Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEw_VdwLJ_GeomW4P1_c.c
Location:line 113, column 5
Description:Value stored to 'sh_ewald' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: LennardJones
53 * Geometry: Water4-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEw_VdwLJ_GeomW4P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwioffset3;
79 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80 int vdwjidx0;
81 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
83 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
84 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
85 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
86 real velec,felec,velecsum,facel,crf,krf,krf2;
87 real *charge;
88 int nvdwtype;
89 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
90 int *vdwtype;
91 real *vdwparam;
92 int ewitab;
93 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
94 real *ewtab;
95
96 x = xx[0];
97 f = ff[0];
98
99 nri = nlist->nri;
100 iinr = nlist->iinr;
101 jindex = nlist->jindex;
102 jjnr = nlist->jjnr;
103 shiftidx = nlist->shift;
104 gid = nlist->gid;
105 shiftvec = fr->shift_vec[0];
106 fshift = fr->fshift[0];
107 facel = fr->epsfac;
108 charge = mdatoms->chargeA;
109 nvdwtype = fr->ntype;
110 vdwparam = fr->nbfp;
111 vdwtype = mdatoms->typeA;
112
113 sh_ewald = fr->ic->sh_ewald;
Value stored to 'sh_ewald' is never read
114 ewtab = fr->ic->tabq_coul_FDV0;
115 ewtabscale = fr->ic->tabq_scale;
116 ewtabhalfspace = 0.5/ewtabscale;
117
118 /* Setup water-specific parameters */
119 inr = nlist->iinr[0];
120 iq1 = facel*charge[inr+1];
121 iq2 = facel*charge[inr+2];
122 iq3 = facel*charge[inr+3];
123 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
124
125 outeriter = 0;
126 inneriter = 0;
127
128 /* Start outer loop over neighborlists */
129 for(iidx=0; iidx<nri; iidx++)
130 {
131 /* Load shift vector for this list */
132 i_shift_offset = DIM3*shiftidx[iidx];
133 shX = shiftvec[i_shift_offset+XX0];
134 shY = shiftvec[i_shift_offset+YY1];
135 shZ = shiftvec[i_shift_offset+ZZ2];
136
137 /* Load limits for loop over neighbors */
138 j_index_start = jindex[iidx];
139 j_index_end = jindex[iidx+1];
140
141 /* Get outer coordinate index */
142 inr = iinr[iidx];
143 i_coord_offset = DIM3*inr;
144
145 /* Load i particle coords and add shift vector */
146 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
147 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
148 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
149 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
150 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
151 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
152 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
153 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
154 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
155 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
156 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
157 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
158
159 fix0 = 0.0;
160 fiy0 = 0.0;
161 fiz0 = 0.0;
162 fix1 = 0.0;
163 fiy1 = 0.0;
164 fiz1 = 0.0;
165 fix2 = 0.0;
166 fiy2 = 0.0;
167 fiz2 = 0.0;
168 fix3 = 0.0;
169 fiy3 = 0.0;
170 fiz3 = 0.0;
171
172 /* Reset potential sums */
173 velecsum = 0.0;
174 vvdwsum = 0.0;
175
176 /* Start inner kernel loop */
177 for(jidx=j_index_start; jidx<j_index_end; jidx++)
178 {
179 /* Get j neighbor index, and coordinate index */
180 jnr = jjnr[jidx];
181 j_coord_offset = DIM3*jnr;
182
183 /* load j atom coordinates */
184 jx0 = x[j_coord_offset+DIM3*0+XX0];
185 jy0 = x[j_coord_offset+DIM3*0+YY1];
186 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
187
188 /* Calculate displacement vector */
189 dx00 = ix0 - jx0;
190 dy00 = iy0 - jy0;
191 dz00 = iz0 - jz0;
192 dx10 = ix1 - jx0;
193 dy10 = iy1 - jy0;
194 dz10 = iz1 - jz0;
195 dx20 = ix2 - jx0;
196 dy20 = iy2 - jy0;
197 dz20 = iz2 - jz0;
198 dx30 = ix3 - jx0;
199 dy30 = iy3 - jy0;
200 dz30 = iz3 - jz0;
201
202 /* Calculate squared distance and things based on it */
203 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
204 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
205 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
206 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
207
208 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
209 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
210 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
211
212 rinvsq00 = 1.0/rsq00;
213 rinvsq10 = rinv10*rinv10;
214 rinvsq20 = rinv20*rinv20;
215 rinvsq30 = rinv30*rinv30;
216
217 /* Load parameters for j particles */
218 jq0 = charge[jnr+0];
219 vdwjidx0 = 2*vdwtype[jnr+0];
220
221 /**************************
222 * CALCULATE INTERACTIONS *
223 **************************/
224
225 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
226 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
227
228 /* LENNARD-JONES DISPERSION/REPULSION */
229
230 rinvsix = rinvsq00*rinvsq00*rinvsq00;
231 vvdw6 = c6_00*rinvsix;
232 vvdw12 = c12_00*rinvsix*rinvsix;
233 vvdw = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
234 fvdw = (vvdw12-vvdw6)*rinvsq00;
235
236 /* Update potential sums from outer loop */
237 vvdwsum += vvdw;
238
239 fscal = fvdw;
240
241 /* Calculate temporary vectorial force */
242 tx = fscal*dx00;
243 ty = fscal*dy00;
244 tz = fscal*dz00;
245
246 /* Update vectorial force */
247 fix0 += tx;
248 fiy0 += ty;
249 fiz0 += tz;
250 f[j_coord_offset+DIM3*0+XX0] -= tx;
251 f[j_coord_offset+DIM3*0+YY1] -= ty;
252 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
253
254 /**************************
255 * CALCULATE INTERACTIONS *
256 **************************/
257
258 r10 = rsq10*rinv10;
259
260 qq10 = iq1*jq0;
261
262 /* EWALD ELECTROSTATICS */
263
264 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
265 ewrt = r10*ewtabscale;
266 ewitab = ewrt;
267 eweps = ewrt-ewitab;
268 ewitab = 4*ewitab;
269 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
270 velec = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
271 felec = qq10*rinv10*(rinvsq10-felec);
272
273 /* Update potential sums from outer loop */
274 velecsum += velec;
275
276 fscal = felec;
277
278 /* Calculate temporary vectorial force */
279 tx = fscal*dx10;
280 ty = fscal*dy10;
281 tz = fscal*dz10;
282
283 /* Update vectorial force */
284 fix1 += tx;
285 fiy1 += ty;
286 fiz1 += tz;
287 f[j_coord_offset+DIM3*0+XX0] -= tx;
288 f[j_coord_offset+DIM3*0+YY1] -= ty;
289 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
290
291 /**************************
292 * CALCULATE INTERACTIONS *
293 **************************/
294
295 r20 = rsq20*rinv20;
296
297 qq20 = iq2*jq0;
298
299 /* EWALD ELECTROSTATICS */
300
301 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
302 ewrt = r20*ewtabscale;
303 ewitab = ewrt;
304 eweps = ewrt-ewitab;
305 ewitab = 4*ewitab;
306 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
307 velec = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
308 felec = qq20*rinv20*(rinvsq20-felec);
309
310 /* Update potential sums from outer loop */
311 velecsum += velec;
312
313 fscal = felec;
314
315 /* Calculate temporary vectorial force */
316 tx = fscal*dx20;
317 ty = fscal*dy20;
318 tz = fscal*dz20;
319
320 /* Update vectorial force */
321 fix2 += tx;
322 fiy2 += ty;
323 fiz2 += tz;
324 f[j_coord_offset+DIM3*0+XX0] -= tx;
325 f[j_coord_offset+DIM3*0+YY1] -= ty;
326 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
327
328 /**************************
329 * CALCULATE INTERACTIONS *
330 **************************/
331
332 r30 = rsq30*rinv30;
333
334 qq30 = iq3*jq0;
335
336 /* EWALD ELECTROSTATICS */
337
338 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
339 ewrt = r30*ewtabscale;
340 ewitab = ewrt;
341 eweps = ewrt-ewitab;
342 ewitab = 4*ewitab;
343 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
344 velec = qq30*(rinv30-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
345 felec = qq30*rinv30*(rinvsq30-felec);
346
347 /* Update potential sums from outer loop */
348 velecsum += velec;
349
350 fscal = felec;
351
352 /* Calculate temporary vectorial force */
353 tx = fscal*dx30;
354 ty = fscal*dy30;
355 tz = fscal*dz30;
356
357 /* Update vectorial force */
358 fix3 += tx;
359 fiy3 += ty;
360 fiz3 += tz;
361 f[j_coord_offset+DIM3*0+XX0] -= tx;
362 f[j_coord_offset+DIM3*0+YY1] -= ty;
363 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
364
365 /* Inner loop uses 155 flops */
366 }
367 /* End of innermost loop */
368
369 tx = ty = tz = 0;
370 f[i_coord_offset+DIM3*0+XX0] += fix0;
371 f[i_coord_offset+DIM3*0+YY1] += fiy0;
372 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
373 tx += fix0;
374 ty += fiy0;
375 tz += fiz0;
376 f[i_coord_offset+DIM3*1+XX0] += fix1;
377 f[i_coord_offset+DIM3*1+YY1] += fiy1;
378 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
379 tx += fix1;
380 ty += fiy1;
381 tz += fiz1;
382 f[i_coord_offset+DIM3*2+XX0] += fix2;
383 f[i_coord_offset+DIM3*2+YY1] += fiy2;
384 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
385 tx += fix2;
386 ty += fiy2;
387 tz += fiz2;
388 f[i_coord_offset+DIM3*3+XX0] += fix3;
389 f[i_coord_offset+DIM3*3+YY1] += fiy3;
390 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
391 tx += fix3;
392 ty += fiy3;
393 tz += fiz3;
394 fshift[i_shift_offset+XX0] += tx;
395 fshift[i_shift_offset+YY1] += ty;
396 fshift[i_shift_offset+ZZ2] += tz;
397
398 ggid = gid[iidx];
399 /* Update potential energies */
400 kernel_data->energygrp_elec[ggid] += velecsum;
401 kernel_data->energygrp_vdw[ggid] += vvdwsum;
402
403 /* Increment number of inner iterations */
404 inneriter += j_index_end - j_index_start;
405
406 /* Outer loop uses 41 flops */
407 }
408
409 /* Increment number of outer iterations */
410 outeriter += nri;
411
412 /* Update outer/inner flops */
413
414 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*41 + inneriter*155)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_VF] += outeriter*41 + inneriter
*155
;
415}
416/*
417 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_c
418 * Electrostatics interaction: Ewald
419 * VdW interaction: LennardJones
420 * Geometry: Water4-Particle
421 * Calculate force/pot: Force
422 */
423void
424nb_kernel_ElecEw_VdwLJ_GeomW4P1_F_c
425 (t_nblist * gmx_restrict__restrict nlist,
426 rvec * gmx_restrict__restrict xx,
427 rvec * gmx_restrict__restrict ff,
428 t_forcerec * gmx_restrict__restrict fr,
429 t_mdatoms * gmx_restrict__restrict mdatoms,
430 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
431 t_nrnb * gmx_restrict__restrict nrnb)
432{
433 int i_shift_offset,i_coord_offset,j_coord_offset;
434 int j_index_start,j_index_end;
435 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
436 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
437 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
438 real *shiftvec,*fshift,*x,*f;
439 int vdwioffset0;
440 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
441 int vdwioffset1;
442 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
443 int vdwioffset2;
444 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
445 int vdwioffset3;
446 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
447 int vdwjidx0;
448 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
449 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
450 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
451 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
452 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
453 real velec,felec,velecsum,facel,crf,krf,krf2;
454 real *charge;
455 int nvdwtype;
456 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
457 int *vdwtype;
458 real *vdwparam;
459 int ewitab;
460 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
461 real *ewtab;
462
463 x = xx[0];
464 f = ff[0];
465
466 nri = nlist->nri;
467 iinr = nlist->iinr;
468 jindex = nlist->jindex;
469 jjnr = nlist->jjnr;
470 shiftidx = nlist->shift;
471 gid = nlist->gid;
472 shiftvec = fr->shift_vec[0];
473 fshift = fr->fshift[0];
474 facel = fr->epsfac;
475 charge = mdatoms->chargeA;
476 nvdwtype = fr->ntype;
477 vdwparam = fr->nbfp;
478 vdwtype = mdatoms->typeA;
479
480 sh_ewald = fr->ic->sh_ewald;
481 ewtab = fr->ic->tabq_coul_F;
482 ewtabscale = fr->ic->tabq_scale;
483 ewtabhalfspace = 0.5/ewtabscale;
484
485 /* Setup water-specific parameters */
486 inr = nlist->iinr[0];
487 iq1 = facel*charge[inr+1];
488 iq2 = facel*charge[inr+2];
489 iq3 = facel*charge[inr+3];
490 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
491
492 outeriter = 0;
493 inneriter = 0;
494
495 /* Start outer loop over neighborlists */
496 for(iidx=0; iidx<nri; iidx++)
497 {
498 /* Load shift vector for this list */
499 i_shift_offset = DIM3*shiftidx[iidx];
500 shX = shiftvec[i_shift_offset+XX0];
501 shY = shiftvec[i_shift_offset+YY1];
502 shZ = shiftvec[i_shift_offset+ZZ2];
503
504 /* Load limits for loop over neighbors */
505 j_index_start = jindex[iidx];
506 j_index_end = jindex[iidx+1];
507
508 /* Get outer coordinate index */
509 inr = iinr[iidx];
510 i_coord_offset = DIM3*inr;
511
512 /* Load i particle coords and add shift vector */
513 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
514 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
515 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
516 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
517 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
518 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
519 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
520 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
521 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
522 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
523 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
524 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
525
526 fix0 = 0.0;
527 fiy0 = 0.0;
528 fiz0 = 0.0;
529 fix1 = 0.0;
530 fiy1 = 0.0;
531 fiz1 = 0.0;
532 fix2 = 0.0;
533 fiy2 = 0.0;
534 fiz2 = 0.0;
535 fix3 = 0.0;
536 fiy3 = 0.0;
537 fiz3 = 0.0;
538
539 /* Start inner kernel loop */
540 for(jidx=j_index_start; jidx<j_index_end; jidx++)
541 {
542 /* Get j neighbor index, and coordinate index */
543 jnr = jjnr[jidx];
544 j_coord_offset = DIM3*jnr;
545
546 /* load j atom coordinates */
547 jx0 = x[j_coord_offset+DIM3*0+XX0];
548 jy0 = x[j_coord_offset+DIM3*0+YY1];
549 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
550
551 /* Calculate displacement vector */
552 dx00 = ix0 - jx0;
553 dy00 = iy0 - jy0;
554 dz00 = iz0 - jz0;
555 dx10 = ix1 - jx0;
556 dy10 = iy1 - jy0;
557 dz10 = iz1 - jz0;
558 dx20 = ix2 - jx0;
559 dy20 = iy2 - jy0;
560 dz20 = iz2 - jz0;
561 dx30 = ix3 - jx0;
562 dy30 = iy3 - jy0;
563 dz30 = iz3 - jz0;
564
565 /* Calculate squared distance and things based on it */
566 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
567 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
568 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
569 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
570
571 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
572 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
573 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
574
575 rinvsq00 = 1.0/rsq00;
576 rinvsq10 = rinv10*rinv10;
577 rinvsq20 = rinv20*rinv20;
578 rinvsq30 = rinv30*rinv30;
579
580 /* Load parameters for j particles */
581 jq0 = charge[jnr+0];
582 vdwjidx0 = 2*vdwtype[jnr+0];
583
584 /**************************
585 * CALCULATE INTERACTIONS *
586 **************************/
587
588 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
589 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
590
591 /* LENNARD-JONES DISPERSION/REPULSION */
592
593 rinvsix = rinvsq00*rinvsq00*rinvsq00;
594 fvdw = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
595
596 fscal = fvdw;
597
598 /* Calculate temporary vectorial force */
599 tx = fscal*dx00;
600 ty = fscal*dy00;
601 tz = fscal*dz00;
602
603 /* Update vectorial force */
604 fix0 += tx;
605 fiy0 += ty;
606 fiz0 += tz;
607 f[j_coord_offset+DIM3*0+XX0] -= tx;
608 f[j_coord_offset+DIM3*0+YY1] -= ty;
609 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
610
611 /**************************
612 * CALCULATE INTERACTIONS *
613 **************************/
614
615 r10 = rsq10*rinv10;
616
617 qq10 = iq1*jq0;
618
619 /* EWALD ELECTROSTATICS */
620
621 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
622 ewrt = r10*ewtabscale;
623 ewitab = ewrt;
624 eweps = ewrt-ewitab;
625 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
626 felec = qq10*rinv10*(rinvsq10-felec);
627
628 fscal = felec;
629
630 /* Calculate temporary vectorial force */
631 tx = fscal*dx10;
632 ty = fscal*dy10;
633 tz = fscal*dz10;
634
635 /* Update vectorial force */
636 fix1 += tx;
637 fiy1 += ty;
638 fiz1 += tz;
639 f[j_coord_offset+DIM3*0+XX0] -= tx;
640 f[j_coord_offset+DIM3*0+YY1] -= ty;
641 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
642
643 /**************************
644 * CALCULATE INTERACTIONS *
645 **************************/
646
647 r20 = rsq20*rinv20;
648
649 qq20 = iq2*jq0;
650
651 /* EWALD ELECTROSTATICS */
652
653 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
654 ewrt = r20*ewtabscale;
655 ewitab = ewrt;
656 eweps = ewrt-ewitab;
657 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
658 felec = qq20*rinv20*(rinvsq20-felec);
659
660 fscal = felec;
661
662 /* Calculate temporary vectorial force */
663 tx = fscal*dx20;
664 ty = fscal*dy20;
665 tz = fscal*dz20;
666
667 /* Update vectorial force */
668 fix2 += tx;
669 fiy2 += ty;
670 fiz2 += tz;
671 f[j_coord_offset+DIM3*0+XX0] -= tx;
672 f[j_coord_offset+DIM3*0+YY1] -= ty;
673 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
674
675 /**************************
676 * CALCULATE INTERACTIONS *
677 **************************/
678
679 r30 = rsq30*rinv30;
680
681 qq30 = iq3*jq0;
682
683 /* EWALD ELECTROSTATICS */
684
685 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
686 ewrt = r30*ewtabscale;
687 ewitab = ewrt;
688 eweps = ewrt-ewitab;
689 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
690 felec = qq30*rinv30*(rinvsq30-felec);
691
692 fscal = felec;
693
694 /* Calculate temporary vectorial force */
695 tx = fscal*dx30;
696 ty = fscal*dy30;
697 tz = fscal*dz30;
698
699 /* Update vectorial force */
700 fix3 += tx;
701 fiy3 += ty;
702 fiz3 += tz;
703 f[j_coord_offset+DIM3*0+XX0] -= tx;
704 f[j_coord_offset+DIM3*0+YY1] -= ty;
705 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
706
707 /* Inner loop uses 129 flops */
708 }
709 /* End of innermost loop */
710
711 tx = ty = tz = 0;
712 f[i_coord_offset+DIM3*0+XX0] += fix0;
713 f[i_coord_offset+DIM3*0+YY1] += fiy0;
714 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
715 tx += fix0;
716 ty += fiy0;
717 tz += fiz0;
718 f[i_coord_offset+DIM3*1+XX0] += fix1;
719 f[i_coord_offset+DIM3*1+YY1] += fiy1;
720 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
721 tx += fix1;
722 ty += fiy1;
723 tz += fiz1;
724 f[i_coord_offset+DIM3*2+XX0] += fix2;
725 f[i_coord_offset+DIM3*2+YY1] += fiy2;
726 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
727 tx += fix2;
728 ty += fiy2;
729 tz += fiz2;
730 f[i_coord_offset+DIM3*3+XX0] += fix3;
731 f[i_coord_offset+DIM3*3+YY1] += fiy3;
732 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
733 tx += fix3;
734 ty += fiy3;
735 tz += fiz3;
736 fshift[i_shift_offset+XX0] += tx;
737 fshift[i_shift_offset+YY1] += ty;
738 fshift[i_shift_offset+ZZ2] += tz;
739
740 /* Increment number of inner iterations */
741 inneriter += j_index_end - j_index_start;
742
743 /* Outer loop uses 39 flops */
744 }
745
746 /* Increment number of outer iterations */
747 outeriter += nri;
748
749 /* Update outer/inner flops */
750
751 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*39 + inneriter*129)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_F] += outeriter*39 + inneriter
*129
;
752}