Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecRFCut_VdwLJSw_GeomW3W3_c.c
Location:line 695, column 5
Description:Value stored to 'crf' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSw_GeomW3W3_VF_c
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: LennardJones
53 * Geometry: Water3-Water3
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecRFCut_VdwLJSw_GeomW3W3_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 int vdwjidx1;
81 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
82 int vdwjidx2;
83 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
84 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
85 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
86 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
87 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
88 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
89 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
90 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
91 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
92 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
93 real velec,felec,velecsum,facel,crf,krf,krf2;
94 real *charge;
95 int nvdwtype;
96 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
97 int *vdwtype;
98 real *vdwparam;
99 real rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
100
101 x = xx[0];
102 f = ff[0];
103
104 nri = nlist->nri;
105 iinr = nlist->iinr;
106 jindex = nlist->jindex;
107 jjnr = nlist->jjnr;
108 shiftidx = nlist->shift;
109 gid = nlist->gid;
110 shiftvec = fr->shift_vec[0];
111 fshift = fr->fshift[0];
112 facel = fr->epsfac;
113 charge = mdatoms->chargeA;
114 krf = fr->ic->k_rf;
115 krf2 = krf*2.0;
116 crf = fr->ic->c_rf;
117 nvdwtype = fr->ntype;
118 vdwparam = fr->nbfp;
119 vdwtype = mdatoms->typeA;
120
121 /* Setup water-specific parameters */
122 inr = nlist->iinr[0];
123 iq0 = facel*charge[inr+0];
124 iq1 = facel*charge[inr+1];
125 iq2 = facel*charge[inr+2];
126 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
127
128 jq0 = charge[inr+0];
129 jq1 = charge[inr+1];
130 jq2 = charge[inr+2];
131 vdwjidx0 = 2*vdwtype[inr+0];
132 qq00 = iq0*jq0;
133 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
134 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
135 qq01 = iq0*jq1;
136 qq02 = iq0*jq2;
137 qq10 = iq1*jq0;
138 qq11 = iq1*jq1;
139 qq12 = iq1*jq2;
140 qq20 = iq2*jq0;
141 qq21 = iq2*jq1;
142 qq22 = iq2*jq2;
143
144 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
145 rcutoff = fr->rcoulomb;
146 rcutoff2 = rcutoff*rcutoff;
147
148 rswitch = fr->rvdw_switch;
149 /* Setup switch parameters */
150 d = rcutoff-rswitch;
151 swV3 = -10.0/(d*d*d);
152 swV4 = 15.0/(d*d*d*d);
153 swV5 = -6.0/(d*d*d*d*d);
154 swF2 = -30.0/(d*d*d);
155 swF3 = 60.0/(d*d*d*d);
156 swF4 = -30.0/(d*d*d*d*d);
157
158 outeriter = 0;
159 inneriter = 0;
160
161 /* Start outer loop over neighborlists */
162 for(iidx=0; iidx<nri; iidx++)
163 {
164 /* Load shift vector for this list */
165 i_shift_offset = DIM3*shiftidx[iidx];
166 shX = shiftvec[i_shift_offset+XX0];
167 shY = shiftvec[i_shift_offset+YY1];
168 shZ = shiftvec[i_shift_offset+ZZ2];
169
170 /* Load limits for loop over neighbors */
171 j_index_start = jindex[iidx];
172 j_index_end = jindex[iidx+1];
173
174 /* Get outer coordinate index */
175 inr = iinr[iidx];
176 i_coord_offset = DIM3*inr;
177
178 /* Load i particle coords and add shift vector */
179 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
180 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
181 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
182 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
183 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
184 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
185 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
186 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
187 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
188
189 fix0 = 0.0;
190 fiy0 = 0.0;
191 fiz0 = 0.0;
192 fix1 = 0.0;
193 fiy1 = 0.0;
194 fiz1 = 0.0;
195 fix2 = 0.0;
196 fiy2 = 0.0;
197 fiz2 = 0.0;
198
199 /* Reset potential sums */
200 velecsum = 0.0;
201 vvdwsum = 0.0;
202
203 /* Start inner kernel loop */
204 for(jidx=j_index_start; jidx<j_index_end; jidx++)
205 {
206 /* Get j neighbor index, and coordinate index */
207 jnr = jjnr[jidx];
208 j_coord_offset = DIM3*jnr;
209
210 /* load j atom coordinates */
211 jx0 = x[j_coord_offset+DIM3*0+XX0];
212 jy0 = x[j_coord_offset+DIM3*0+YY1];
213 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
214 jx1 = x[j_coord_offset+DIM3*1+XX0];
215 jy1 = x[j_coord_offset+DIM3*1+YY1];
216 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
217 jx2 = x[j_coord_offset+DIM3*2+XX0];
218 jy2 = x[j_coord_offset+DIM3*2+YY1];
219 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
220
221 /* Calculate displacement vector */
222 dx00 = ix0 - jx0;
223 dy00 = iy0 - jy0;
224 dz00 = iz0 - jz0;
225 dx01 = ix0 - jx1;
226 dy01 = iy0 - jy1;
227 dz01 = iz0 - jz1;
228 dx02 = ix0 - jx2;
229 dy02 = iy0 - jy2;
230 dz02 = iz0 - jz2;
231 dx10 = ix1 - jx0;
232 dy10 = iy1 - jy0;
233 dz10 = iz1 - jz0;
234 dx11 = ix1 - jx1;
235 dy11 = iy1 - jy1;
236 dz11 = iz1 - jz1;
237 dx12 = ix1 - jx2;
238 dy12 = iy1 - jy2;
239 dz12 = iz1 - jz2;
240 dx20 = ix2 - jx0;
241 dy20 = iy2 - jy0;
242 dz20 = iz2 - jz0;
243 dx21 = ix2 - jx1;
244 dy21 = iy2 - jy1;
245 dz21 = iz2 - jz1;
246 dx22 = ix2 - jx2;
247 dy22 = iy2 - jy2;
248 dz22 = iz2 - jz2;
249
250 /* Calculate squared distance and things based on it */
251 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
252 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
253 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
254 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
255 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
256 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
257 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
258 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
259 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
260
261 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
262 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
263 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
264 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
265 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
266 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
267 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
268 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
269 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
270
271 rinvsq00 = rinv00*rinv00;
272 rinvsq01 = rinv01*rinv01;
273 rinvsq02 = rinv02*rinv02;
274 rinvsq10 = rinv10*rinv10;
275 rinvsq11 = rinv11*rinv11;
276 rinvsq12 = rinv12*rinv12;
277 rinvsq20 = rinv20*rinv20;
278 rinvsq21 = rinv21*rinv21;
279 rinvsq22 = rinv22*rinv22;
280
281 /**************************
282 * CALCULATE INTERACTIONS *
283 **************************/
284
285 if (rsq00<rcutoff2)
286 {
287
288 r00 = rsq00*rinv00;
289
290 /* REACTION-FIELD ELECTROSTATICS */
291 velec = qq00*(rinv00+krf*rsq00-crf);
292 felec = qq00*(rinv00*rinvsq00-krf2);
293
294 /* LENNARD-JONES DISPERSION/REPULSION */
295
296 rinvsix = rinvsq00*rinvsq00*rinvsq00;
297 vvdw6 = c6_00*rinvsix;
298 vvdw12 = c12_00*rinvsix*rinvsix;
299 vvdw = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
300 fvdw = (vvdw12-vvdw6)*rinvsq00;
301
302 d = r00-rswitch;
303 d = (d>0.0) ? d : 0.0;
304 d2 = d*d;
305 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
306
307 dsw = d2*(swF2+d*(swF3+d*swF4));
308
309 /* Evaluate switch function */
310 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
311 fvdw = fvdw*sw - rinv00*vvdw*dsw;
312 vvdw *= sw;
313
314 /* Update potential sums from outer loop */
315 velecsum += velec;
316 vvdwsum += vvdw;
317
318 fscal = felec+fvdw;
319
320 /* Calculate temporary vectorial force */
321 tx = fscal*dx00;
322 ty = fscal*dy00;
323 tz = fscal*dz00;
324
325 /* Update vectorial force */
326 fix0 += tx;
327 fiy0 += ty;
328 fiz0 += tz;
329 f[j_coord_offset+DIM3*0+XX0] -= tx;
330 f[j_coord_offset+DIM3*0+YY1] -= ty;
331 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
332
333 }
334
335 /**************************
336 * CALCULATE INTERACTIONS *
337 **************************/
338
339 if (rsq01<rcutoff2)
340 {
341
342 /* REACTION-FIELD ELECTROSTATICS */
343 velec = qq01*(rinv01+krf*rsq01-crf);
344 felec = qq01*(rinv01*rinvsq01-krf2);
345
346 /* Update potential sums from outer loop */
347 velecsum += velec;
348
349 fscal = felec;
350
351 /* Calculate temporary vectorial force */
352 tx = fscal*dx01;
353 ty = fscal*dy01;
354 tz = fscal*dz01;
355
356 /* Update vectorial force */
357 fix0 += tx;
358 fiy0 += ty;
359 fiz0 += tz;
360 f[j_coord_offset+DIM3*1+XX0] -= tx;
361 f[j_coord_offset+DIM3*1+YY1] -= ty;
362 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
363
364 }
365
366 /**************************
367 * CALCULATE INTERACTIONS *
368 **************************/
369
370 if (rsq02<rcutoff2)
371 {
372
373 /* REACTION-FIELD ELECTROSTATICS */
374 velec = qq02*(rinv02+krf*rsq02-crf);
375 felec = qq02*(rinv02*rinvsq02-krf2);
376
377 /* Update potential sums from outer loop */
378 velecsum += velec;
379
380 fscal = felec;
381
382 /* Calculate temporary vectorial force */
383 tx = fscal*dx02;
384 ty = fscal*dy02;
385 tz = fscal*dz02;
386
387 /* Update vectorial force */
388 fix0 += tx;
389 fiy0 += ty;
390 fiz0 += tz;
391 f[j_coord_offset+DIM3*2+XX0] -= tx;
392 f[j_coord_offset+DIM3*2+YY1] -= ty;
393 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
394
395 }
396
397 /**************************
398 * CALCULATE INTERACTIONS *
399 **************************/
400
401 if (rsq10<rcutoff2)
402 {
403
404 /* REACTION-FIELD ELECTROSTATICS */
405 velec = qq10*(rinv10+krf*rsq10-crf);
406 felec = qq10*(rinv10*rinvsq10-krf2);
407
408 /* Update potential sums from outer loop */
409 velecsum += velec;
410
411 fscal = felec;
412
413 /* Calculate temporary vectorial force */
414 tx = fscal*dx10;
415 ty = fscal*dy10;
416 tz = fscal*dz10;
417
418 /* Update vectorial force */
419 fix1 += tx;
420 fiy1 += ty;
421 fiz1 += tz;
422 f[j_coord_offset+DIM3*0+XX0] -= tx;
423 f[j_coord_offset+DIM3*0+YY1] -= ty;
424 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
425
426 }
427
428 /**************************
429 * CALCULATE INTERACTIONS *
430 **************************/
431
432 if (rsq11<rcutoff2)
433 {
434
435 /* REACTION-FIELD ELECTROSTATICS */
436 velec = qq11*(rinv11+krf*rsq11-crf);
437 felec = qq11*(rinv11*rinvsq11-krf2);
438
439 /* Update potential sums from outer loop */
440 velecsum += velec;
441
442 fscal = felec;
443
444 /* Calculate temporary vectorial force */
445 tx = fscal*dx11;
446 ty = fscal*dy11;
447 tz = fscal*dz11;
448
449 /* Update vectorial force */
450 fix1 += tx;
451 fiy1 += ty;
452 fiz1 += tz;
453 f[j_coord_offset+DIM3*1+XX0] -= tx;
454 f[j_coord_offset+DIM3*1+YY1] -= ty;
455 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
456
457 }
458
459 /**************************
460 * CALCULATE INTERACTIONS *
461 **************************/
462
463 if (rsq12<rcutoff2)
464 {
465
466 /* REACTION-FIELD ELECTROSTATICS */
467 velec = qq12*(rinv12+krf*rsq12-crf);
468 felec = qq12*(rinv12*rinvsq12-krf2);
469
470 /* Update potential sums from outer loop */
471 velecsum += velec;
472
473 fscal = felec;
474
475 /* Calculate temporary vectorial force */
476 tx = fscal*dx12;
477 ty = fscal*dy12;
478 tz = fscal*dz12;
479
480 /* Update vectorial force */
481 fix1 += tx;
482 fiy1 += ty;
483 fiz1 += tz;
484 f[j_coord_offset+DIM3*2+XX0] -= tx;
485 f[j_coord_offset+DIM3*2+YY1] -= ty;
486 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
487
488 }
489
490 /**************************
491 * CALCULATE INTERACTIONS *
492 **************************/
493
494 if (rsq20<rcutoff2)
495 {
496
497 /* REACTION-FIELD ELECTROSTATICS */
498 velec = qq20*(rinv20+krf*rsq20-crf);
499 felec = qq20*(rinv20*rinvsq20-krf2);
500
501 /* Update potential sums from outer loop */
502 velecsum += velec;
503
504 fscal = felec;
505
506 /* Calculate temporary vectorial force */
507 tx = fscal*dx20;
508 ty = fscal*dy20;
509 tz = fscal*dz20;
510
511 /* Update vectorial force */
512 fix2 += tx;
513 fiy2 += ty;
514 fiz2 += tz;
515 f[j_coord_offset+DIM3*0+XX0] -= tx;
516 f[j_coord_offset+DIM3*0+YY1] -= ty;
517 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
518
519 }
520
521 /**************************
522 * CALCULATE INTERACTIONS *
523 **************************/
524
525 if (rsq21<rcutoff2)
526 {
527
528 /* REACTION-FIELD ELECTROSTATICS */
529 velec = qq21*(rinv21+krf*rsq21-crf);
530 felec = qq21*(rinv21*rinvsq21-krf2);
531
532 /* Update potential sums from outer loop */
533 velecsum += velec;
534
535 fscal = felec;
536
537 /* Calculate temporary vectorial force */
538 tx = fscal*dx21;
539 ty = fscal*dy21;
540 tz = fscal*dz21;
541
542 /* Update vectorial force */
543 fix2 += tx;
544 fiy2 += ty;
545 fiz2 += tz;
546 f[j_coord_offset+DIM3*1+XX0] -= tx;
547 f[j_coord_offset+DIM3*1+YY1] -= ty;
548 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
549
550 }
551
552 /**************************
553 * CALCULATE INTERACTIONS *
554 **************************/
555
556 if (rsq22<rcutoff2)
557 {
558
559 /* REACTION-FIELD ELECTROSTATICS */
560 velec = qq22*(rinv22+krf*rsq22-crf);
561 felec = qq22*(rinv22*rinvsq22-krf2);
562
563 /* Update potential sums from outer loop */
564 velecsum += velec;
565
566 fscal = felec;
567
568 /* Calculate temporary vectorial force */
569 tx = fscal*dx22;
570 ty = fscal*dy22;
571 tz = fscal*dz22;
572
573 /* Update vectorial force */
574 fix2 += tx;
575 fiy2 += ty;
576 fiz2 += tz;
577 f[j_coord_offset+DIM3*2+XX0] -= tx;
578 f[j_coord_offset+DIM3*2+YY1] -= ty;
579 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
580
581 }
582
583 /* Inner loop uses 310 flops */
584 }
585 /* End of innermost loop */
586
587 tx = ty = tz = 0;
588 f[i_coord_offset+DIM3*0+XX0] += fix0;
589 f[i_coord_offset+DIM3*0+YY1] += fiy0;
590 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
591 tx += fix0;
592 ty += fiy0;
593 tz += fiz0;
594 f[i_coord_offset+DIM3*1+XX0] += fix1;
595 f[i_coord_offset+DIM3*1+YY1] += fiy1;
596 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
597 tx += fix1;
598 ty += fiy1;
599 tz += fiz1;
600 f[i_coord_offset+DIM3*2+XX0] += fix2;
601 f[i_coord_offset+DIM3*2+YY1] += fiy2;
602 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
603 tx += fix2;
604 ty += fiy2;
605 tz += fiz2;
606 fshift[i_shift_offset+XX0] += tx;
607 fshift[i_shift_offset+YY1] += ty;
608 fshift[i_shift_offset+ZZ2] += tz;
609
610 ggid = gid[iidx];
611 /* Update potential energies */
612 kernel_data->energygrp_elec[ggid] += velecsum;
613 kernel_data->energygrp_vdw[ggid] += vvdwsum;
614
615 /* Increment number of inner iterations */
616 inneriter += j_index_end - j_index_start;
617
618 /* Outer loop uses 32 flops */
619 }
620
621 /* Increment number of outer iterations */
622 outeriter += nri;
623
624 /* Update outer/inner flops */
625
626 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*32 + inneriter*310)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_VF] += outeriter*32 +
inneriter*310
;
627}
628/*
629 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSw_GeomW3W3_F_c
630 * Electrostatics interaction: ReactionField
631 * VdW interaction: LennardJones
632 * Geometry: Water3-Water3
633 * Calculate force/pot: Force
634 */
635void
636nb_kernel_ElecRFCut_VdwLJSw_GeomW3W3_F_c
637 (t_nblist * gmx_restrict__restrict nlist,
638 rvec * gmx_restrict__restrict xx,
639 rvec * gmx_restrict__restrict ff,
640 t_forcerec * gmx_restrict__restrict fr,
641 t_mdatoms * gmx_restrict__restrict mdatoms,
642 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
643 t_nrnb * gmx_restrict__restrict nrnb)
644{
645 int i_shift_offset,i_coord_offset,j_coord_offset;
646 int j_index_start,j_index_end;
647 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
648 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
649 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
650 real *shiftvec,*fshift,*x,*f;
651 int vdwioffset0;
652 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
653 int vdwioffset1;
654 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
655 int vdwioffset2;
656 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
657 int vdwjidx0;
658 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
659 int vdwjidx1;
660 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
661 int vdwjidx2;
662 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
663 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
664 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
665 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
666 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
667 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
668 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
669 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
670 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
671 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
672 real velec,felec,velecsum,facel,crf,krf,krf2;
673 real *charge;
674 int nvdwtype;
675 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
676 int *vdwtype;
677 real *vdwparam;
678 real rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
679
680 x = xx[0];
681 f = ff[0];
682
683 nri = nlist->nri;
684 iinr = nlist->iinr;
685 jindex = nlist->jindex;
686 jjnr = nlist->jjnr;
687 shiftidx = nlist->shift;
688 gid = nlist->gid;
689 shiftvec = fr->shift_vec[0];
690 fshift = fr->fshift[0];
691 facel = fr->epsfac;
692 charge = mdatoms->chargeA;
693 krf = fr->ic->k_rf;
694 krf2 = krf*2.0;
695 crf = fr->ic->c_rf;
Value stored to 'crf' is never read
696 nvdwtype = fr->ntype;
697 vdwparam = fr->nbfp;
698 vdwtype = mdatoms->typeA;
699
700 /* Setup water-specific parameters */
701 inr = nlist->iinr[0];
702 iq0 = facel*charge[inr+0];
703 iq1 = facel*charge[inr+1];
704 iq2 = facel*charge[inr+2];
705 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
706
707 jq0 = charge[inr+0];
708 jq1 = charge[inr+1];
709 jq2 = charge[inr+2];
710 vdwjidx0 = 2*vdwtype[inr+0];
711 qq00 = iq0*jq0;
712 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
713 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
714 qq01 = iq0*jq1;
715 qq02 = iq0*jq2;
716 qq10 = iq1*jq0;
717 qq11 = iq1*jq1;
718 qq12 = iq1*jq2;
719 qq20 = iq2*jq0;
720 qq21 = iq2*jq1;
721 qq22 = iq2*jq2;
722
723 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
724 rcutoff = fr->rcoulomb;
725 rcutoff2 = rcutoff*rcutoff;
726
727 rswitch = fr->rvdw_switch;
728 /* Setup switch parameters */
729 d = rcutoff-rswitch;
730 swV3 = -10.0/(d*d*d);
731 swV4 = 15.0/(d*d*d*d);
732 swV5 = -6.0/(d*d*d*d*d);
733 swF2 = -30.0/(d*d*d);
734 swF3 = 60.0/(d*d*d*d);
735 swF4 = -30.0/(d*d*d*d*d);
736
737 outeriter = 0;
738 inneriter = 0;
739
740 /* Start outer loop over neighborlists */
741 for(iidx=0; iidx<nri; iidx++)
742 {
743 /* Load shift vector for this list */
744 i_shift_offset = DIM3*shiftidx[iidx];
745 shX = shiftvec[i_shift_offset+XX0];
746 shY = shiftvec[i_shift_offset+YY1];
747 shZ = shiftvec[i_shift_offset+ZZ2];
748
749 /* Load limits for loop over neighbors */
750 j_index_start = jindex[iidx];
751 j_index_end = jindex[iidx+1];
752
753 /* Get outer coordinate index */
754 inr = iinr[iidx];
755 i_coord_offset = DIM3*inr;
756
757 /* Load i particle coords and add shift vector */
758 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
759 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
760 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
761 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
762 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
763 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
764 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
765 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
766 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
767
768 fix0 = 0.0;
769 fiy0 = 0.0;
770 fiz0 = 0.0;
771 fix1 = 0.0;
772 fiy1 = 0.0;
773 fiz1 = 0.0;
774 fix2 = 0.0;
775 fiy2 = 0.0;
776 fiz2 = 0.0;
777
778 /* Start inner kernel loop */
779 for(jidx=j_index_start; jidx<j_index_end; jidx++)
780 {
781 /* Get j neighbor index, and coordinate index */
782 jnr = jjnr[jidx];
783 j_coord_offset = DIM3*jnr;
784
785 /* load j atom coordinates */
786 jx0 = x[j_coord_offset+DIM3*0+XX0];
787 jy0 = x[j_coord_offset+DIM3*0+YY1];
788 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
789 jx1 = x[j_coord_offset+DIM3*1+XX0];
790 jy1 = x[j_coord_offset+DIM3*1+YY1];
791 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
792 jx2 = x[j_coord_offset+DIM3*2+XX0];
793 jy2 = x[j_coord_offset+DIM3*2+YY1];
794 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
795
796 /* Calculate displacement vector */
797 dx00 = ix0 - jx0;
798 dy00 = iy0 - jy0;
799 dz00 = iz0 - jz0;
800 dx01 = ix0 - jx1;
801 dy01 = iy0 - jy1;
802 dz01 = iz0 - jz1;
803 dx02 = ix0 - jx2;
804 dy02 = iy0 - jy2;
805 dz02 = iz0 - jz2;
806 dx10 = ix1 - jx0;
807 dy10 = iy1 - jy0;
808 dz10 = iz1 - jz0;
809 dx11 = ix1 - jx1;
810 dy11 = iy1 - jy1;
811 dz11 = iz1 - jz1;
812 dx12 = ix1 - jx2;
813 dy12 = iy1 - jy2;
814 dz12 = iz1 - jz2;
815 dx20 = ix2 - jx0;
816 dy20 = iy2 - jy0;
817 dz20 = iz2 - jz0;
818 dx21 = ix2 - jx1;
819 dy21 = iy2 - jy1;
820 dz21 = iz2 - jz1;
821 dx22 = ix2 - jx2;
822 dy22 = iy2 - jy2;
823 dz22 = iz2 - jz2;
824
825 /* Calculate squared distance and things based on it */
826 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
827 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
828 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
829 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
830 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
831 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
832 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
833 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
834 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
835
836 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
837 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
838 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
839 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
840 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
841 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
842 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
843 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
844 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
845
846 rinvsq00 = rinv00*rinv00;
847 rinvsq01 = rinv01*rinv01;
848 rinvsq02 = rinv02*rinv02;
849 rinvsq10 = rinv10*rinv10;
850 rinvsq11 = rinv11*rinv11;
851 rinvsq12 = rinv12*rinv12;
852 rinvsq20 = rinv20*rinv20;
853 rinvsq21 = rinv21*rinv21;
854 rinvsq22 = rinv22*rinv22;
855
856 /**************************
857 * CALCULATE INTERACTIONS *
858 **************************/
859
860 if (rsq00<rcutoff2)
861 {
862
863 r00 = rsq00*rinv00;
864
865 /* REACTION-FIELD ELECTROSTATICS */
866 felec = qq00*(rinv00*rinvsq00-krf2);
867
868 /* LENNARD-JONES DISPERSION/REPULSION */
869
870 rinvsix = rinvsq00*rinvsq00*rinvsq00;
871 vvdw6 = c6_00*rinvsix;
872 vvdw12 = c12_00*rinvsix*rinvsix;
873 vvdw = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
874 fvdw = (vvdw12-vvdw6)*rinvsq00;
875
876 d = r00-rswitch;
877 d = (d>0.0) ? d : 0.0;
878 d2 = d*d;
879 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
880
881 dsw = d2*(swF2+d*(swF3+d*swF4));
882
883 /* Evaluate switch function */
884 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
885 fvdw = fvdw*sw - rinv00*vvdw*dsw;
886
887 fscal = felec+fvdw;
888
889 /* Calculate temporary vectorial force */
890 tx = fscal*dx00;
891 ty = fscal*dy00;
892 tz = fscal*dz00;
893
894 /* Update vectorial force */
895 fix0 += tx;
896 fiy0 += ty;
897 fiz0 += tz;
898 f[j_coord_offset+DIM3*0+XX0] -= tx;
899 f[j_coord_offset+DIM3*0+YY1] -= ty;
900 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
901
902 }
903
904 /**************************
905 * CALCULATE INTERACTIONS *
906 **************************/
907
908 if (rsq01<rcutoff2)
909 {
910
911 /* REACTION-FIELD ELECTROSTATICS */
912 felec = qq01*(rinv01*rinvsq01-krf2);
913
914 fscal = felec;
915
916 /* Calculate temporary vectorial force */
917 tx = fscal*dx01;
918 ty = fscal*dy01;
919 tz = fscal*dz01;
920
921 /* Update vectorial force */
922 fix0 += tx;
923 fiy0 += ty;
924 fiz0 += tz;
925 f[j_coord_offset+DIM3*1+XX0] -= tx;
926 f[j_coord_offset+DIM3*1+YY1] -= ty;
927 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
928
929 }
930
931 /**************************
932 * CALCULATE INTERACTIONS *
933 **************************/
934
935 if (rsq02<rcutoff2)
936 {
937
938 /* REACTION-FIELD ELECTROSTATICS */
939 felec = qq02*(rinv02*rinvsq02-krf2);
940
941 fscal = felec;
942
943 /* Calculate temporary vectorial force */
944 tx = fscal*dx02;
945 ty = fscal*dy02;
946 tz = fscal*dz02;
947
948 /* Update vectorial force */
949 fix0 += tx;
950 fiy0 += ty;
951 fiz0 += tz;
952 f[j_coord_offset+DIM3*2+XX0] -= tx;
953 f[j_coord_offset+DIM3*2+YY1] -= ty;
954 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
955
956 }
957
958 /**************************
959 * CALCULATE INTERACTIONS *
960 **************************/
961
962 if (rsq10<rcutoff2)
963 {
964
965 /* REACTION-FIELD ELECTROSTATICS */
966 felec = qq10*(rinv10*rinvsq10-krf2);
967
968 fscal = felec;
969
970 /* Calculate temporary vectorial force */
971 tx = fscal*dx10;
972 ty = fscal*dy10;
973 tz = fscal*dz10;
974
975 /* Update vectorial force */
976 fix1 += tx;
977 fiy1 += ty;
978 fiz1 += tz;
979 f[j_coord_offset+DIM3*0+XX0] -= tx;
980 f[j_coord_offset+DIM3*0+YY1] -= ty;
981 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
982
983 }
984
985 /**************************
986 * CALCULATE INTERACTIONS *
987 **************************/
988
989 if (rsq11<rcutoff2)
990 {
991
992 /* REACTION-FIELD ELECTROSTATICS */
993 felec = qq11*(rinv11*rinvsq11-krf2);
994
995 fscal = felec;
996
997 /* Calculate temporary vectorial force */
998 tx = fscal*dx11;
999 ty = fscal*dy11;
1000 tz = fscal*dz11;
1001
1002 /* Update vectorial force */
1003 fix1 += tx;
1004 fiy1 += ty;
1005 fiz1 += tz;
1006 f[j_coord_offset+DIM3*1+XX0] -= tx;
1007 f[j_coord_offset+DIM3*1+YY1] -= ty;
1008 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1009
1010 }
1011
1012 /**************************
1013 * CALCULATE INTERACTIONS *
1014 **************************/
1015
1016 if (rsq12<rcutoff2)
1017 {
1018
1019 /* REACTION-FIELD ELECTROSTATICS */
1020 felec = qq12*(rinv12*rinvsq12-krf2);
1021
1022 fscal = felec;
1023
1024 /* Calculate temporary vectorial force */
1025 tx = fscal*dx12;
1026 ty = fscal*dy12;
1027 tz = fscal*dz12;
1028
1029 /* Update vectorial force */
1030 fix1 += tx;
1031 fiy1 += ty;
1032 fiz1 += tz;
1033 f[j_coord_offset+DIM3*2+XX0] -= tx;
1034 f[j_coord_offset+DIM3*2+YY1] -= ty;
1035 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1036
1037 }
1038
1039 /**************************
1040 * CALCULATE INTERACTIONS *
1041 **************************/
1042
1043 if (rsq20<rcutoff2)
1044 {
1045
1046 /* REACTION-FIELD ELECTROSTATICS */
1047 felec = qq20*(rinv20*rinvsq20-krf2);
1048
1049 fscal = felec;
1050
1051 /* Calculate temporary vectorial force */
1052 tx = fscal*dx20;
1053 ty = fscal*dy20;
1054 tz = fscal*dz20;
1055
1056 /* Update vectorial force */
1057 fix2 += tx;
1058 fiy2 += ty;
1059 fiz2 += tz;
1060 f[j_coord_offset+DIM3*0+XX0] -= tx;
1061 f[j_coord_offset+DIM3*0+YY1] -= ty;
1062 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
1063
1064 }
1065
1066 /**************************
1067 * CALCULATE INTERACTIONS *
1068 **************************/
1069
1070 if (rsq21<rcutoff2)
1071 {
1072
1073 /* REACTION-FIELD ELECTROSTATICS */
1074 felec = qq21*(rinv21*rinvsq21-krf2);
1075
1076 fscal = felec;
1077
1078 /* Calculate temporary vectorial force */
1079 tx = fscal*dx21;
1080 ty = fscal*dy21;
1081 tz = fscal*dz21;
1082
1083 /* Update vectorial force */
1084 fix2 += tx;
1085 fiy2 += ty;
1086 fiz2 += tz;
1087 f[j_coord_offset+DIM3*1+XX0] -= tx;
1088 f[j_coord_offset+DIM3*1+YY1] -= ty;
1089 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1090
1091 }
1092
1093 /**************************
1094 * CALCULATE INTERACTIONS *
1095 **************************/
1096
1097 if (rsq22<rcutoff2)
1098 {
1099
1100 /* REACTION-FIELD ELECTROSTATICS */
1101 felec = qq22*(rinv22*rinvsq22-krf2);
1102
1103 fscal = felec;
1104
1105 /* Calculate temporary vectorial force */
1106 tx = fscal*dx22;
1107 ty = fscal*dy22;
1108 tz = fscal*dz22;
1109
1110 /* Update vectorial force */
1111 fix2 += tx;
1112 fiy2 += ty;
1113 fiz2 += tz;
1114 f[j_coord_offset+DIM3*2+XX0] -= tx;
1115 f[j_coord_offset+DIM3*2+YY1] -= ty;
1116 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1117
1118 }
1119
1120 /* Inner loop uses 263 flops */
1121 }
1122 /* End of innermost loop */
1123
1124 tx = ty = tz = 0;
1125 f[i_coord_offset+DIM3*0+XX0] += fix0;
1126 f[i_coord_offset+DIM3*0+YY1] += fiy0;
1127 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
1128 tx += fix0;
1129 ty += fiy0;
1130 tz += fiz0;
1131 f[i_coord_offset+DIM3*1+XX0] += fix1;
1132 f[i_coord_offset+DIM3*1+YY1] += fiy1;
1133 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
1134 tx += fix1;
1135 ty += fiy1;
1136 tz += fiz1;
1137 f[i_coord_offset+DIM3*2+XX0] += fix2;
1138 f[i_coord_offset+DIM3*2+YY1] += fiy2;
1139 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
1140 tx += fix2;
1141 ty += fiy2;
1142 tz += fiz2;
1143 fshift[i_shift_offset+XX0] += tx;
1144 fshift[i_shift_offset+YY1] += ty;
1145 fshift[i_shift_offset+ZZ2] += tz;
1146
1147 /* Increment number of inner iterations */
1148 inneriter += j_index_end - j_index_start;
1149
1150 /* Outer loop uses 30 flops */
1151 }
1152
1153 /* Increment number of outer iterations */
1154 outeriter += nri;
1155
1156 /* Update outer/inner flops */
1157
1158 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*30 + inneriter*263)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_F] += outeriter*30 + inneriter
*263
;
1159}