Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecCoul_VdwLJ_GeomW3P1_c.c
Location:line 388, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwLJ_GeomW3P1_VF_c
51 * Electrostatics interaction: Coulomb
52 * VdW interaction: LennardJones
53 * Geometry: Water3-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecCoul_VdwLJ_GeomW3P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83 real velec,felec,velecsum,facel,crf,krf,krf2;
84 real *charge;
85 int nvdwtype;
86 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
87 int *vdwtype;
88 real *vdwparam;
89
90 x = xx[0];
91 f = ff[0];
92
93 nri = nlist->nri;
94 iinr = nlist->iinr;
95 jindex = nlist->jindex;
96 jjnr = nlist->jjnr;
97 shiftidx = nlist->shift;
98 gid = nlist->gid;
99 shiftvec = fr->shift_vec[0];
100 fshift = fr->fshift[0];
101 facel = fr->epsfac;
102 charge = mdatoms->chargeA;
103 nvdwtype = fr->ntype;
104 vdwparam = fr->nbfp;
105 vdwtype = mdatoms->typeA;
106
107 /* Setup water-specific parameters */
108 inr = nlist->iinr[0];
109 iq0 = facel*charge[inr+0];
110 iq1 = facel*charge[inr+1];
111 iq2 = facel*charge[inr+2];
112 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
113
114 outeriter = 0;
115 inneriter = 0;
116
117 /* Start outer loop over neighborlists */
118 for(iidx=0; iidx<nri; iidx++)
119 {
120 /* Load shift vector for this list */
121 i_shift_offset = DIM3*shiftidx[iidx];
122 shX = shiftvec[i_shift_offset+XX0];
123 shY = shiftvec[i_shift_offset+YY1];
124 shZ = shiftvec[i_shift_offset+ZZ2];
125
126 /* Load limits for loop over neighbors */
127 j_index_start = jindex[iidx];
128 j_index_end = jindex[iidx+1];
129
130 /* Get outer coordinate index */
131 inr = iinr[iidx];
132 i_coord_offset = DIM3*inr;
133
134 /* Load i particle coords and add shift vector */
135 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
136 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
137 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
138 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
139 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
140 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
141 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
142 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
143 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
144
145 fix0 = 0.0;
146 fiy0 = 0.0;
147 fiz0 = 0.0;
148 fix1 = 0.0;
149 fiy1 = 0.0;
150 fiz1 = 0.0;
151 fix2 = 0.0;
152 fiy2 = 0.0;
153 fiz2 = 0.0;
154
155 /* Reset potential sums */
156 velecsum = 0.0;
157 vvdwsum = 0.0;
158
159 /* Start inner kernel loop */
160 for(jidx=j_index_start; jidx<j_index_end; jidx++)
161 {
162 /* Get j neighbor index, and coordinate index */
163 jnr = jjnr[jidx];
164 j_coord_offset = DIM3*jnr;
165
166 /* load j atom coordinates */
167 jx0 = x[j_coord_offset+DIM3*0+XX0];
168 jy0 = x[j_coord_offset+DIM3*0+YY1];
169 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
170
171 /* Calculate displacement vector */
172 dx00 = ix0 - jx0;
173 dy00 = iy0 - jy0;
174 dz00 = iz0 - jz0;
175 dx10 = ix1 - jx0;
176 dy10 = iy1 - jy0;
177 dz10 = iz1 - jz0;
178 dx20 = ix2 - jx0;
179 dy20 = iy2 - jy0;
180 dz20 = iz2 - jz0;
181
182 /* Calculate squared distance and things based on it */
183 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
184 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
185 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
186
187 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
188 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
189 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
190
191 rinvsq00 = rinv00*rinv00;
192 rinvsq10 = rinv10*rinv10;
193 rinvsq20 = rinv20*rinv20;
194
195 /* Load parameters for j particles */
196 jq0 = charge[jnr+0];
197 vdwjidx0 = 2*vdwtype[jnr+0];
198
199 /**************************
200 * CALCULATE INTERACTIONS *
201 **************************/
202
203 qq00 = iq0*jq0;
204 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
205 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
206
207 /* COULOMB ELECTROSTATICS */
208 velec = qq00*rinv00;
209 felec = velec*rinvsq00;
210
211 /* LENNARD-JONES DISPERSION/REPULSION */
212
213 rinvsix = rinvsq00*rinvsq00*rinvsq00;
214 vvdw6 = c6_00*rinvsix;
215 vvdw12 = c12_00*rinvsix*rinvsix;
216 vvdw = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
217 fvdw = (vvdw12-vvdw6)*rinvsq00;
218
219 /* Update potential sums from outer loop */
220 velecsum += velec;
221 vvdwsum += vvdw;
222
223 fscal = felec+fvdw;
224
225 /* Calculate temporary vectorial force */
226 tx = fscal*dx00;
227 ty = fscal*dy00;
228 tz = fscal*dz00;
229
230 /* Update vectorial force */
231 fix0 += tx;
232 fiy0 += ty;
233 fiz0 += tz;
234 f[j_coord_offset+DIM3*0+XX0] -= tx;
235 f[j_coord_offset+DIM3*0+YY1] -= ty;
236 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
237
238 /**************************
239 * CALCULATE INTERACTIONS *
240 **************************/
241
242 qq10 = iq1*jq0;
243
244 /* COULOMB ELECTROSTATICS */
245 velec = qq10*rinv10;
246 felec = velec*rinvsq10;
247
248 /* Update potential sums from outer loop */
249 velecsum += velec;
250
251 fscal = felec;
252
253 /* Calculate temporary vectorial force */
254 tx = fscal*dx10;
255 ty = fscal*dy10;
256 tz = fscal*dz10;
257
258 /* Update vectorial force */
259 fix1 += tx;
260 fiy1 += ty;
261 fiz1 += tz;
262 f[j_coord_offset+DIM3*0+XX0] -= tx;
263 f[j_coord_offset+DIM3*0+YY1] -= ty;
264 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
265
266 /**************************
267 * CALCULATE INTERACTIONS *
268 **************************/
269
270 qq20 = iq2*jq0;
271
272 /* COULOMB ELECTROSTATICS */
273 velec = qq20*rinv20;
274 felec = velec*rinvsq20;
275
276 /* Update potential sums from outer loop */
277 velecsum += velec;
278
279 fscal = felec;
280
281 /* Calculate temporary vectorial force */
282 tx = fscal*dx20;
283 ty = fscal*dy20;
284 tz = fscal*dz20;
285
286 /* Update vectorial force */
287 fix2 += tx;
288 fiy2 += ty;
289 fiz2 += tz;
290 f[j_coord_offset+DIM3*0+XX0] -= tx;
291 f[j_coord_offset+DIM3*0+YY1] -= ty;
292 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
293
294 /* Inner loop uses 96 flops */
295 }
296 /* End of innermost loop */
297
298 tx = ty = tz = 0;
299 f[i_coord_offset+DIM3*0+XX0] += fix0;
300 f[i_coord_offset+DIM3*0+YY1] += fiy0;
301 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
302 tx += fix0;
303 ty += fiy0;
304 tz += fiz0;
305 f[i_coord_offset+DIM3*1+XX0] += fix1;
306 f[i_coord_offset+DIM3*1+YY1] += fiy1;
307 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
308 tx += fix1;
309 ty += fiy1;
310 tz += fiz1;
311 f[i_coord_offset+DIM3*2+XX0] += fix2;
312 f[i_coord_offset+DIM3*2+YY1] += fiy2;
313 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
314 tx += fix2;
315 ty += fiy2;
316 tz += fiz2;
317 fshift[i_shift_offset+XX0] += tx;
318 fshift[i_shift_offset+YY1] += ty;
319 fshift[i_shift_offset+ZZ2] += tz;
320
321 ggid = gid[iidx];
322 /* Update potential energies */
323 kernel_data->energygrp_elec[ggid] += velecsum;
324 kernel_data->energygrp_vdw[ggid] += vvdwsum;
325
326 /* Increment number of inner iterations */
327 inneriter += j_index_end - j_index_start;
328
329 /* Outer loop uses 32 flops */
330 }
331
332 /* Increment number of outer iterations */
333 outeriter += nri;
334
335 /* Update outer/inner flops */
336
337 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*32 + inneriter*96)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_VF] += outeriter*32 + inneriter
*96
;
338}
339/*
340 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwLJ_GeomW3P1_F_c
341 * Electrostatics interaction: Coulomb
342 * VdW interaction: LennardJones
343 * Geometry: Water3-Particle
344 * Calculate force/pot: Force
345 */
346void
347nb_kernel_ElecCoul_VdwLJ_GeomW3P1_F_c
348 (t_nblist * gmx_restrict__restrict nlist,
349 rvec * gmx_restrict__restrict xx,
350 rvec * gmx_restrict__restrict ff,
351 t_forcerec * gmx_restrict__restrict fr,
352 t_mdatoms * gmx_restrict__restrict mdatoms,
353 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
354 t_nrnb * gmx_restrict__restrict nrnb)
355{
356 int i_shift_offset,i_coord_offset,j_coord_offset;
357 int j_index_start,j_index_end;
358 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
359 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
360 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
361 real *shiftvec,*fshift,*x,*f;
362 int vdwioffset0;
363 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
364 int vdwioffset1;
365 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
366 int vdwioffset2;
367 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
368 int vdwjidx0;
369 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
370 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
371 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
372 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
373 real velec,felec,velecsum,facel,crf,krf,krf2;
374 real *charge;
375 int nvdwtype;
376 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
377 int *vdwtype;
378 real *vdwparam;
379
380 x = xx[0];
381 f = ff[0];
382
383 nri = nlist->nri;
384 iinr = nlist->iinr;
385 jindex = nlist->jindex;
386 jjnr = nlist->jjnr;
387 shiftidx = nlist->shift;
388 gid = nlist->gid;
Value stored to 'gid' is never read
389 shiftvec = fr->shift_vec[0];
390 fshift = fr->fshift[0];
391 facel = fr->epsfac;
392 charge = mdatoms->chargeA;
393 nvdwtype = fr->ntype;
394 vdwparam = fr->nbfp;
395 vdwtype = mdatoms->typeA;
396
397 /* Setup water-specific parameters */
398 inr = nlist->iinr[0];
399 iq0 = facel*charge[inr+0];
400 iq1 = facel*charge[inr+1];
401 iq2 = facel*charge[inr+2];
402 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
403
404 outeriter = 0;
405 inneriter = 0;
406
407 /* Start outer loop over neighborlists */
408 for(iidx=0; iidx<nri; iidx++)
409 {
410 /* Load shift vector for this list */
411 i_shift_offset = DIM3*shiftidx[iidx];
412 shX = shiftvec[i_shift_offset+XX0];
413 shY = shiftvec[i_shift_offset+YY1];
414 shZ = shiftvec[i_shift_offset+ZZ2];
415
416 /* Load limits for loop over neighbors */
417 j_index_start = jindex[iidx];
418 j_index_end = jindex[iidx+1];
419
420 /* Get outer coordinate index */
421 inr = iinr[iidx];
422 i_coord_offset = DIM3*inr;
423
424 /* Load i particle coords and add shift vector */
425 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
426 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
427 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
428 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
429 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
430 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
431 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
432 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
433 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
434
435 fix0 = 0.0;
436 fiy0 = 0.0;
437 fiz0 = 0.0;
438 fix1 = 0.0;
439 fiy1 = 0.0;
440 fiz1 = 0.0;
441 fix2 = 0.0;
442 fiy2 = 0.0;
443 fiz2 = 0.0;
444
445 /* Start inner kernel loop */
446 for(jidx=j_index_start; jidx<j_index_end; jidx++)
447 {
448 /* Get j neighbor index, and coordinate index */
449 jnr = jjnr[jidx];
450 j_coord_offset = DIM3*jnr;
451
452 /* load j atom coordinates */
453 jx0 = x[j_coord_offset+DIM3*0+XX0];
454 jy0 = x[j_coord_offset+DIM3*0+YY1];
455 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
456
457 /* Calculate displacement vector */
458 dx00 = ix0 - jx0;
459 dy00 = iy0 - jy0;
460 dz00 = iz0 - jz0;
461 dx10 = ix1 - jx0;
462 dy10 = iy1 - jy0;
463 dz10 = iz1 - jz0;
464 dx20 = ix2 - jx0;
465 dy20 = iy2 - jy0;
466 dz20 = iz2 - jz0;
467
468 /* Calculate squared distance and things based on it */
469 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
470 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
471 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
472
473 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
474 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
475 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
476
477 rinvsq00 = rinv00*rinv00;
478 rinvsq10 = rinv10*rinv10;
479 rinvsq20 = rinv20*rinv20;
480
481 /* Load parameters for j particles */
482 jq0 = charge[jnr+0];
483 vdwjidx0 = 2*vdwtype[jnr+0];
484
485 /**************************
486 * CALCULATE INTERACTIONS *
487 **************************/
488
489 qq00 = iq0*jq0;
490 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
491 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
492
493 /* COULOMB ELECTROSTATICS */
494 velec = qq00*rinv00;
495 felec = velec*rinvsq00;
496
497 /* LENNARD-JONES DISPERSION/REPULSION */
498
499 rinvsix = rinvsq00*rinvsq00*rinvsq00;
500 fvdw = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
501
502 fscal = felec+fvdw;
503
504 /* Calculate temporary vectorial force */
505 tx = fscal*dx00;
506 ty = fscal*dy00;
507 tz = fscal*dz00;
508
509 /* Update vectorial force */
510 fix0 += tx;
511 fiy0 += ty;
512 fiz0 += tz;
513 f[j_coord_offset+DIM3*0+XX0] -= tx;
514 f[j_coord_offset+DIM3*0+YY1] -= ty;
515 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
516
517 /**************************
518 * CALCULATE INTERACTIONS *
519 **************************/
520
521 qq10 = iq1*jq0;
522
523 /* COULOMB ELECTROSTATICS */
524 velec = qq10*rinv10;
525 felec = velec*rinvsq10;
526
527 fscal = felec;
528
529 /* Calculate temporary vectorial force */
530 tx = fscal*dx10;
531 ty = fscal*dy10;
532 tz = fscal*dz10;
533
534 /* Update vectorial force */
535 fix1 += tx;
536 fiy1 += ty;
537 fiz1 += tz;
538 f[j_coord_offset+DIM3*0+XX0] -= tx;
539 f[j_coord_offset+DIM3*0+YY1] -= ty;
540 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
541
542 /**************************
543 * CALCULATE INTERACTIONS *
544 **************************/
545
546 qq20 = iq2*jq0;
547
548 /* COULOMB ELECTROSTATICS */
549 velec = qq20*rinv20;
550 felec = velec*rinvsq20;
551
552 fscal = felec;
553
554 /* Calculate temporary vectorial force */
555 tx = fscal*dx20;
556 ty = fscal*dy20;
557 tz = fscal*dz20;
558
559 /* Update vectorial force */
560 fix2 += tx;
561 fiy2 += ty;
562 fiz2 += tz;
563 f[j_coord_offset+DIM3*0+XX0] -= tx;
564 f[j_coord_offset+DIM3*0+YY1] -= ty;
565 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
566
567 /* Inner loop uses 88 flops */
568 }
569 /* End of innermost loop */
570
571 tx = ty = tz = 0;
572 f[i_coord_offset+DIM3*0+XX0] += fix0;
573 f[i_coord_offset+DIM3*0+YY1] += fiy0;
574 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
575 tx += fix0;
576 ty += fiy0;
577 tz += fiz0;
578 f[i_coord_offset+DIM3*1+XX0] += fix1;
579 f[i_coord_offset+DIM3*1+YY1] += fiy1;
580 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
581 tx += fix1;
582 ty += fiy1;
583 tz += fiz1;
584 f[i_coord_offset+DIM3*2+XX0] += fix2;
585 f[i_coord_offset+DIM3*2+YY1] += fiy2;
586 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
587 tx += fix2;
588 ty += fiy2;
589 tz += fiz2;
590 fshift[i_shift_offset+XX0] += tx;
591 fshift[i_shift_offset+YY1] += ty;
592 fshift[i_shift_offset+ZZ2] += tz;
593
594 /* Increment number of inner iterations */
595 inneriter += j_index_end - j_index_start;
596
597 /* Outer loop uses 30 flops */
598 }
599
600 /* Increment number of outer iterations */
601 outeriter += nri;
602
603 /* Update outer/inner flops */
604
605 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*30 + inneriter*88)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_F] += outeriter*30 + inneriter
*88
;
606}