
124 j_index_start = jindex[iidx];
125 j_index_end = jindex[iidx+1];
126
127 /* Get outer coordinate index */
128 inr = iinr[iidx];
129 i_coord_offset = DIM3*inr;
130
131 /* Load i particle coords and add shift vector */
132 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
133 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
134 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
135
136 fix0 = 0.0;
137 fiy0 = 0.0;
138 fiz0 = 0.0;
139
140 /* Load parameters for i particles */
141 iq0 = facel*charge[inr+0];
142 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
143
144 /* Reset potential sums */
145 velecsum = 0.0;
146 vvdwsum = 0.0;
147
148 /* Start inner kernel loop */
149 for(jidx=j_index_start; jidx<j_index_end; jidx++)
150 {
151 /* Get j neighbor index, and coordinate index */
152 jnr = jjnr[jidx];
153 j_coord_offset = DIM3*jnr;
154
155 /* load j atom coordinates */
156 jx0 = x[j_coord_offset+DIM3*0+XX0];
157 jy0 = x[j_coord_offset+DIM3*0+YY1];
158 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
159
160 /* Calculate displacement vector */
161 dx00 = ix0 - jx0;
162 dy00 = iy0 - jy0;
163 dz00 = iz0 - jz0;
164
165 /* Calculate squared distance and things based on it */
166 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
167
168 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
169
170 rinvsq00 = rinv00*rinv00;
171
172 /* Load parameters for j particles */
173 jq0 = charge[jnr+0];
174 vdwjidx0 = 2*vdwtype[jnr+0];
175
176 /**************************
177 * CALCULATE INTERACTIONS *
178 **************************/
179
180 if (rsq00<rcutoff2)
181 {
182
183 qq00 = iq0*jq0;
184 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
185 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
186
187 /* REACTION-FIELD ELECTROSTATICS */
188 velec = qq00*(rinv00+krf*rsq00-crf);
189 felec = qq00*(rinv00*rinvsq00-krf2);
190
191 /* LENNARD-JONES DISPERSION/REPULSION */
192
193 rinvsix = rinvsq00*rinvsq00*rinvsq00;
194 vvdw6 = c6_00*rinvsix;
195 vvdw12 = c12_00*rinvsix*rinvsix;
196 vvdw = (vvdw12 - c12_00*sh_vdw_invrcut6*sh_vdw_invrcut6)*(1.0/12.0) - (vvdw6 - c6_00*sh_vdw_invrcut6)*(1.0/6.0);
197 fvdw = (vvdw12-vvdw6)*rinvsq00;
198
199 /* Update potential sums from outer loop */
200 velecsum += velec;
201 vvdwsum += vvdw;
202
203 fscal = felec+fvdw;
204
205 /* Calculate temporary vectorial force */
206 tx = fscal*dx00;
207 ty = fscal*dy00;
208 tz = fscal*dz00;
209
210 /* Update vectorial force */
211 fix0 += tx;
212 fiy0 += ty;
213 fiz0 += tz;
214 f[j_coord_offset+DIM3*0+XX0] -= tx;
215 f[j_coord_offset+DIM3*0+YY1] -= ty;
216 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
217
218 }
219
220 /* Inner loop uses 49 flops */
221 }
222 /* End of innermost loop */
223
224 tx = ty = tz = 0;
225 f[i_coord_offset+DIM3*0+XX0] += fix0;
226 f[i_coord_offset+DIM3*0+YY1] += fiy0;
227 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
228 tx += fix0;
229 ty += fiy0;
230 tz += fiz0;
231 fshift[i_shift_offset+XX0] += tx;
232 fshift[i_shift_offset+YY1] += ty;
233 fshift[i_shift_offset+ZZ2] += tz;
234
235 ggid = gid[iidx];
236 /* Update potential energies */
237 kernel_data->energygrp_elec[ggid] += velecsum;
238 kernel_data->energygrp_vdw[ggid] += vvdwsum;
239
240 /* Increment number of inner iterations */
241 inneriter += j_index_end - j_index_start;
242
243 /* Outer loop uses 15 flops */
244 }
245
246 /* Increment number of outer iterations */
247 outeriter += nri;
248
249 /* Update outer/inner flops */
250
251 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*49)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_VF] += outeriter*15 + inneriter
*49
;
252}
253/*
254 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_c
255 * Electrostatics interaction: ReactionField
256 * VdW interaction: LennardJones
257 * Geometry: Particle-Particle
258 * Calculate force/pot: Force
259 */
260void
261nb_kernel_ElecRFCut_VdwLJSh_GeomP1P1_F_c
262 (t_nblist * gmx_restrict__restrict nlist,
263 rvec * gmx_restrict__restrict xx,
264 rvec * gmx_restrict__restrict ff,
265 t_forcerec * gmx_restrict__restrict fr,
266 t_mdatoms * gmx_restrict__restrict mdatoms,
267 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
268 t_nrnb * gmx_restrict__restrict nrnb)
269{
270 int i_shift_offset,i_coord_offset,j_coord_offset;
271 int j_index_start,j_index_end;
272 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
273 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
274 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
275 real *shiftvec,*fshift,*x,*f;
276 int vdwioffset0;
277 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
278 int vdwjidx0;
279 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
280 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
281 real velec,felec,velecsum,facel,crf,krf,krf2;
282 real *charge;
283 int nvdwtype;
284 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
285 int *vdwtype;
286 real *vdwparam;
287
288 x = xx[0];
289 f = ff[0];
290
291 nri = nlist->nri;
292 iinr = nlist->iinr;
293 jindex = nlist->jindex;
294 jjnr = nlist->jjnr;
295 shiftidx = nlist->shift;
296 gid = nlist->gid;
297 shiftvec = fr->shift_vec[0];
298 fshift = fr->fshift[0];
299 facel = fr->epsfac;
300 charge = mdatoms->chargeA;
301 krf = fr->ic->k_rf;
302 krf2 = krf*2.0;
303 crf = fr->ic->c_rf;
304 nvdwtype = fr->ntype;
305 vdwparam = fr->nbfp;
306 vdwtype = mdatoms->typeA;
307
308 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
309 rcutoff = fr->rcoulomb;
310 rcutoff2 = rcutoff*rcutoff;
311
312 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
Value stored to 'sh_vdw_invrcut6' is never read
313 rvdw = fr->rvdw;
314
315 outeriter = 0;
316 inneriter = 0;
317
318 /* Start outer loop over neighborlists */
319 for(iidx=0; iidx<nri; iidx++)
320 {
321 /* Load shift vector for this list */
322 i_shift_offset = DIM3*shiftidx[iidx];
323 shX = shiftvec[i_shift_offset+XX0];
324 shY = shiftvec[i_shift_offset+YY1];
325 shZ = shiftvec[i_shift_offset+ZZ2];
326
327 /* Load limits for loop over neighbors */
328 j_index_start = jindex[iidx];
329 j_index_end = jindex[iidx+1];
330
331 /* Get outer coordinate index */
332 inr = iinr[iidx];
333 i_coord_offset = DIM3*inr;
334
335 /* Load i particle coords and add shift vector */
336 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
337 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
338 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
339
340 fix0 = 0.0;
341 fiy0 = 0.0;
342 fiz0 = 0.0;
343
344 /* Load parameters for i particles */
345 iq0 = facel*charge[inr+0];
346 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
347
348 /* Start inner kernel loop */
349 for(jidx=j_index_start; jidx<j_index_end; jidx++)
350 {
351 /* Get j neighbor index, and coordinate index */
352 jnr = jjnr[jidx];
353 j_coord_offset = DIM3*jnr;
354
355 /* load j atom coordinates */
356 jx0 = x[j_coord_offset+DIM3*0+XX0];
357 jy0 = x[j_coord_offset+DIM3*0+YY1];
358 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
359
360 /* Calculate displacement vector */
361 dx00 = ix0 - jx0;
362 dy00 = iy0 - jy0;
363 dz00 = iz0 - jz0;
364
365 /* Calculate squared distance and things based on it */
366 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
367
368 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
369
370 rinvsq00 = rinv00*rinv00;
371
372 /* Load parameters for j particles */
373 jq0 = charge[jnr+0];
374 vdwjidx0 = 2*vdwtype[jnr+0];
375
376 /**************************
377 * CALCULATE INTERACTIONS *
378 **************************/
379
380 if (rsq00<rcutoff2)
381 {
382
383 qq00 = iq0*jq0;
384 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
385 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
386
387 /* REACTION-FIELD ELECTROSTATICS */
388 felec = qq00*(rinv00*rinvsq00-krf2);
389
390 /* LENNARD-JONES DISPERSION/REPULSION */
391
392 rinvsix = rinvsq00*rinvsq00*rinvsq00;
393 fvdw = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
394
395 fscal = felec+fvdw;
396
397 /* Calculate temporary vectorial force */
398 tx = fscal*dx00;
399 ty = fscal*dy00;
400 tz = fscal*dz00;
401
402 /* Update vectorial force */
403 fix0 += tx;
404 fiy0 += ty;
405 fiz0 += tz;
406 f[j_coord_offset+DIM3*0+XX0] -= tx;
407 f[j_coord_offset+DIM3*0+YY1] -= ty;
408 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
409
410 }
411
412 /* Inner loop uses 34 flops */
413 }
414 /* End of innermost loop */
415
416 tx = ty = tz = 0;
417 f[i_coord_offset+DIM3*0+XX0] += fix0;
418 f[i_coord_offset+DIM3*0+YY1] += fiy0;
419 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
420 tx += fix0;
421 ty += fiy0;
422 tz += fiz0;
423 fshift[i_shift_offset+XX0] += tx;
424 fshift[i_shift_offset+YY1] += ty;
425 fshift[i_shift_offset+ZZ2] += tz;
426
427 /* Increment number of inner iterations */
428 inneriter += j_index_end - j_index_start;
429
430 /* Outer loop uses 13 flops */
431 }
432
433 /* Increment number of outer iterations */
434 outeriter += nri;
435
436 /* Update outer/inner flops */
437
438 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*34)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_F] += outeriter*13 + inneriter
*34
;
439}