Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEw_VdwNone_GeomW4P1_c.c
Location:line 406, column 5
Description:Value stored to 'sh_ewald' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: None
53 * Geometry: Water4-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEw_VdwNone_GeomW4P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset1;
73 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
74 int vdwioffset2;
75 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
76 int vdwioffset3;
77 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
81 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
82 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
83 real velec,felec,velecsum,facel,crf,krf,krf2;
84 real *charge;
85 int ewitab;
86 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
87 real *ewtab;
88
89 x = xx[0];
90 f = ff[0];
91
92 nri = nlist->nri;
93 iinr = nlist->iinr;
94 jindex = nlist->jindex;
95 jjnr = nlist->jjnr;
96 shiftidx = nlist->shift;
97 gid = nlist->gid;
98 shiftvec = fr->shift_vec[0];
99 fshift = fr->fshift[0];
100 facel = fr->epsfac;
101 charge = mdatoms->chargeA;
102
103 sh_ewald = fr->ic->sh_ewald;
104 ewtab = fr->ic->tabq_coul_FDV0;
105 ewtabscale = fr->ic->tabq_scale;
106 ewtabhalfspace = 0.5/ewtabscale;
107
108 /* Setup water-specific parameters */
109 inr = nlist->iinr[0];
110 iq1 = facel*charge[inr+1];
111 iq2 = facel*charge[inr+2];
112 iq3 = facel*charge[inr+3];
113
114 outeriter = 0;
115 inneriter = 0;
116
117 /* Start outer loop over neighborlists */
118 for(iidx=0; iidx<nri; iidx++)
119 {
120 /* Load shift vector for this list */
121 i_shift_offset = DIM3*shiftidx[iidx];
122 shX = shiftvec[i_shift_offset+XX0];
123 shY = shiftvec[i_shift_offset+YY1];
124 shZ = shiftvec[i_shift_offset+ZZ2];
125
126 /* Load limits for loop over neighbors */
127 j_index_start = jindex[iidx];
128 j_index_end = jindex[iidx+1];
129
130 /* Get outer coordinate index */
131 inr = iinr[iidx];
132 i_coord_offset = DIM3*inr;
133
134 /* Load i particle coords and add shift vector */
135 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
136 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
137 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
138 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
139 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
140 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
141 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
142 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
143 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
144
145 fix1 = 0.0;
146 fiy1 = 0.0;
147 fiz1 = 0.0;
148 fix2 = 0.0;
149 fiy2 = 0.0;
150 fiz2 = 0.0;
151 fix3 = 0.0;
152 fiy3 = 0.0;
153 fiz3 = 0.0;
154
155 /* Reset potential sums */
156 velecsum = 0.0;
157
158 /* Start inner kernel loop */
159 for(jidx=j_index_start; jidx<j_index_end; jidx++)
160 {
161 /* Get j neighbor index, and coordinate index */
162 jnr = jjnr[jidx];
163 j_coord_offset = DIM3*jnr;
164
165 /* load j atom coordinates */
166 jx0 = x[j_coord_offset+DIM3*0+XX0];
167 jy0 = x[j_coord_offset+DIM3*0+YY1];
168 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
169
170 /* Calculate displacement vector */
171 dx10 = ix1 - jx0;
172 dy10 = iy1 - jy0;
173 dz10 = iz1 - jz0;
174 dx20 = ix2 - jx0;
175 dy20 = iy2 - jy0;
176 dz20 = iz2 - jz0;
177 dx30 = ix3 - jx0;
178 dy30 = iy3 - jy0;
179 dz30 = iz3 - jz0;
180
181 /* Calculate squared distance and things based on it */
182 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
183 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
184 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
185
186 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
187 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
188 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
189
190 rinvsq10 = rinv10*rinv10;
191 rinvsq20 = rinv20*rinv20;
192 rinvsq30 = rinv30*rinv30;
193
194 /* Load parameters for j particles */
195 jq0 = charge[jnr+0];
196
197 /**************************
198 * CALCULATE INTERACTIONS *
199 **************************/
200
201 r10 = rsq10*rinv10;
202
203 qq10 = iq1*jq0;
204
205 /* EWALD ELECTROSTATICS */
206
207 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
208 ewrt = r10*ewtabscale;
209 ewitab = ewrt;
210 eweps = ewrt-ewitab;
211 ewitab = 4*ewitab;
212 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
213 velec = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
214 felec = qq10*rinv10*(rinvsq10-felec);
215
216 /* Update potential sums from outer loop */
217 velecsum += velec;
218
219 fscal = felec;
220
221 /* Calculate temporary vectorial force */
222 tx = fscal*dx10;
223 ty = fscal*dy10;
224 tz = fscal*dz10;
225
226 /* Update vectorial force */
227 fix1 += tx;
228 fiy1 += ty;
229 fiz1 += tz;
230 f[j_coord_offset+DIM3*0+XX0] -= tx;
231 f[j_coord_offset+DIM3*0+YY1] -= ty;
232 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
233
234 /**************************
235 * CALCULATE INTERACTIONS *
236 **************************/
237
238 r20 = rsq20*rinv20;
239
240 qq20 = iq2*jq0;
241
242 /* EWALD ELECTROSTATICS */
243
244 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
245 ewrt = r20*ewtabscale;
246 ewitab = ewrt;
247 eweps = ewrt-ewitab;
248 ewitab = 4*ewitab;
249 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
250 velec = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
251 felec = qq20*rinv20*(rinvsq20-felec);
252
253 /* Update potential sums from outer loop */
254 velecsum += velec;
255
256 fscal = felec;
257
258 /* Calculate temporary vectorial force */
259 tx = fscal*dx20;
260 ty = fscal*dy20;
261 tz = fscal*dz20;
262
263 /* Update vectorial force */
264 fix2 += tx;
265 fiy2 += ty;
266 fiz2 += tz;
267 f[j_coord_offset+DIM3*0+XX0] -= tx;
268 f[j_coord_offset+DIM3*0+YY1] -= ty;
269 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
270
271 /**************************
272 * CALCULATE INTERACTIONS *
273 **************************/
274
275 r30 = rsq30*rinv30;
276
277 qq30 = iq3*jq0;
278
279 /* EWALD ELECTROSTATICS */
280
281 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
282 ewrt = r30*ewtabscale;
283 ewitab = ewrt;
284 eweps = ewrt-ewitab;
285 ewitab = 4*ewitab;
286 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
287 velec = qq30*(rinv30-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
288 felec = qq30*rinv30*(rinvsq30-felec);
289
290 /* Update potential sums from outer loop */
291 velecsum += velec;
292
293 fscal = felec;
294
295 /* Calculate temporary vectorial force */
296 tx = fscal*dx30;
297 ty = fscal*dy30;
298 tz = fscal*dz30;
299
300 /* Update vectorial force */
301 fix3 += tx;
302 fiy3 += ty;
303 fiz3 += tz;
304 f[j_coord_offset+DIM3*0+XX0] -= tx;
305 f[j_coord_offset+DIM3*0+YY1] -= ty;
306 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
307
308 /* Inner loop uses 123 flops */
309 }
310 /* End of innermost loop */
311
312 tx = ty = tz = 0;
313 f[i_coord_offset+DIM3*1+XX0] += fix1;
314 f[i_coord_offset+DIM3*1+YY1] += fiy1;
315 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
316 tx += fix1;
317 ty += fiy1;
318 tz += fiz1;
319 f[i_coord_offset+DIM3*2+XX0] += fix2;
320 f[i_coord_offset+DIM3*2+YY1] += fiy2;
321 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
322 tx += fix2;
323 ty += fiy2;
324 tz += fiz2;
325 f[i_coord_offset+DIM3*3+XX0] += fix3;
326 f[i_coord_offset+DIM3*3+YY1] += fiy3;
327 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
328 tx += fix3;
329 ty += fiy3;
330 tz += fiz3;
331 fshift[i_shift_offset+XX0] += tx;
332 fshift[i_shift_offset+YY1] += ty;
333 fshift[i_shift_offset+ZZ2] += tz;
334
335 ggid = gid[iidx];
336 /* Update potential energies */
337 kernel_data->energygrp_elec[ggid] += velecsum;
338
339 /* Increment number of inner iterations */
340 inneriter += j_index_end - j_index_start;
341
342 /* Outer loop uses 31 flops */
343 }
344
345 /* Increment number of outer iterations */
346 outeriter += nri;
347
348 /* Update outer/inner flops */
349
350 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_VF,outeriter*31 + inneriter*123)(nrnb)->n[eNR_NBKERNEL_ELEC_W4_VF] += outeriter*31 + inneriter
*123
;
351}
352/*
353 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwNone_GeomW4P1_F_c
354 * Electrostatics interaction: Ewald
355 * VdW interaction: None
356 * Geometry: Water4-Particle
357 * Calculate force/pot: Force
358 */
359void
360nb_kernel_ElecEw_VdwNone_GeomW4P1_F_c
361 (t_nblist * gmx_restrict__restrict nlist,
362 rvec * gmx_restrict__restrict xx,
363 rvec * gmx_restrict__restrict ff,
364 t_forcerec * gmx_restrict__restrict fr,
365 t_mdatoms * gmx_restrict__restrict mdatoms,
366 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
367 t_nrnb * gmx_restrict__restrict nrnb)
368{
369 int i_shift_offset,i_coord_offset,j_coord_offset;
370 int j_index_start,j_index_end;
371 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
372 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
373 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
374 real *shiftvec,*fshift,*x,*f;
375 int vdwioffset1;
376 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
377 int vdwioffset2;
378 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
379 int vdwioffset3;
380 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
381 int vdwjidx0;
382 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
383 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
384 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
385 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
386 real velec,felec,velecsum,facel,crf,krf,krf2;
387 real *charge;
388 int ewitab;
389 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
390 real *ewtab;
391
392 x = xx[0];
393 f = ff[0];
394
395 nri = nlist->nri;
396 iinr = nlist->iinr;
397 jindex = nlist->jindex;
398 jjnr = nlist->jjnr;
399 shiftidx = nlist->shift;
400 gid = nlist->gid;
401 shiftvec = fr->shift_vec[0];
402 fshift = fr->fshift[0];
403 facel = fr->epsfac;
404 charge = mdatoms->chargeA;
405
406 sh_ewald = fr->ic->sh_ewald;
Value stored to 'sh_ewald' is never read
407 ewtab = fr->ic->tabq_coul_F;
408 ewtabscale = fr->ic->tabq_scale;
409 ewtabhalfspace = 0.5/ewtabscale;
410
411 /* Setup water-specific parameters */
412 inr = nlist->iinr[0];
413 iq1 = facel*charge[inr+1];
414 iq2 = facel*charge[inr+2];
415 iq3 = facel*charge[inr+3];
416
417 outeriter = 0;
418 inneriter = 0;
419
420 /* Start outer loop over neighborlists */
421 for(iidx=0; iidx<nri; iidx++)
422 {
423 /* Load shift vector for this list */
424 i_shift_offset = DIM3*shiftidx[iidx];
425 shX = shiftvec[i_shift_offset+XX0];
426 shY = shiftvec[i_shift_offset+YY1];
427 shZ = shiftvec[i_shift_offset+ZZ2];
428
429 /* Load limits for loop over neighbors */
430 j_index_start = jindex[iidx];
431 j_index_end = jindex[iidx+1];
432
433 /* Get outer coordinate index */
434 inr = iinr[iidx];
435 i_coord_offset = DIM3*inr;
436
437 /* Load i particle coords and add shift vector */
438 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
439 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
440 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
441 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
442 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
443 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
444 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
445 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
446 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
447
448 fix1 = 0.0;
449 fiy1 = 0.0;
450 fiz1 = 0.0;
451 fix2 = 0.0;
452 fiy2 = 0.0;
453 fiz2 = 0.0;
454 fix3 = 0.0;
455 fiy3 = 0.0;
456 fiz3 = 0.0;
457
458 /* Start inner kernel loop */
459 for(jidx=j_index_start; jidx<j_index_end; jidx++)
460 {
461 /* Get j neighbor index, and coordinate index */
462 jnr = jjnr[jidx];
463 j_coord_offset = DIM3*jnr;
464
465 /* load j atom coordinates */
466 jx0 = x[j_coord_offset+DIM3*0+XX0];
467 jy0 = x[j_coord_offset+DIM3*0+YY1];
468 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
469
470 /* Calculate displacement vector */
471 dx10 = ix1 - jx0;
472 dy10 = iy1 - jy0;
473 dz10 = iz1 - jz0;
474 dx20 = ix2 - jx0;
475 dy20 = iy2 - jy0;
476 dz20 = iz2 - jz0;
477 dx30 = ix3 - jx0;
478 dy30 = iy3 - jy0;
479 dz30 = iz3 - jz0;
480
481 /* Calculate squared distance and things based on it */
482 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
483 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
484 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
485
486 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
487 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
488 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
489
490 rinvsq10 = rinv10*rinv10;
491 rinvsq20 = rinv20*rinv20;
492 rinvsq30 = rinv30*rinv30;
493
494 /* Load parameters for j particles */
495 jq0 = charge[jnr+0];
496
497 /**************************
498 * CALCULATE INTERACTIONS *
499 **************************/
500
501 r10 = rsq10*rinv10;
502
503 qq10 = iq1*jq0;
504
505 /* EWALD ELECTROSTATICS */
506
507 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
508 ewrt = r10*ewtabscale;
509 ewitab = ewrt;
510 eweps = ewrt-ewitab;
511 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
512 felec = qq10*rinv10*(rinvsq10-felec);
513
514 fscal = felec;
515
516 /* Calculate temporary vectorial force */
517 tx = fscal*dx10;
518 ty = fscal*dy10;
519 tz = fscal*dz10;
520
521 /* Update vectorial force */
522 fix1 += tx;
523 fiy1 += ty;
524 fiz1 += tz;
525 f[j_coord_offset+DIM3*0+XX0] -= tx;
526 f[j_coord_offset+DIM3*0+YY1] -= ty;
527 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
528
529 /**************************
530 * CALCULATE INTERACTIONS *
531 **************************/
532
533 r20 = rsq20*rinv20;
534
535 qq20 = iq2*jq0;
536
537 /* EWALD ELECTROSTATICS */
538
539 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
540 ewrt = r20*ewtabscale;
541 ewitab = ewrt;
542 eweps = ewrt-ewitab;
543 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
544 felec = qq20*rinv20*(rinvsq20-felec);
545
546 fscal = felec;
547
548 /* Calculate temporary vectorial force */
549 tx = fscal*dx20;
550 ty = fscal*dy20;
551 tz = fscal*dz20;
552
553 /* Update vectorial force */
554 fix2 += tx;
555 fiy2 += ty;
556 fiz2 += tz;
557 f[j_coord_offset+DIM3*0+XX0] -= tx;
558 f[j_coord_offset+DIM3*0+YY1] -= ty;
559 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
560
561 /**************************
562 * CALCULATE INTERACTIONS *
563 **************************/
564
565 r30 = rsq30*rinv30;
566
567 qq30 = iq3*jq0;
568
569 /* EWALD ELECTROSTATICS */
570
571 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
572 ewrt = r30*ewtabscale;
573 ewitab = ewrt;
574 eweps = ewrt-ewitab;
575 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
576 felec = qq30*rinv30*(rinvsq30-felec);
577
578 fscal = felec;
579
580 /* Calculate temporary vectorial force */
581 tx = fscal*dx30;
582 ty = fscal*dy30;
583 tz = fscal*dz30;
584
585 /* Update vectorial force */
586 fix3 += tx;
587 fiy3 += ty;
588 fiz3 += tz;
589 f[j_coord_offset+DIM3*0+XX0] -= tx;
590 f[j_coord_offset+DIM3*0+YY1] -= ty;
591 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
592
593 /* Inner loop uses 102 flops */
594 }
595 /* End of innermost loop */
596
597 tx = ty = tz = 0;
598 f[i_coord_offset+DIM3*1+XX0] += fix1;
599 f[i_coord_offset+DIM3*1+YY1] += fiy1;
600 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
601 tx += fix1;
602 ty += fiy1;
603 tz += fiz1;
604 f[i_coord_offset+DIM3*2+XX0] += fix2;
605 f[i_coord_offset+DIM3*2+YY1] += fiy2;
606 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
607 tx += fix2;
608 ty += fiy2;
609 tz += fiz2;
610 f[i_coord_offset+DIM3*3+XX0] += fix3;
611 f[i_coord_offset+DIM3*3+YY1] += fiy3;
612 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
613 tx += fix3;
614 ty += fiy3;
615 tz += fiz3;
616 fshift[i_shift_offset+XX0] += tx;
617 fshift[i_shift_offset+YY1] += ty;
618 fshift[i_shift_offset+ZZ2] += tz;
619
620 /* Increment number of inner iterations */
621 inneriter += j_index_end - j_index_start;
622
623 /* Outer loop uses 30 flops */
624 }
625
626 /* Increment number of outer iterations */
627 outeriter += nri;
628
629 /* Update outer/inner flops */
630
631 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W4_F,outeriter*30 + inneriter*102)(nrnb)->n[eNR_NBKERNEL_ELEC_W4_F] += outeriter*30 + inneriter
*102
;
632}