Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEw_VdwCSTab_GeomW3P1_c.c
Location:line 458, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: CubicSplineTable
53 * Geometry: Water3-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEw_VdwCSTab_GeomW3P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83 real velec,felec,velecsum,facel,crf,krf,krf2;
84 real *charge;
85 int nvdwtype;
86 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
87 int *vdwtype;
88 real *vdwparam;
89 int vfitab;
90 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
91 real *vftab;
92 int ewitab;
93 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
94 real *ewtab;
95
96 x = xx[0];
97 f = ff[0];
98
99 nri = nlist->nri;
100 iinr = nlist->iinr;
101 jindex = nlist->jindex;
102 jjnr = nlist->jjnr;
103 shiftidx = nlist->shift;
104 gid = nlist->gid;
105 shiftvec = fr->shift_vec[0];
106 fshift = fr->fshift[0];
107 facel = fr->epsfac;
108 charge = mdatoms->chargeA;
109 nvdwtype = fr->ntype;
110 vdwparam = fr->nbfp;
111 vdwtype = mdatoms->typeA;
112
113 vftab = kernel_data->table_vdw->data;
114 vftabscale = kernel_data->table_vdw->scale;
115
116 sh_ewald = fr->ic->sh_ewald;
117 ewtab = fr->ic->tabq_coul_FDV0;
118 ewtabscale = fr->ic->tabq_scale;
119 ewtabhalfspace = 0.5/ewtabscale;
120
121 /* Setup water-specific parameters */
122 inr = nlist->iinr[0];
123 iq0 = facel*charge[inr+0];
124 iq1 = facel*charge[inr+1];
125 iq2 = facel*charge[inr+2];
126 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
127
128 outeriter = 0;
129 inneriter = 0;
130
131 /* Start outer loop over neighborlists */
132 for(iidx=0; iidx<nri; iidx++)
133 {
134 /* Load shift vector for this list */
135 i_shift_offset = DIM3*shiftidx[iidx];
136 shX = shiftvec[i_shift_offset+XX0];
137 shY = shiftvec[i_shift_offset+YY1];
138 shZ = shiftvec[i_shift_offset+ZZ2];
139
140 /* Load limits for loop over neighbors */
141 j_index_start = jindex[iidx];
142 j_index_end = jindex[iidx+1];
143
144 /* Get outer coordinate index */
145 inr = iinr[iidx];
146 i_coord_offset = DIM3*inr;
147
148 /* Load i particle coords and add shift vector */
149 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
150 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
151 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
152 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
153 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
154 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
155 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
156 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
157 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
158
159 fix0 = 0.0;
160 fiy0 = 0.0;
161 fiz0 = 0.0;
162 fix1 = 0.0;
163 fiy1 = 0.0;
164 fiz1 = 0.0;
165 fix2 = 0.0;
166 fiy2 = 0.0;
167 fiz2 = 0.0;
168
169 /* Reset potential sums */
170 velecsum = 0.0;
171 vvdwsum = 0.0;
172
173 /* Start inner kernel loop */
174 for(jidx=j_index_start; jidx<j_index_end; jidx++)
175 {
176 /* Get j neighbor index, and coordinate index */
177 jnr = jjnr[jidx];
178 j_coord_offset = DIM3*jnr;
179
180 /* load j atom coordinates */
181 jx0 = x[j_coord_offset+DIM3*0+XX0];
182 jy0 = x[j_coord_offset+DIM3*0+YY1];
183 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
184
185 /* Calculate displacement vector */
186 dx00 = ix0 - jx0;
187 dy00 = iy0 - jy0;
188 dz00 = iz0 - jz0;
189 dx10 = ix1 - jx0;
190 dy10 = iy1 - jy0;
191 dz10 = iz1 - jz0;
192 dx20 = ix2 - jx0;
193 dy20 = iy2 - jy0;
194 dz20 = iz2 - jz0;
195
196 /* Calculate squared distance and things based on it */
197 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
198 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
199 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
200
201 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
202 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
203 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
204
205 rinvsq00 = rinv00*rinv00;
206 rinvsq10 = rinv10*rinv10;
207 rinvsq20 = rinv20*rinv20;
208
209 /* Load parameters for j particles */
210 jq0 = charge[jnr+0];
211 vdwjidx0 = 2*vdwtype[jnr+0];
212
213 /**************************
214 * CALCULATE INTERACTIONS *
215 **************************/
216
217 r00 = rsq00*rinv00;
218
219 qq00 = iq0*jq0;
220 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
221 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
222
223 /* Calculate table index by multiplying r with table scale and truncate to integer */
224 rt = r00*vftabscale;
225 vfitab = rt;
226 vfeps = rt-vfitab;
227 vfitab = 2*4*vfitab;
228
229 /* EWALD ELECTROSTATICS */
230
231 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
232 ewrt = r00*ewtabscale;
233 ewitab = ewrt;
234 eweps = ewrt-ewitab;
235 ewitab = 4*ewitab;
236 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
237 velec = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
238 felec = qq00*rinv00*(rinvsq00-felec);
239
240 /* CUBIC SPLINE TABLE DISPERSION */
241 vfitab += 0;
242 Y = vftab[vfitab];
243 F = vftab[vfitab+1];
244 Geps = vfeps*vftab[vfitab+2];
245 Heps2 = vfeps*vfeps*vftab[vfitab+3];
246 Fp = F+Geps+Heps2;
247 VV = Y+vfeps*Fp;
248 vvdw6 = c6_00*VV;
249 FF = Fp+Geps+2.0*Heps2;
250 fvdw6 = c6_00*FF;
251
252 /* CUBIC SPLINE TABLE REPULSION */
253 Y = vftab[vfitab+4];
254 F = vftab[vfitab+5];
255 Geps = vfeps*vftab[vfitab+6];
256 Heps2 = vfeps*vfeps*vftab[vfitab+7];
257 Fp = F+Geps+Heps2;
258 VV = Y+vfeps*Fp;
259 vvdw12 = c12_00*VV;
260 FF = Fp+Geps+2.0*Heps2;
261 fvdw12 = c12_00*FF;
262 vvdw = vvdw12+vvdw6;
263 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
264
265 /* Update potential sums from outer loop */
266 velecsum += velec;
267 vvdwsum += vvdw;
268
269 fscal = felec+fvdw;
270
271 /* Calculate temporary vectorial force */
272 tx = fscal*dx00;
273 ty = fscal*dy00;
274 tz = fscal*dz00;
275
276 /* Update vectorial force */
277 fix0 += tx;
278 fiy0 += ty;
279 fiz0 += tz;
280 f[j_coord_offset+DIM3*0+XX0] -= tx;
281 f[j_coord_offset+DIM3*0+YY1] -= ty;
282 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
283
284 /**************************
285 * CALCULATE INTERACTIONS *
286 **************************/
287
288 r10 = rsq10*rinv10;
289
290 qq10 = iq1*jq0;
291
292 /* EWALD ELECTROSTATICS */
293
294 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
295 ewrt = r10*ewtabscale;
296 ewitab = ewrt;
297 eweps = ewrt-ewitab;
298 ewitab = 4*ewitab;
299 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
300 velec = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
301 felec = qq10*rinv10*(rinvsq10-felec);
302
303 /* Update potential sums from outer loop */
304 velecsum += velec;
305
306 fscal = felec;
307
308 /* Calculate temporary vectorial force */
309 tx = fscal*dx10;
310 ty = fscal*dy10;
311 tz = fscal*dz10;
312
313 /* Update vectorial force */
314 fix1 += tx;
315 fiy1 += ty;
316 fiz1 += tz;
317 f[j_coord_offset+DIM3*0+XX0] -= tx;
318 f[j_coord_offset+DIM3*0+YY1] -= ty;
319 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
320
321 /**************************
322 * CALCULATE INTERACTIONS *
323 **************************/
324
325 r20 = rsq20*rinv20;
326
327 qq20 = iq2*jq0;
328
329 /* EWALD ELECTROSTATICS */
330
331 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
332 ewrt = r20*ewtabscale;
333 ewitab = ewrt;
334 eweps = ewrt-ewitab;
335 ewitab = 4*ewitab;
336 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
337 velec = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
338 felec = qq20*rinv20*(rinvsq20-felec);
339
340 /* Update potential sums from outer loop */
341 velecsum += velec;
342
343 fscal = felec;
344
345 /* Calculate temporary vectorial force */
346 tx = fscal*dx20;
347 ty = fscal*dy20;
348 tz = fscal*dz20;
349
350 /* Update vectorial force */
351 fix2 += tx;
352 fiy2 += ty;
353 fiz2 += tz;
354 f[j_coord_offset+DIM3*0+XX0] -= tx;
355 f[j_coord_offset+DIM3*0+YY1] -= ty;
356 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
357
358 /* Inner loop uses 156 flops */
359 }
360 /* End of innermost loop */
361
362 tx = ty = tz = 0;
363 f[i_coord_offset+DIM3*0+XX0] += fix0;
364 f[i_coord_offset+DIM3*0+YY1] += fiy0;
365 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
366 tx += fix0;
367 ty += fiy0;
368 tz += fiz0;
369 f[i_coord_offset+DIM3*1+XX0] += fix1;
370 f[i_coord_offset+DIM3*1+YY1] += fiy1;
371 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
372 tx += fix1;
373 ty += fiy1;
374 tz += fiz1;
375 f[i_coord_offset+DIM3*2+XX0] += fix2;
376 f[i_coord_offset+DIM3*2+YY1] += fiy2;
377 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
378 tx += fix2;
379 ty += fiy2;
380 tz += fiz2;
381 fshift[i_shift_offset+XX0] += tx;
382 fshift[i_shift_offset+YY1] += ty;
383 fshift[i_shift_offset+ZZ2] += tz;
384
385 ggid = gid[iidx];
386 /* Update potential energies */
387 kernel_data->energygrp_elec[ggid] += velecsum;
388 kernel_data->energygrp_vdw[ggid] += vvdwsum;
389
390 /* Increment number of inner iterations */
391 inneriter += j_index_end - j_index_start;
392
393 /* Outer loop uses 32 flops */
394 }
395
396 /* Increment number of outer iterations */
397 outeriter += nri;
398
399 /* Update outer/inner flops */
400
401 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*32 + inneriter*156)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_VF] += outeriter*32 + inneriter
*156
;
402}
403/*
404 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_c
405 * Electrostatics interaction: Ewald
406 * VdW interaction: CubicSplineTable
407 * Geometry: Water3-Particle
408 * Calculate force/pot: Force
409 */
410void
411nb_kernel_ElecEw_VdwCSTab_GeomW3P1_F_c
412 (t_nblist * gmx_restrict__restrict nlist,
413 rvec * gmx_restrict__restrict xx,
414 rvec * gmx_restrict__restrict ff,
415 t_forcerec * gmx_restrict__restrict fr,
416 t_mdatoms * gmx_restrict__restrict mdatoms,
417 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
418 t_nrnb * gmx_restrict__restrict nrnb)
419{
420 int i_shift_offset,i_coord_offset,j_coord_offset;
421 int j_index_start,j_index_end;
422 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
423 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
424 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
425 real *shiftvec,*fshift,*x,*f;
426 int vdwioffset0;
427 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
428 int vdwioffset1;
429 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
430 int vdwioffset2;
431 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
432 int vdwjidx0;
433 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
434 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
435 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
436 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
437 real velec,felec,velecsum,facel,crf,krf,krf2;
438 real *charge;
439 int nvdwtype;
440 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
441 int *vdwtype;
442 real *vdwparam;
443 int vfitab;
444 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
445 real *vftab;
446 int ewitab;
447 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
448 real *ewtab;
449
450 x = xx[0];
451 f = ff[0];
452
453 nri = nlist->nri;
454 iinr = nlist->iinr;
455 jindex = nlist->jindex;
456 jjnr = nlist->jjnr;
457 shiftidx = nlist->shift;
458 gid = nlist->gid;
Value stored to 'gid' is never read
459 shiftvec = fr->shift_vec[0];
460 fshift = fr->fshift[0];
461 facel = fr->epsfac;
462 charge = mdatoms->chargeA;
463 nvdwtype = fr->ntype;
464 vdwparam = fr->nbfp;
465 vdwtype = mdatoms->typeA;
466
467 vftab = kernel_data->table_vdw->data;
468 vftabscale = kernel_data->table_vdw->scale;
469
470 sh_ewald = fr->ic->sh_ewald;
471 ewtab = fr->ic->tabq_coul_F;
472 ewtabscale = fr->ic->tabq_scale;
473 ewtabhalfspace = 0.5/ewtabscale;
474
475 /* Setup water-specific parameters */
476 inr = nlist->iinr[0];
477 iq0 = facel*charge[inr+0];
478 iq1 = facel*charge[inr+1];
479 iq2 = facel*charge[inr+2];
480 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
481
482 outeriter = 0;
483 inneriter = 0;
484
485 /* Start outer loop over neighborlists */
486 for(iidx=0; iidx<nri; iidx++)
487 {
488 /* Load shift vector for this list */
489 i_shift_offset = DIM3*shiftidx[iidx];
490 shX = shiftvec[i_shift_offset+XX0];
491 shY = shiftvec[i_shift_offset+YY1];
492 shZ = shiftvec[i_shift_offset+ZZ2];
493
494 /* Load limits for loop over neighbors */
495 j_index_start = jindex[iidx];
496 j_index_end = jindex[iidx+1];
497
498 /* Get outer coordinate index */
499 inr = iinr[iidx];
500 i_coord_offset = DIM3*inr;
501
502 /* Load i particle coords and add shift vector */
503 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
504 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
505 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
506 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
507 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
508 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
509 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
510 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
511 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
512
513 fix0 = 0.0;
514 fiy0 = 0.0;
515 fiz0 = 0.0;
516 fix1 = 0.0;
517 fiy1 = 0.0;
518 fiz1 = 0.0;
519 fix2 = 0.0;
520 fiy2 = 0.0;
521 fiz2 = 0.0;
522
523 /* Start inner kernel loop */
524 for(jidx=j_index_start; jidx<j_index_end; jidx++)
525 {
526 /* Get j neighbor index, and coordinate index */
527 jnr = jjnr[jidx];
528 j_coord_offset = DIM3*jnr;
529
530 /* load j atom coordinates */
531 jx0 = x[j_coord_offset+DIM3*0+XX0];
532 jy0 = x[j_coord_offset+DIM3*0+YY1];
533 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
534
535 /* Calculate displacement vector */
536 dx00 = ix0 - jx0;
537 dy00 = iy0 - jy0;
538 dz00 = iz0 - jz0;
539 dx10 = ix1 - jx0;
540 dy10 = iy1 - jy0;
541 dz10 = iz1 - jz0;
542 dx20 = ix2 - jx0;
543 dy20 = iy2 - jy0;
544 dz20 = iz2 - jz0;
545
546 /* Calculate squared distance and things based on it */
547 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
548 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
549 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
550
551 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
552 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
553 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
554
555 rinvsq00 = rinv00*rinv00;
556 rinvsq10 = rinv10*rinv10;
557 rinvsq20 = rinv20*rinv20;
558
559 /* Load parameters for j particles */
560 jq0 = charge[jnr+0];
561 vdwjidx0 = 2*vdwtype[jnr+0];
562
563 /**************************
564 * CALCULATE INTERACTIONS *
565 **************************/
566
567 r00 = rsq00*rinv00;
568
569 qq00 = iq0*jq0;
570 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
571 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
572
573 /* Calculate table index by multiplying r with table scale and truncate to integer */
574 rt = r00*vftabscale;
575 vfitab = rt;
576 vfeps = rt-vfitab;
577 vfitab = 2*4*vfitab;
578
579 /* EWALD ELECTROSTATICS */
580
581 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
582 ewrt = r00*ewtabscale;
583 ewitab = ewrt;
584 eweps = ewrt-ewitab;
585 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
586 felec = qq00*rinv00*(rinvsq00-felec);
587
588 /* CUBIC SPLINE TABLE DISPERSION */
589 vfitab += 0;
590 F = vftab[vfitab+1];
591 Geps = vfeps*vftab[vfitab+2];
592 Heps2 = vfeps*vfeps*vftab[vfitab+3];
593 Fp = F+Geps+Heps2;
594 FF = Fp+Geps+2.0*Heps2;
595 fvdw6 = c6_00*FF;
596
597 /* CUBIC SPLINE TABLE REPULSION */
598 F = vftab[vfitab+5];
599 Geps = vfeps*vftab[vfitab+6];
600 Heps2 = vfeps*vfeps*vftab[vfitab+7];
601 Fp = F+Geps+Heps2;
602 FF = Fp+Geps+2.0*Heps2;
603 fvdw12 = c12_00*FF;
604 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
605
606 fscal = felec+fvdw;
607
608 /* Calculate temporary vectorial force */
609 tx = fscal*dx00;
610 ty = fscal*dy00;
611 tz = fscal*dz00;
612
613 /* Update vectorial force */
614 fix0 += tx;
615 fiy0 += ty;
616 fiz0 += tz;
617 f[j_coord_offset+DIM3*0+XX0] -= tx;
618 f[j_coord_offset+DIM3*0+YY1] -= ty;
619 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
620
621 /**************************
622 * CALCULATE INTERACTIONS *
623 **************************/
624
625 r10 = rsq10*rinv10;
626
627 qq10 = iq1*jq0;
628
629 /* EWALD ELECTROSTATICS */
630
631 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
632 ewrt = r10*ewtabscale;
633 ewitab = ewrt;
634 eweps = ewrt-ewitab;
635 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
636 felec = qq10*rinv10*(rinvsq10-felec);
637
638 fscal = felec;
639
640 /* Calculate temporary vectorial force */
641 tx = fscal*dx10;
642 ty = fscal*dy10;
643 tz = fscal*dz10;
644
645 /* Update vectorial force */
646 fix1 += tx;
647 fiy1 += ty;
648 fiz1 += tz;
649 f[j_coord_offset+DIM3*0+XX0] -= tx;
650 f[j_coord_offset+DIM3*0+YY1] -= ty;
651 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
652
653 /**************************
654 * CALCULATE INTERACTIONS *
655 **************************/
656
657 r20 = rsq20*rinv20;
658
659 qq20 = iq2*jq0;
660
661 /* EWALD ELECTROSTATICS */
662
663 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
664 ewrt = r20*ewtabscale;
665 ewitab = ewrt;
666 eweps = ewrt-ewitab;
667 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
668 felec = qq20*rinv20*(rinvsq20-felec);
669
670 fscal = felec;
671
672 /* Calculate temporary vectorial force */
673 tx = fscal*dx20;
674 ty = fscal*dy20;
675 tz = fscal*dz20;
676
677 /* Update vectorial force */
678 fix2 += tx;
679 fiy2 += ty;
680 fiz2 += tz;
681 f[j_coord_offset+DIM3*0+XX0] -= tx;
682 f[j_coord_offset+DIM3*0+YY1] -= ty;
683 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
684
685 /* Inner loop uses 127 flops */
686 }
687 /* End of innermost loop */
688
689 tx = ty = tz = 0;
690 f[i_coord_offset+DIM3*0+XX0] += fix0;
691 f[i_coord_offset+DIM3*0+YY1] += fiy0;
692 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
693 tx += fix0;
694 ty += fiy0;
695 tz += fiz0;
696 f[i_coord_offset+DIM3*1+XX0] += fix1;
697 f[i_coord_offset+DIM3*1+YY1] += fiy1;
698 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
699 tx += fix1;
700 ty += fiy1;
701 tz += fiz1;
702 f[i_coord_offset+DIM3*2+XX0] += fix2;
703 f[i_coord_offset+DIM3*2+YY1] += fiy2;
704 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
705 tx += fix2;
706 ty += fiy2;
707 tz += fiz2;
708 fshift[i_shift_offset+XX0] += tx;
709 fshift[i_shift_offset+YY1] += ty;
710 fshift[i_shift_offset+ZZ2] += tz;
711
712 /* Increment number of inner iterations */
713 inneriter += j_index_end - j_index_start;
714
715 /* Outer loop uses 30 flops */
716 }
717
718 /* Increment number of outer iterations */
719 outeriter += nri;
720
721 /* Update outer/inner flops */
722
723 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*30 + inneriter*127)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_F] += outeriter*30 + inneriter
*127
;
724}