Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEwSh_VdwNone_GeomW3W3_c.c
Location:line 725, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwNone_GeomW3W3_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: None
53 * Geometry: Water3-Water3
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEwSh_VdwNone_GeomW3W3_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 int vdwjidx1;
81 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
82 int vdwjidx2;
83 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
84 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
85 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
86 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
87 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
88 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
89 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
90 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
91 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
92 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
93 real velec,felec,velecsum,facel,crf,krf,krf2;
94 real *charge;
95 int ewitab;
96 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
97 real *ewtab;
98
99 x = xx[0];
100 f = ff[0];
101
102 nri = nlist->nri;
103 iinr = nlist->iinr;
104 jindex = nlist->jindex;
105 jjnr = nlist->jjnr;
106 shiftidx = nlist->shift;
107 gid = nlist->gid;
108 shiftvec = fr->shift_vec[0];
109 fshift = fr->fshift[0];
110 facel = fr->epsfac;
111 charge = mdatoms->chargeA;
112
113 sh_ewald = fr->ic->sh_ewald;
114 ewtab = fr->ic->tabq_coul_FDV0;
115 ewtabscale = fr->ic->tabq_scale;
116 ewtabhalfspace = 0.5/ewtabscale;
117
118 /* Setup water-specific parameters */
119 inr = nlist->iinr[0];
120 iq0 = facel*charge[inr+0];
121 iq1 = facel*charge[inr+1];
122 iq2 = facel*charge[inr+2];
123
124 jq0 = charge[inr+0];
125 jq1 = charge[inr+1];
126 jq2 = charge[inr+2];
127 qq00 = iq0*jq0;
128 qq01 = iq0*jq1;
129 qq02 = iq0*jq2;
130 qq10 = iq1*jq0;
131 qq11 = iq1*jq1;
132 qq12 = iq1*jq2;
133 qq20 = iq2*jq0;
134 qq21 = iq2*jq1;
135 qq22 = iq2*jq2;
136
137 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
138 rcutoff = fr->rcoulomb;
139 rcutoff2 = rcutoff*rcutoff;
140
141 outeriter = 0;
142 inneriter = 0;
143
144 /* Start outer loop over neighborlists */
145 for(iidx=0; iidx<nri; iidx++)
146 {
147 /* Load shift vector for this list */
148 i_shift_offset = DIM3*shiftidx[iidx];
149 shX = shiftvec[i_shift_offset+XX0];
150 shY = shiftvec[i_shift_offset+YY1];
151 shZ = shiftvec[i_shift_offset+ZZ2];
152
153 /* Load limits for loop over neighbors */
154 j_index_start = jindex[iidx];
155 j_index_end = jindex[iidx+1];
156
157 /* Get outer coordinate index */
158 inr = iinr[iidx];
159 i_coord_offset = DIM3*inr;
160
161 /* Load i particle coords and add shift vector */
162 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
163 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
164 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
165 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
166 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
167 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
168 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
169 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
170 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
171
172 fix0 = 0.0;
173 fiy0 = 0.0;
174 fiz0 = 0.0;
175 fix1 = 0.0;
176 fiy1 = 0.0;
177 fiz1 = 0.0;
178 fix2 = 0.0;
179 fiy2 = 0.0;
180 fiz2 = 0.0;
181
182 /* Reset potential sums */
183 velecsum = 0.0;
184
185 /* Start inner kernel loop */
186 for(jidx=j_index_start; jidx<j_index_end; jidx++)
187 {
188 /* Get j neighbor index, and coordinate index */
189 jnr = jjnr[jidx];
190 j_coord_offset = DIM3*jnr;
191
192 /* load j atom coordinates */
193 jx0 = x[j_coord_offset+DIM3*0+XX0];
194 jy0 = x[j_coord_offset+DIM3*0+YY1];
195 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
196 jx1 = x[j_coord_offset+DIM3*1+XX0];
197 jy1 = x[j_coord_offset+DIM3*1+YY1];
198 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
199 jx2 = x[j_coord_offset+DIM3*2+XX0];
200 jy2 = x[j_coord_offset+DIM3*2+YY1];
201 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
202
203 /* Calculate displacement vector */
204 dx00 = ix0 - jx0;
205 dy00 = iy0 - jy0;
206 dz00 = iz0 - jz0;
207 dx01 = ix0 - jx1;
208 dy01 = iy0 - jy1;
209 dz01 = iz0 - jz1;
210 dx02 = ix0 - jx2;
211 dy02 = iy0 - jy2;
212 dz02 = iz0 - jz2;
213 dx10 = ix1 - jx0;
214 dy10 = iy1 - jy0;
215 dz10 = iz1 - jz0;
216 dx11 = ix1 - jx1;
217 dy11 = iy1 - jy1;
218 dz11 = iz1 - jz1;
219 dx12 = ix1 - jx2;
220 dy12 = iy1 - jy2;
221 dz12 = iz1 - jz2;
222 dx20 = ix2 - jx0;
223 dy20 = iy2 - jy0;
224 dz20 = iz2 - jz0;
225 dx21 = ix2 - jx1;
226 dy21 = iy2 - jy1;
227 dz21 = iz2 - jz1;
228 dx22 = ix2 - jx2;
229 dy22 = iy2 - jy2;
230 dz22 = iz2 - jz2;
231
232 /* Calculate squared distance and things based on it */
233 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
234 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
235 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
236 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
237 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
238 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
239 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
240 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
241 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
242
243 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
244 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
245 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
246 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
247 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
248 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
249 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
250 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
251 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
252
253 rinvsq00 = rinv00*rinv00;
254 rinvsq01 = rinv01*rinv01;
255 rinvsq02 = rinv02*rinv02;
256 rinvsq10 = rinv10*rinv10;
257 rinvsq11 = rinv11*rinv11;
258 rinvsq12 = rinv12*rinv12;
259 rinvsq20 = rinv20*rinv20;
260 rinvsq21 = rinv21*rinv21;
261 rinvsq22 = rinv22*rinv22;
262
263 /**************************
264 * CALCULATE INTERACTIONS *
265 **************************/
266
267 if (rsq00<rcutoff2)
268 {
269
270 r00 = rsq00*rinv00;
271
272 /* EWALD ELECTROSTATICS */
273
274 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
275 ewrt = r00*ewtabscale;
276 ewitab = ewrt;
277 eweps = ewrt-ewitab;
278 ewitab = 4*ewitab;
279 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
280 velec = qq00*((rinv00-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
281 felec = qq00*rinv00*(rinvsq00-felec);
282
283 /* Update potential sums from outer loop */
284 velecsum += velec;
285
286 fscal = felec;
287
288 /* Calculate temporary vectorial force */
289 tx = fscal*dx00;
290 ty = fscal*dy00;
291 tz = fscal*dz00;
292
293 /* Update vectorial force */
294 fix0 += tx;
295 fiy0 += ty;
296 fiz0 += tz;
297 f[j_coord_offset+DIM3*0+XX0] -= tx;
298 f[j_coord_offset+DIM3*0+YY1] -= ty;
299 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
300
301 }
302
303 /**************************
304 * CALCULATE INTERACTIONS *
305 **************************/
306
307 if (rsq01<rcutoff2)
308 {
309
310 r01 = rsq01*rinv01;
311
312 /* EWALD ELECTROSTATICS */
313
314 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
315 ewrt = r01*ewtabscale;
316 ewitab = ewrt;
317 eweps = ewrt-ewitab;
318 ewitab = 4*ewitab;
319 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
320 velec = qq01*((rinv01-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
321 felec = qq01*rinv01*(rinvsq01-felec);
322
323 /* Update potential sums from outer loop */
324 velecsum += velec;
325
326 fscal = felec;
327
328 /* Calculate temporary vectorial force */
329 tx = fscal*dx01;
330 ty = fscal*dy01;
331 tz = fscal*dz01;
332
333 /* Update vectorial force */
334 fix0 += tx;
335 fiy0 += ty;
336 fiz0 += tz;
337 f[j_coord_offset+DIM3*1+XX0] -= tx;
338 f[j_coord_offset+DIM3*1+YY1] -= ty;
339 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
340
341 }
342
343 /**************************
344 * CALCULATE INTERACTIONS *
345 **************************/
346
347 if (rsq02<rcutoff2)
348 {
349
350 r02 = rsq02*rinv02;
351
352 /* EWALD ELECTROSTATICS */
353
354 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
355 ewrt = r02*ewtabscale;
356 ewitab = ewrt;
357 eweps = ewrt-ewitab;
358 ewitab = 4*ewitab;
359 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
360 velec = qq02*((rinv02-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
361 felec = qq02*rinv02*(rinvsq02-felec);
362
363 /* Update potential sums from outer loop */
364 velecsum += velec;
365
366 fscal = felec;
367
368 /* Calculate temporary vectorial force */
369 tx = fscal*dx02;
370 ty = fscal*dy02;
371 tz = fscal*dz02;
372
373 /* Update vectorial force */
374 fix0 += tx;
375 fiy0 += ty;
376 fiz0 += tz;
377 f[j_coord_offset+DIM3*2+XX0] -= tx;
378 f[j_coord_offset+DIM3*2+YY1] -= ty;
379 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
380
381 }
382
383 /**************************
384 * CALCULATE INTERACTIONS *
385 **************************/
386
387 if (rsq10<rcutoff2)
388 {
389
390 r10 = rsq10*rinv10;
391
392 /* EWALD ELECTROSTATICS */
393
394 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
395 ewrt = r10*ewtabscale;
396 ewitab = ewrt;
397 eweps = ewrt-ewitab;
398 ewitab = 4*ewitab;
399 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
400 velec = qq10*((rinv10-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
401 felec = qq10*rinv10*(rinvsq10-felec);
402
403 /* Update potential sums from outer loop */
404 velecsum += velec;
405
406 fscal = felec;
407
408 /* Calculate temporary vectorial force */
409 tx = fscal*dx10;
410 ty = fscal*dy10;
411 tz = fscal*dz10;
412
413 /* Update vectorial force */
414 fix1 += tx;
415 fiy1 += ty;
416 fiz1 += tz;
417 f[j_coord_offset+DIM3*0+XX0] -= tx;
418 f[j_coord_offset+DIM3*0+YY1] -= ty;
419 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
420
421 }
422
423 /**************************
424 * CALCULATE INTERACTIONS *
425 **************************/
426
427 if (rsq11<rcutoff2)
428 {
429
430 r11 = rsq11*rinv11;
431
432 /* EWALD ELECTROSTATICS */
433
434 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
435 ewrt = r11*ewtabscale;
436 ewitab = ewrt;
437 eweps = ewrt-ewitab;
438 ewitab = 4*ewitab;
439 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
440 velec = qq11*((rinv11-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
441 felec = qq11*rinv11*(rinvsq11-felec);
442
443 /* Update potential sums from outer loop */
444 velecsum += velec;
445
446 fscal = felec;
447
448 /* Calculate temporary vectorial force */
449 tx = fscal*dx11;
450 ty = fscal*dy11;
451 tz = fscal*dz11;
452
453 /* Update vectorial force */
454 fix1 += tx;
455 fiy1 += ty;
456 fiz1 += tz;
457 f[j_coord_offset+DIM3*1+XX0] -= tx;
458 f[j_coord_offset+DIM3*1+YY1] -= ty;
459 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
460
461 }
462
463 /**************************
464 * CALCULATE INTERACTIONS *
465 **************************/
466
467 if (rsq12<rcutoff2)
468 {
469
470 r12 = rsq12*rinv12;
471
472 /* EWALD ELECTROSTATICS */
473
474 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
475 ewrt = r12*ewtabscale;
476 ewitab = ewrt;
477 eweps = ewrt-ewitab;
478 ewitab = 4*ewitab;
479 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
480 velec = qq12*((rinv12-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
481 felec = qq12*rinv12*(rinvsq12-felec);
482
483 /* Update potential sums from outer loop */
484 velecsum += velec;
485
486 fscal = felec;
487
488 /* Calculate temporary vectorial force */
489 tx = fscal*dx12;
490 ty = fscal*dy12;
491 tz = fscal*dz12;
492
493 /* Update vectorial force */
494 fix1 += tx;
495 fiy1 += ty;
496 fiz1 += tz;
497 f[j_coord_offset+DIM3*2+XX0] -= tx;
498 f[j_coord_offset+DIM3*2+YY1] -= ty;
499 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
500
501 }
502
503 /**************************
504 * CALCULATE INTERACTIONS *
505 **************************/
506
507 if (rsq20<rcutoff2)
508 {
509
510 r20 = rsq20*rinv20;
511
512 /* EWALD ELECTROSTATICS */
513
514 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
515 ewrt = r20*ewtabscale;
516 ewitab = ewrt;
517 eweps = ewrt-ewitab;
518 ewitab = 4*ewitab;
519 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
520 velec = qq20*((rinv20-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
521 felec = qq20*rinv20*(rinvsq20-felec);
522
523 /* Update potential sums from outer loop */
524 velecsum += velec;
525
526 fscal = felec;
527
528 /* Calculate temporary vectorial force */
529 tx = fscal*dx20;
530 ty = fscal*dy20;
531 tz = fscal*dz20;
532
533 /* Update vectorial force */
534 fix2 += tx;
535 fiy2 += ty;
536 fiz2 += tz;
537 f[j_coord_offset+DIM3*0+XX0] -= tx;
538 f[j_coord_offset+DIM3*0+YY1] -= ty;
539 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
540
541 }
542
543 /**************************
544 * CALCULATE INTERACTIONS *
545 **************************/
546
547 if (rsq21<rcutoff2)
548 {
549
550 r21 = rsq21*rinv21;
551
552 /* EWALD ELECTROSTATICS */
553
554 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
555 ewrt = r21*ewtabscale;
556 ewitab = ewrt;
557 eweps = ewrt-ewitab;
558 ewitab = 4*ewitab;
559 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
560 velec = qq21*((rinv21-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
561 felec = qq21*rinv21*(rinvsq21-felec);
562
563 /* Update potential sums from outer loop */
564 velecsum += velec;
565
566 fscal = felec;
567
568 /* Calculate temporary vectorial force */
569 tx = fscal*dx21;
570 ty = fscal*dy21;
571 tz = fscal*dz21;
572
573 /* Update vectorial force */
574 fix2 += tx;
575 fiy2 += ty;
576 fiz2 += tz;
577 f[j_coord_offset+DIM3*1+XX0] -= tx;
578 f[j_coord_offset+DIM3*1+YY1] -= ty;
579 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
580
581 }
582
583 /**************************
584 * CALCULATE INTERACTIONS *
585 **************************/
586
587 if (rsq22<rcutoff2)
588 {
589
590 r22 = rsq22*rinv22;
591
592 /* EWALD ELECTROSTATICS */
593
594 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
595 ewrt = r22*ewtabscale;
596 ewitab = ewrt;
597 eweps = ewrt-ewitab;
598 ewitab = 4*ewitab;
599 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
600 velec = qq22*((rinv22-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
601 felec = qq22*rinv22*(rinvsq22-felec);
602
603 /* Update potential sums from outer loop */
604 velecsum += velec;
605
606 fscal = felec;
607
608 /* Calculate temporary vectorial force */
609 tx = fscal*dx22;
610 ty = fscal*dy22;
611 tz = fscal*dz22;
612
613 /* Update vectorial force */
614 fix2 += tx;
615 fiy2 += ty;
616 fiz2 += tz;
617 f[j_coord_offset+DIM3*2+XX0] -= tx;
618 f[j_coord_offset+DIM3*2+YY1] -= ty;
619 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
620
621 }
622
623 /* Inner loop uses 369 flops */
624 }
625 /* End of innermost loop */
626
627 tx = ty = tz = 0;
628 f[i_coord_offset+DIM3*0+XX0] += fix0;
629 f[i_coord_offset+DIM3*0+YY1] += fiy0;
630 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
631 tx += fix0;
632 ty += fiy0;
633 tz += fiz0;
634 f[i_coord_offset+DIM3*1+XX0] += fix1;
635 f[i_coord_offset+DIM3*1+YY1] += fiy1;
636 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
637 tx += fix1;
638 ty += fiy1;
639 tz += fiz1;
640 f[i_coord_offset+DIM3*2+XX0] += fix2;
641 f[i_coord_offset+DIM3*2+YY1] += fiy2;
642 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
643 tx += fix2;
644 ty += fiy2;
645 tz += fiz2;
646 fshift[i_shift_offset+XX0] += tx;
647 fshift[i_shift_offset+YY1] += ty;
648 fshift[i_shift_offset+ZZ2] += tz;
649
650 ggid = gid[iidx];
651 /* Update potential energies */
652 kernel_data->energygrp_elec[ggid] += velecsum;
653
654 /* Increment number of inner iterations */
655 inneriter += j_index_end - j_index_start;
656
657 /* Outer loop uses 31 flops */
658 }
659
660 /* Increment number of outer iterations */
661 outeriter += nri;
662
663 /* Update outer/inner flops */
664
665 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_VF,outeriter*31 + inneriter*369)(nrnb)->n[eNR_NBKERNEL_ELEC_W3W3_VF] += outeriter*31 + inneriter
*369
;
666}
667/*
668 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwNone_GeomW3W3_F_c
669 * Electrostatics interaction: Ewald
670 * VdW interaction: None
671 * Geometry: Water3-Water3
672 * Calculate force/pot: Force
673 */
674void
675nb_kernel_ElecEwSh_VdwNone_GeomW3W3_F_c
676 (t_nblist * gmx_restrict__restrict nlist,
677 rvec * gmx_restrict__restrict xx,
678 rvec * gmx_restrict__restrict ff,
679 t_forcerec * gmx_restrict__restrict fr,
680 t_mdatoms * gmx_restrict__restrict mdatoms,
681 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
682 t_nrnb * gmx_restrict__restrict nrnb)
683{
684 int i_shift_offset,i_coord_offset,j_coord_offset;
685 int j_index_start,j_index_end;
686 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
687 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
688 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
689 real *shiftvec,*fshift,*x,*f;
690 int vdwioffset0;
691 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
692 int vdwioffset1;
693 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
694 int vdwioffset2;
695 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
696 int vdwjidx0;
697 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
698 int vdwjidx1;
699 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
700 int vdwjidx2;
701 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
702 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
703 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
704 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
705 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
706 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
707 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
708 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
709 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
710 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
711 real velec,felec,velecsum,facel,crf,krf,krf2;
712 real *charge;
713 int ewitab;
714 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
715 real *ewtab;
716
717 x = xx[0];
718 f = ff[0];
719
720 nri = nlist->nri;
721 iinr = nlist->iinr;
722 jindex = nlist->jindex;
723 jjnr = nlist->jjnr;
724 shiftidx = nlist->shift;
725 gid = nlist->gid;
Value stored to 'gid' is never read
726 shiftvec = fr->shift_vec[0];
727 fshift = fr->fshift[0];
728 facel = fr->epsfac;
729 charge = mdatoms->chargeA;
730
731 sh_ewald = fr->ic->sh_ewald;
732 ewtab = fr->ic->tabq_coul_F;
733 ewtabscale = fr->ic->tabq_scale;
734 ewtabhalfspace = 0.5/ewtabscale;
735
736 /* Setup water-specific parameters */
737 inr = nlist->iinr[0];
738 iq0 = facel*charge[inr+0];
739 iq1 = facel*charge[inr+1];
740 iq2 = facel*charge[inr+2];
741
742 jq0 = charge[inr+0];
743 jq1 = charge[inr+1];
744 jq2 = charge[inr+2];
745 qq00 = iq0*jq0;
746 qq01 = iq0*jq1;
747 qq02 = iq0*jq2;
748 qq10 = iq1*jq0;
749 qq11 = iq1*jq1;
750 qq12 = iq1*jq2;
751 qq20 = iq2*jq0;
752 qq21 = iq2*jq1;
753 qq22 = iq2*jq2;
754
755 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
756 rcutoff = fr->rcoulomb;
757 rcutoff2 = rcutoff*rcutoff;
758
759 outeriter = 0;
760 inneriter = 0;
761
762 /* Start outer loop over neighborlists */
763 for(iidx=0; iidx<nri; iidx++)
764 {
765 /* Load shift vector for this list */
766 i_shift_offset = DIM3*shiftidx[iidx];
767 shX = shiftvec[i_shift_offset+XX0];
768 shY = shiftvec[i_shift_offset+YY1];
769 shZ = shiftvec[i_shift_offset+ZZ2];
770
771 /* Load limits for loop over neighbors */
772 j_index_start = jindex[iidx];
773 j_index_end = jindex[iidx+1];
774
775 /* Get outer coordinate index */
776 inr = iinr[iidx];
777 i_coord_offset = DIM3*inr;
778
779 /* Load i particle coords and add shift vector */
780 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
781 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
782 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
783 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
784 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
785 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
786 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
787 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
788 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
789
790 fix0 = 0.0;
791 fiy0 = 0.0;
792 fiz0 = 0.0;
793 fix1 = 0.0;
794 fiy1 = 0.0;
795 fiz1 = 0.0;
796 fix2 = 0.0;
797 fiy2 = 0.0;
798 fiz2 = 0.0;
799
800 /* Start inner kernel loop */
801 for(jidx=j_index_start; jidx<j_index_end; jidx++)
802 {
803 /* Get j neighbor index, and coordinate index */
804 jnr = jjnr[jidx];
805 j_coord_offset = DIM3*jnr;
806
807 /* load j atom coordinates */
808 jx0 = x[j_coord_offset+DIM3*0+XX0];
809 jy0 = x[j_coord_offset+DIM3*0+YY1];
810 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
811 jx1 = x[j_coord_offset+DIM3*1+XX0];
812 jy1 = x[j_coord_offset+DIM3*1+YY1];
813 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
814 jx2 = x[j_coord_offset+DIM3*2+XX0];
815 jy2 = x[j_coord_offset+DIM3*2+YY1];
816 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
817
818 /* Calculate displacement vector */
819 dx00 = ix0 - jx0;
820 dy00 = iy0 - jy0;
821 dz00 = iz0 - jz0;
822 dx01 = ix0 - jx1;
823 dy01 = iy0 - jy1;
824 dz01 = iz0 - jz1;
825 dx02 = ix0 - jx2;
826 dy02 = iy0 - jy2;
827 dz02 = iz0 - jz2;
828 dx10 = ix1 - jx0;
829 dy10 = iy1 - jy0;
830 dz10 = iz1 - jz0;
831 dx11 = ix1 - jx1;
832 dy11 = iy1 - jy1;
833 dz11 = iz1 - jz1;
834 dx12 = ix1 - jx2;
835 dy12 = iy1 - jy2;
836 dz12 = iz1 - jz2;
837 dx20 = ix2 - jx0;
838 dy20 = iy2 - jy0;
839 dz20 = iz2 - jz0;
840 dx21 = ix2 - jx1;
841 dy21 = iy2 - jy1;
842 dz21 = iz2 - jz1;
843 dx22 = ix2 - jx2;
844 dy22 = iy2 - jy2;
845 dz22 = iz2 - jz2;
846
847 /* Calculate squared distance and things based on it */
848 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
849 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
850 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
851 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
852 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
853 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
854 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
855 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
856 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
857
858 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
859 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
860 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
861 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
862 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
863 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
864 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
865 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
866 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
867
868 rinvsq00 = rinv00*rinv00;
869 rinvsq01 = rinv01*rinv01;
870 rinvsq02 = rinv02*rinv02;
871 rinvsq10 = rinv10*rinv10;
872 rinvsq11 = rinv11*rinv11;
873 rinvsq12 = rinv12*rinv12;
874 rinvsq20 = rinv20*rinv20;
875 rinvsq21 = rinv21*rinv21;
876 rinvsq22 = rinv22*rinv22;
877
878 /**************************
879 * CALCULATE INTERACTIONS *
880 **************************/
881
882 if (rsq00<rcutoff2)
883 {
884
885 r00 = rsq00*rinv00;
886
887 /* EWALD ELECTROSTATICS */
888
889 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
890 ewrt = r00*ewtabscale;
891 ewitab = ewrt;
892 eweps = ewrt-ewitab;
893 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
894 felec = qq00*rinv00*(rinvsq00-felec);
895
896 fscal = felec;
897
898 /* Calculate temporary vectorial force */
899 tx = fscal*dx00;
900 ty = fscal*dy00;
901 tz = fscal*dz00;
902
903 /* Update vectorial force */
904 fix0 += tx;
905 fiy0 += ty;
906 fiz0 += tz;
907 f[j_coord_offset+DIM3*0+XX0] -= tx;
908 f[j_coord_offset+DIM3*0+YY1] -= ty;
909 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
910
911 }
912
913 /**************************
914 * CALCULATE INTERACTIONS *
915 **************************/
916
917 if (rsq01<rcutoff2)
918 {
919
920 r01 = rsq01*rinv01;
921
922 /* EWALD ELECTROSTATICS */
923
924 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
925 ewrt = r01*ewtabscale;
926 ewitab = ewrt;
927 eweps = ewrt-ewitab;
928 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
929 felec = qq01*rinv01*(rinvsq01-felec);
930
931 fscal = felec;
932
933 /* Calculate temporary vectorial force */
934 tx = fscal*dx01;
935 ty = fscal*dy01;
936 tz = fscal*dz01;
937
938 /* Update vectorial force */
939 fix0 += tx;
940 fiy0 += ty;
941 fiz0 += tz;
942 f[j_coord_offset+DIM3*1+XX0] -= tx;
943 f[j_coord_offset+DIM3*1+YY1] -= ty;
944 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
945
946 }
947
948 /**************************
949 * CALCULATE INTERACTIONS *
950 **************************/
951
952 if (rsq02<rcutoff2)
953 {
954
955 r02 = rsq02*rinv02;
956
957 /* EWALD ELECTROSTATICS */
958
959 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
960 ewrt = r02*ewtabscale;
961 ewitab = ewrt;
962 eweps = ewrt-ewitab;
963 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
964 felec = qq02*rinv02*(rinvsq02-felec);
965
966 fscal = felec;
967
968 /* Calculate temporary vectorial force */
969 tx = fscal*dx02;
970 ty = fscal*dy02;
971 tz = fscal*dz02;
972
973 /* Update vectorial force */
974 fix0 += tx;
975 fiy0 += ty;
976 fiz0 += tz;
977 f[j_coord_offset+DIM3*2+XX0] -= tx;
978 f[j_coord_offset+DIM3*2+YY1] -= ty;
979 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
980
981 }
982
983 /**************************
984 * CALCULATE INTERACTIONS *
985 **************************/
986
987 if (rsq10<rcutoff2)
988 {
989
990 r10 = rsq10*rinv10;
991
992 /* EWALD ELECTROSTATICS */
993
994 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
995 ewrt = r10*ewtabscale;
996 ewitab = ewrt;
997 eweps = ewrt-ewitab;
998 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
999 felec = qq10*rinv10*(rinvsq10-felec);
1000
1001 fscal = felec;
1002
1003 /* Calculate temporary vectorial force */
1004 tx = fscal*dx10;
1005 ty = fscal*dy10;
1006 tz = fscal*dz10;
1007
1008 /* Update vectorial force */
1009 fix1 += tx;
1010 fiy1 += ty;
1011 fiz1 += tz;
1012 f[j_coord_offset+DIM3*0+XX0] -= tx;
1013 f[j_coord_offset+DIM3*0+YY1] -= ty;
1014 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
1015
1016 }
1017
1018 /**************************
1019 * CALCULATE INTERACTIONS *
1020 **************************/
1021
1022 if (rsq11<rcutoff2)
1023 {
1024
1025 r11 = rsq11*rinv11;
1026
1027 /* EWALD ELECTROSTATICS */
1028
1029 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1030 ewrt = r11*ewtabscale;
1031 ewitab = ewrt;
1032 eweps = ewrt-ewitab;
1033 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1034 felec = qq11*rinv11*(rinvsq11-felec);
1035
1036 fscal = felec;
1037
1038 /* Calculate temporary vectorial force */
1039 tx = fscal*dx11;
1040 ty = fscal*dy11;
1041 tz = fscal*dz11;
1042
1043 /* Update vectorial force */
1044 fix1 += tx;
1045 fiy1 += ty;
1046 fiz1 += tz;
1047 f[j_coord_offset+DIM3*1+XX0] -= tx;
1048 f[j_coord_offset+DIM3*1+YY1] -= ty;
1049 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1050
1051 }
1052
1053 /**************************
1054 * CALCULATE INTERACTIONS *
1055 **************************/
1056
1057 if (rsq12<rcutoff2)
1058 {
1059
1060 r12 = rsq12*rinv12;
1061
1062 /* EWALD ELECTROSTATICS */
1063
1064 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1065 ewrt = r12*ewtabscale;
1066 ewitab = ewrt;
1067 eweps = ewrt-ewitab;
1068 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1069 felec = qq12*rinv12*(rinvsq12-felec);
1070
1071 fscal = felec;
1072
1073 /* Calculate temporary vectorial force */
1074 tx = fscal*dx12;
1075 ty = fscal*dy12;
1076 tz = fscal*dz12;
1077
1078 /* Update vectorial force */
1079 fix1 += tx;
1080 fiy1 += ty;
1081 fiz1 += tz;
1082 f[j_coord_offset+DIM3*2+XX0] -= tx;
1083 f[j_coord_offset+DIM3*2+YY1] -= ty;
1084 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1085
1086 }
1087
1088 /**************************
1089 * CALCULATE INTERACTIONS *
1090 **************************/
1091
1092 if (rsq20<rcutoff2)
1093 {
1094
1095 r20 = rsq20*rinv20;
1096
1097 /* EWALD ELECTROSTATICS */
1098
1099 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1100 ewrt = r20*ewtabscale;
1101 ewitab = ewrt;
1102 eweps = ewrt-ewitab;
1103 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1104 felec = qq20*rinv20*(rinvsq20-felec);
1105
1106 fscal = felec;
1107
1108 /* Calculate temporary vectorial force */
1109 tx = fscal*dx20;
1110 ty = fscal*dy20;
1111 tz = fscal*dz20;
1112
1113 /* Update vectorial force */
1114 fix2 += tx;
1115 fiy2 += ty;
1116 fiz2 += tz;
1117 f[j_coord_offset+DIM3*0+XX0] -= tx;
1118 f[j_coord_offset+DIM3*0+YY1] -= ty;
1119 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
1120
1121 }
1122
1123 /**************************
1124 * CALCULATE INTERACTIONS *
1125 **************************/
1126
1127 if (rsq21<rcutoff2)
1128 {
1129
1130 r21 = rsq21*rinv21;
1131
1132 /* EWALD ELECTROSTATICS */
1133
1134 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1135 ewrt = r21*ewtabscale;
1136 ewitab = ewrt;
1137 eweps = ewrt-ewitab;
1138 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1139 felec = qq21*rinv21*(rinvsq21-felec);
1140
1141 fscal = felec;
1142
1143 /* Calculate temporary vectorial force */
1144 tx = fscal*dx21;
1145 ty = fscal*dy21;
1146 tz = fscal*dz21;
1147
1148 /* Update vectorial force */
1149 fix2 += tx;
1150 fiy2 += ty;
1151 fiz2 += tz;
1152 f[j_coord_offset+DIM3*1+XX0] -= tx;
1153 f[j_coord_offset+DIM3*1+YY1] -= ty;
1154 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1155
1156 }
1157
1158 /**************************
1159 * CALCULATE INTERACTIONS *
1160 **************************/
1161
1162 if (rsq22<rcutoff2)
1163 {
1164
1165 r22 = rsq22*rinv22;
1166
1167 /* EWALD ELECTROSTATICS */
1168
1169 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1170 ewrt = r22*ewtabscale;
1171 ewitab = ewrt;
1172 eweps = ewrt-ewitab;
1173 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1174 felec = qq22*rinv22*(rinvsq22-felec);
1175
1176 fscal = felec;
1177
1178 /* Calculate temporary vectorial force */
1179 tx = fscal*dx22;
1180 ty = fscal*dy22;
1181 tz = fscal*dz22;
1182
1183 /* Update vectorial force */
1184 fix2 += tx;
1185 fiy2 += ty;
1186 fiz2 += tz;
1187 f[j_coord_offset+DIM3*2+XX0] -= tx;
1188 f[j_coord_offset+DIM3*2+YY1] -= ty;
1189 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1190
1191 }
1192
1193 /* Inner loop uses 297 flops */
1194 }
1195 /* End of innermost loop */
1196
1197 tx = ty = tz = 0;
1198 f[i_coord_offset+DIM3*0+XX0] += fix0;
1199 f[i_coord_offset+DIM3*0+YY1] += fiy0;
1200 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
1201 tx += fix0;
1202 ty += fiy0;
1203 tz += fiz0;
1204 f[i_coord_offset+DIM3*1+XX0] += fix1;
1205 f[i_coord_offset+DIM3*1+YY1] += fiy1;
1206 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
1207 tx += fix1;
1208 ty += fiy1;
1209 tz += fiz1;
1210 f[i_coord_offset+DIM3*2+XX0] += fix2;
1211 f[i_coord_offset+DIM3*2+YY1] += fiy2;
1212 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
1213 tx += fix2;
1214 ty += fiy2;
1215 tz += fiz2;
1216 fshift[i_shift_offset+XX0] += tx;
1217 fshift[i_shift_offset+YY1] += ty;
1218 fshift[i_shift_offset+ZZ2] += tz;
1219
1220 /* Increment number of inner iterations */
1221 inneriter += j_index_end - j_index_start;
1222
1223 /* Outer loop uses 30 flops */
1224 }
1225
1226 /* Increment number of outer iterations */
1227 outeriter += nri;
1228
1229 /* Update outer/inner flops */
1230
1231 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_W3W3_F,outeriter*30 + inneriter*297)(nrnb)->n[eNR_NBKERNEL_ELEC_W3W3_F] += outeriter*30 + inneriter
*297
;
1232}