Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecRF_VdwBham_GeomW4P1_c.c
Location:line 447, column 5
Description:Value stored to 'crf' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwBham_GeomW4P1_VF_c
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: Buckingham
53 * Geometry: Water4-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecRF_VdwBham_GeomW4P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwioffset3;
79 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80 int vdwjidx0;
81 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
83 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
84 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
85 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
86 real velec,felec,velecsum,facel,crf,krf,krf2;
87 real *charge;
88 int nvdwtype;
89 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
90 int *vdwtype;
91 real *vdwparam;
92
93 x = xx[0];
94 f = ff[0];
95
96 nri = nlist->nri;
97 iinr = nlist->iinr;
98 jindex = nlist->jindex;
99 jjnr = nlist->jjnr;
100 shiftidx = nlist->shift;
101 gid = nlist->gid;
102 shiftvec = fr->shift_vec[0];
103 fshift = fr->fshift[0];
104 facel = fr->epsfac;
105 charge = mdatoms->chargeA;
106 krf = fr->ic->k_rf;
107 krf2 = krf*2.0;
108 crf = fr->ic->c_rf;
109 nvdwtype = fr->ntype;
110 vdwparam = fr->nbfp;
111 vdwtype = mdatoms->typeA;
112
113 /* Setup water-specific parameters */
114 inr = nlist->iinr[0];
115 iq1 = facel*charge[inr+1];
116 iq2 = facel*charge[inr+2];
117 iq3 = facel*charge[inr+3];
118 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
119
120 outeriter = 0;
121 inneriter = 0;
122
123 /* Start outer loop over neighborlists */
124 for(iidx=0; iidx<nri; iidx++)
125 {
126 /* Load shift vector for this list */
127 i_shift_offset = DIM3*shiftidx[iidx];
128 shX = shiftvec[i_shift_offset+XX0];
129 shY = shiftvec[i_shift_offset+YY1];
130 shZ = shiftvec[i_shift_offset+ZZ2];
131
132 /* Load limits for loop over neighbors */
133 j_index_start = jindex[iidx];
134 j_index_end = jindex[iidx+1];
135
136 /* Get outer coordinate index */
137 inr = iinr[iidx];
138 i_coord_offset = DIM3*inr;
139
140 /* Load i particle coords and add shift vector */
141 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
142 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
143 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
144 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
145 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
146 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
147 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
148 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
149 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
150 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
151 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
152 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
153
154 fix0 = 0.0;
155 fiy0 = 0.0;
156 fiz0 = 0.0;
157 fix1 = 0.0;
158 fiy1 = 0.0;
159 fiz1 = 0.0;
160 fix2 = 0.0;
161 fiy2 = 0.0;
162 fiz2 = 0.0;
163 fix3 = 0.0;
164 fiy3 = 0.0;
165 fiz3 = 0.0;
166
167 /* Reset potential sums */
168 velecsum = 0.0;
169 vvdwsum = 0.0;
170
171 /* Start inner kernel loop */
172 for(jidx=j_index_start; jidx<j_index_end; jidx++)
173 {
174 /* Get j neighbor index, and coordinate index */
175 jnr = jjnr[jidx];
176 j_coord_offset = DIM3*jnr;
177
178 /* load j atom coordinates */
179 jx0 = x[j_coord_offset+DIM3*0+XX0];
180 jy0 = x[j_coord_offset+DIM3*0+YY1];
181 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
182
183 /* Calculate displacement vector */
184 dx00 = ix0 - jx0;
185 dy00 = iy0 - jy0;
186 dz00 = iz0 - jz0;
187 dx10 = ix1 - jx0;
188 dy10 = iy1 - jy0;
189 dz10 = iz1 - jz0;
190 dx20 = ix2 - jx0;
191 dy20 = iy2 - jy0;
192 dz20 = iz2 - jz0;
193 dx30 = ix3 - jx0;
194 dy30 = iy3 - jy0;
195 dz30 = iz3 - jz0;
196
197 /* Calculate squared distance and things based on it */
198 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
199 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
200 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
201 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
202
203 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
204 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
205 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
206 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
207
208 rinvsq00 = rinv00*rinv00;
209 rinvsq10 = rinv10*rinv10;
210 rinvsq20 = rinv20*rinv20;
211 rinvsq30 = rinv30*rinv30;
212
213 /* Load parameters for j particles */
214 jq0 = charge[jnr+0];
215 vdwjidx0 = 3*vdwtype[jnr+0];
216
217 /**************************
218 * CALCULATE INTERACTIONS *
219 **************************/
220
221 r00 = rsq00*rinv00;
222
223 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
224 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
225 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
226
227 /* BUCKINGHAM DISPERSION/REPULSION */
228 rinvsix = rinvsq00*rinvsq00*rinvsq00;
229 vvdw6 = c6_00*rinvsix;
230 br = cexp2_00*r00;
231 vvdwexp = cexp1_00*exp(-br);
232 vvdw = vvdwexp - vvdw6*(1.0/6.0);
233 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
234
235 /* Update potential sums from outer loop */
236 vvdwsum += vvdw;
237
238 fscal = fvdw;
239
240 /* Calculate temporary vectorial force */
241 tx = fscal*dx00;
242 ty = fscal*dy00;
243 tz = fscal*dz00;
244
245 /* Update vectorial force */
246 fix0 += tx;
247 fiy0 += ty;
248 fiz0 += tz;
249 f[j_coord_offset+DIM3*0+XX0] -= tx;
250 f[j_coord_offset+DIM3*0+YY1] -= ty;
251 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
252
253 /**************************
254 * CALCULATE INTERACTIONS *
255 **************************/
256
257 qq10 = iq1*jq0;
258
259 /* REACTION-FIELD ELECTROSTATICS */
260 velec = qq10*(rinv10+krf*rsq10-crf);
261 felec = qq10*(rinv10*rinvsq10-krf2);
262
263 /* Update potential sums from outer loop */
264 velecsum += velec;
265
266 fscal = felec;
267
268 /* Calculate temporary vectorial force */
269 tx = fscal*dx10;
270 ty = fscal*dy10;
271 tz = fscal*dz10;
272
273 /* Update vectorial force */
274 fix1 += tx;
275 fiy1 += ty;
276 fiz1 += tz;
277 f[j_coord_offset+DIM3*0+XX0] -= tx;
278 f[j_coord_offset+DIM3*0+YY1] -= ty;
279 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
280
281 /**************************
282 * CALCULATE INTERACTIONS *
283 **************************/
284
285 qq20 = iq2*jq0;
286
287 /* REACTION-FIELD ELECTROSTATICS */
288 velec = qq20*(rinv20+krf*rsq20-crf);
289 felec = qq20*(rinv20*rinvsq20-krf2);
290
291 /* Update potential sums from outer loop */
292 velecsum += velec;
293
294 fscal = felec;
295
296 /* Calculate temporary vectorial force */
297 tx = fscal*dx20;
298 ty = fscal*dy20;
299 tz = fscal*dz20;
300
301 /* Update vectorial force */
302 fix2 += tx;
303 fiy2 += ty;
304 fiz2 += tz;
305 f[j_coord_offset+DIM3*0+XX0] -= tx;
306 f[j_coord_offset+DIM3*0+YY1] -= ty;
307 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
308
309 /**************************
310 * CALCULATE INTERACTIONS *
311 **************************/
312
313 qq30 = iq3*jq0;
314
315 /* REACTION-FIELD ELECTROSTATICS */
316 velec = qq30*(rinv30+krf*rsq30-crf);
317 felec = qq30*(rinv30*rinvsq30-krf2);
318
319 /* Update potential sums from outer loop */
320 velecsum += velec;
321
322 fscal = felec;
323
324 /* Calculate temporary vectorial force */
325 tx = fscal*dx30;
326 ty = fscal*dy30;
327 tz = fscal*dz30;
328
329 /* Update vectorial force */
330 fix3 += tx;
331 fiy3 += ty;
332 fiz3 += tz;
333 f[j_coord_offset+DIM3*0+XX0] -= tx;
334 f[j_coord_offset+DIM3*0+YY1] -= ty;
335 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
336
337 /* Inner loop uses 157 flops */
338 }
339 /* End of innermost loop */
340
341 tx = ty = tz = 0;
342 f[i_coord_offset+DIM3*0+XX0] += fix0;
343 f[i_coord_offset+DIM3*0+YY1] += fiy0;
344 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
345 tx += fix0;
346 ty += fiy0;
347 tz += fiz0;
348 f[i_coord_offset+DIM3*1+XX0] += fix1;
349 f[i_coord_offset+DIM3*1+YY1] += fiy1;
350 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
351 tx += fix1;
352 ty += fiy1;
353 tz += fiz1;
354 f[i_coord_offset+DIM3*2+XX0] += fix2;
355 f[i_coord_offset+DIM3*2+YY1] += fiy2;
356 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
357 tx += fix2;
358 ty += fiy2;
359 tz += fiz2;
360 f[i_coord_offset+DIM3*3+XX0] += fix3;
361 f[i_coord_offset+DIM3*3+YY1] += fiy3;
362 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
363 tx += fix3;
364 ty += fiy3;
365 tz += fiz3;
366 fshift[i_shift_offset+XX0] += tx;
367 fshift[i_shift_offset+YY1] += ty;
368 fshift[i_shift_offset+ZZ2] += tz;
369
370 ggid = gid[iidx];
371 /* Update potential energies */
372 kernel_data->energygrp_elec[ggid] += velecsum;
373 kernel_data->energygrp_vdw[ggid] += vvdwsum;
374
375 /* Increment number of inner iterations */
376 inneriter += j_index_end - j_index_start;
377
378 /* Outer loop uses 41 flops */
379 }
380
381 /* Increment number of outer iterations */
382 outeriter += nri;
383
384 /* Update outer/inner flops */
385
386 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*41 + inneriter*157)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_VF] += outeriter*41 + inneriter
*157
;
387}
388/*
389 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwBham_GeomW4P1_F_c
390 * Electrostatics interaction: ReactionField
391 * VdW interaction: Buckingham
392 * Geometry: Water4-Particle
393 * Calculate force/pot: Force
394 */
395void
396nb_kernel_ElecRF_VdwBham_GeomW4P1_F_c
397 (t_nblist * gmx_restrict__restrict nlist,
398 rvec * gmx_restrict__restrict xx,
399 rvec * gmx_restrict__restrict ff,
400 t_forcerec * gmx_restrict__restrict fr,
401 t_mdatoms * gmx_restrict__restrict mdatoms,
402 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
403 t_nrnb * gmx_restrict__restrict nrnb)
404{
405 int i_shift_offset,i_coord_offset,j_coord_offset;
406 int j_index_start,j_index_end;
407 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
408 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
409 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
410 real *shiftvec,*fshift,*x,*f;
411 int vdwioffset0;
412 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
413 int vdwioffset1;
414 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
415 int vdwioffset2;
416 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
417 int vdwioffset3;
418 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
419 int vdwjidx0;
420 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
421 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
422 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
423 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
424 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
425 real velec,felec,velecsum,facel,crf,krf,krf2;
426 real *charge;
427 int nvdwtype;
428 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
429 int *vdwtype;
430 real *vdwparam;
431
432 x = xx[0];
433 f = ff[0];
434
435 nri = nlist->nri;
436 iinr = nlist->iinr;
437 jindex = nlist->jindex;
438 jjnr = nlist->jjnr;
439 shiftidx = nlist->shift;
440 gid = nlist->gid;
441 shiftvec = fr->shift_vec[0];
442 fshift = fr->fshift[0];
443 facel = fr->epsfac;
444 charge = mdatoms->chargeA;
445 krf = fr->ic->k_rf;
446 krf2 = krf*2.0;
447 crf = fr->ic->c_rf;
Value stored to 'crf' is never read
448 nvdwtype = fr->ntype;
449 vdwparam = fr->nbfp;
450 vdwtype = mdatoms->typeA;
451
452 /* Setup water-specific parameters */
453 inr = nlist->iinr[0];
454 iq1 = facel*charge[inr+1];
455 iq2 = facel*charge[inr+2];
456 iq3 = facel*charge[inr+3];
457 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
458
459 outeriter = 0;
460 inneriter = 0;
461
462 /* Start outer loop over neighborlists */
463 for(iidx=0; iidx<nri; iidx++)
464 {
465 /* Load shift vector for this list */
466 i_shift_offset = DIM3*shiftidx[iidx];
467 shX = shiftvec[i_shift_offset+XX0];
468 shY = shiftvec[i_shift_offset+YY1];
469 shZ = shiftvec[i_shift_offset+ZZ2];
470
471 /* Load limits for loop over neighbors */
472 j_index_start = jindex[iidx];
473 j_index_end = jindex[iidx+1];
474
475 /* Get outer coordinate index */
476 inr = iinr[iidx];
477 i_coord_offset = DIM3*inr;
478
479 /* Load i particle coords and add shift vector */
480 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
481 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
482 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
483 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
484 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
485 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
486 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
487 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
488 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
489 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
490 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
491 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
492
493 fix0 = 0.0;
494 fiy0 = 0.0;
495 fiz0 = 0.0;
496 fix1 = 0.0;
497 fiy1 = 0.0;
498 fiz1 = 0.0;
499 fix2 = 0.0;
500 fiy2 = 0.0;
501 fiz2 = 0.0;
502 fix3 = 0.0;
503 fiy3 = 0.0;
504 fiz3 = 0.0;
505
506 /* Start inner kernel loop */
507 for(jidx=j_index_start; jidx<j_index_end; jidx++)
508 {
509 /* Get j neighbor index, and coordinate index */
510 jnr = jjnr[jidx];
511 j_coord_offset = DIM3*jnr;
512
513 /* load j atom coordinates */
514 jx0 = x[j_coord_offset+DIM3*0+XX0];
515 jy0 = x[j_coord_offset+DIM3*0+YY1];
516 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
517
518 /* Calculate displacement vector */
519 dx00 = ix0 - jx0;
520 dy00 = iy0 - jy0;
521 dz00 = iz0 - jz0;
522 dx10 = ix1 - jx0;
523 dy10 = iy1 - jy0;
524 dz10 = iz1 - jz0;
525 dx20 = ix2 - jx0;
526 dy20 = iy2 - jy0;
527 dz20 = iz2 - jz0;
528 dx30 = ix3 - jx0;
529 dy30 = iy3 - jy0;
530 dz30 = iz3 - jz0;
531
532 /* Calculate squared distance and things based on it */
533 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
534 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
535 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
536 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
537
538 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
539 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
540 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
541 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
542
543 rinvsq00 = rinv00*rinv00;
544 rinvsq10 = rinv10*rinv10;
545 rinvsq20 = rinv20*rinv20;
546 rinvsq30 = rinv30*rinv30;
547
548 /* Load parameters for j particles */
549 jq0 = charge[jnr+0];
550 vdwjidx0 = 3*vdwtype[jnr+0];
551
552 /**************************
553 * CALCULATE INTERACTIONS *
554 **************************/
555
556 r00 = rsq00*rinv00;
557
558 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
559 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
560 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
561
562 /* BUCKINGHAM DISPERSION/REPULSION */
563 rinvsix = rinvsq00*rinvsq00*rinvsq00;
564 vvdw6 = c6_00*rinvsix;
565 br = cexp2_00*r00;
566 vvdwexp = cexp1_00*exp(-br);
567 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
568
569 fscal = fvdw;
570
571 /* Calculate temporary vectorial force */
572 tx = fscal*dx00;
573 ty = fscal*dy00;
574 tz = fscal*dz00;
575
576 /* Update vectorial force */
577 fix0 += tx;
578 fiy0 += ty;
579 fiz0 += tz;
580 f[j_coord_offset+DIM3*0+XX0] -= tx;
581 f[j_coord_offset+DIM3*0+YY1] -= ty;
582 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
583
584 /**************************
585 * CALCULATE INTERACTIONS *
586 **************************/
587
588 qq10 = iq1*jq0;
589
590 /* REACTION-FIELD ELECTROSTATICS */
591 felec = qq10*(rinv10*rinvsq10-krf2);
592
593 fscal = felec;
594
595 /* Calculate temporary vectorial force */
596 tx = fscal*dx10;
597 ty = fscal*dy10;
598 tz = fscal*dz10;
599
600 /* Update vectorial force */
601 fix1 += tx;
602 fiy1 += ty;
603 fiz1 += tz;
604 f[j_coord_offset+DIM3*0+XX0] -= tx;
605 f[j_coord_offset+DIM3*0+YY1] -= ty;
606 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
607
608 /**************************
609 * CALCULATE INTERACTIONS *
610 **************************/
611
612 qq20 = iq2*jq0;
613
614 /* REACTION-FIELD ELECTROSTATICS */
615 felec = qq20*(rinv20*rinvsq20-krf2);
616
617 fscal = felec;
618
619 /* Calculate temporary vectorial force */
620 tx = fscal*dx20;
621 ty = fscal*dy20;
622 tz = fscal*dz20;
623
624 /* Update vectorial force */
625 fix2 += tx;
626 fiy2 += ty;
627 fiz2 += tz;
628 f[j_coord_offset+DIM3*0+XX0] -= tx;
629 f[j_coord_offset+DIM3*0+YY1] -= ty;
630 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
631
632 /**************************
633 * CALCULATE INTERACTIONS *
634 **************************/
635
636 qq30 = iq3*jq0;
637
638 /* REACTION-FIELD ELECTROSTATICS */
639 felec = qq30*(rinv30*rinvsq30-krf2);
640
641 fscal = felec;
642
643 /* Calculate temporary vectorial force */
644 tx = fscal*dx30;
645 ty = fscal*dy30;
646 tz = fscal*dz30;
647
648 /* Update vectorial force */
649 fix3 += tx;
650 fiy3 += ty;
651 fiz3 += tz;
652 f[j_coord_offset+DIM3*0+XX0] -= tx;
653 f[j_coord_offset+DIM3*0+YY1] -= ty;
654 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
655
656 /* Inner loop uses 139 flops */
657 }
658 /* End of innermost loop */
659
660 tx = ty = tz = 0;
661 f[i_coord_offset+DIM3*0+XX0] += fix0;
662 f[i_coord_offset+DIM3*0+YY1] += fiy0;
663 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
664 tx += fix0;
665 ty += fiy0;
666 tz += fiz0;
667 f[i_coord_offset+DIM3*1+XX0] += fix1;
668 f[i_coord_offset+DIM3*1+YY1] += fiy1;
669 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
670 tx += fix1;
671 ty += fiy1;
672 tz += fiz1;
673 f[i_coord_offset+DIM3*2+XX0] += fix2;
674 f[i_coord_offset+DIM3*2+YY1] += fiy2;
675 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
676 tx += fix2;
677 ty += fiy2;
678 tz += fiz2;
679 f[i_coord_offset+DIM3*3+XX0] += fix3;
680 f[i_coord_offset+DIM3*3+YY1] += fiy3;
681 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
682 tx += fix3;
683 ty += fiy3;
684 tz += fiz3;
685 fshift[i_shift_offset+XX0] += tx;
686 fshift[i_shift_offset+YY1] += ty;
687 fshift[i_shift_offset+ZZ2] += tz;
688
689 /* Increment number of inner iterations */
690 inneriter += j_index_end - j_index_start;
691
692 /* Outer loop uses 39 flops */
693 }
694
695 /* Increment number of outer iterations */
696 outeriter += nri;
697
698 /* Update outer/inner flops */
699
700 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*39 + inneriter*139)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_F] += outeriter*39 + inneriter
*139
;
701}