Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecRF_VdwBham_GeomW3P1_c.c
Location:line 394, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwBham_GeomW3P1_VF_c
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: Buckingham
53 * Geometry: Water3-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecRF_VdwBham_GeomW3P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83 real velec,felec,velecsum,facel,crf,krf,krf2;
84 real *charge;
85 int nvdwtype;
86 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
87 int *vdwtype;
88 real *vdwparam;
89
90 x = xx[0];
91 f = ff[0];
92
93 nri = nlist->nri;
94 iinr = nlist->iinr;
95 jindex = nlist->jindex;
96 jjnr = nlist->jjnr;
97 shiftidx = nlist->shift;
98 gid = nlist->gid;
99 shiftvec = fr->shift_vec[0];
100 fshift = fr->fshift[0];
101 facel = fr->epsfac;
102 charge = mdatoms->chargeA;
103 krf = fr->ic->k_rf;
104 krf2 = krf*2.0;
105 crf = fr->ic->c_rf;
106 nvdwtype = fr->ntype;
107 vdwparam = fr->nbfp;
108 vdwtype = mdatoms->typeA;
109
110 /* Setup water-specific parameters */
111 inr = nlist->iinr[0];
112 iq0 = facel*charge[inr+0];
113 iq1 = facel*charge[inr+1];
114 iq2 = facel*charge[inr+2];
115 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
116
117 outeriter = 0;
118 inneriter = 0;
119
120 /* Start outer loop over neighborlists */
121 for(iidx=0; iidx<nri; iidx++)
122 {
123 /* Load shift vector for this list */
124 i_shift_offset = DIM3*shiftidx[iidx];
125 shX = shiftvec[i_shift_offset+XX0];
126 shY = shiftvec[i_shift_offset+YY1];
127 shZ = shiftvec[i_shift_offset+ZZ2];
128
129 /* Load limits for loop over neighbors */
130 j_index_start = jindex[iidx];
131 j_index_end = jindex[iidx+1];
132
133 /* Get outer coordinate index */
134 inr = iinr[iidx];
135 i_coord_offset = DIM3*inr;
136
137 /* Load i particle coords and add shift vector */
138 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
139 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
140 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
141 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
142 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
143 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
144 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
145 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
146 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
147
148 fix0 = 0.0;
149 fiy0 = 0.0;
150 fiz0 = 0.0;
151 fix1 = 0.0;
152 fiy1 = 0.0;
153 fiz1 = 0.0;
154 fix2 = 0.0;
155 fiy2 = 0.0;
156 fiz2 = 0.0;
157
158 /* Reset potential sums */
159 velecsum = 0.0;
160 vvdwsum = 0.0;
161
162 /* Start inner kernel loop */
163 for(jidx=j_index_start; jidx<j_index_end; jidx++)
164 {
165 /* Get j neighbor index, and coordinate index */
166 jnr = jjnr[jidx];
167 j_coord_offset = DIM3*jnr;
168
169 /* load j atom coordinates */
170 jx0 = x[j_coord_offset+DIM3*0+XX0];
171 jy0 = x[j_coord_offset+DIM3*0+YY1];
172 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
173
174 /* Calculate displacement vector */
175 dx00 = ix0 - jx0;
176 dy00 = iy0 - jy0;
177 dz00 = iz0 - jz0;
178 dx10 = ix1 - jx0;
179 dy10 = iy1 - jy0;
180 dz10 = iz1 - jz0;
181 dx20 = ix2 - jx0;
182 dy20 = iy2 - jy0;
183 dz20 = iz2 - jz0;
184
185 /* Calculate squared distance and things based on it */
186 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
187 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
188 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
189
190 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
191 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
192 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
193
194 rinvsq00 = rinv00*rinv00;
195 rinvsq10 = rinv10*rinv10;
196 rinvsq20 = rinv20*rinv20;
197
198 /* Load parameters for j particles */
199 jq0 = charge[jnr+0];
200 vdwjidx0 = 3*vdwtype[jnr+0];
201
202 /**************************
203 * CALCULATE INTERACTIONS *
204 **************************/
205
206 r00 = rsq00*rinv00;
207
208 qq00 = iq0*jq0;
209 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
210 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
211 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
212
213 /* REACTION-FIELD ELECTROSTATICS */
214 velec = qq00*(rinv00+krf*rsq00-crf);
215 felec = qq00*(rinv00*rinvsq00-krf2);
216
217 /* BUCKINGHAM DISPERSION/REPULSION */
218 rinvsix = rinvsq00*rinvsq00*rinvsq00;
219 vvdw6 = c6_00*rinvsix;
220 br = cexp2_00*r00;
221 vvdwexp = cexp1_00*exp(-br);
222 vvdw = vvdwexp - vvdw6*(1.0/6.0);
223 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
224
225 /* Update potential sums from outer loop */
226 velecsum += velec;
227 vvdwsum += vvdw;
228
229 fscal = felec+fvdw;
230
231 /* Calculate temporary vectorial force */
232 tx = fscal*dx00;
233 ty = fscal*dy00;
234 tz = fscal*dz00;
235
236 /* Update vectorial force */
237 fix0 += tx;
238 fiy0 += ty;
239 fiz0 += tz;
240 f[j_coord_offset+DIM3*0+XX0] -= tx;
241 f[j_coord_offset+DIM3*0+YY1] -= ty;
242 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
243
244 /**************************
245 * CALCULATE INTERACTIONS *
246 **************************/
247
248 qq10 = iq1*jq0;
249
250 /* REACTION-FIELD ELECTROSTATICS */
251 velec = qq10*(rinv10+krf*rsq10-crf);
252 felec = qq10*(rinv10*rinvsq10-krf2);
253
254 /* Update potential sums from outer loop */
255 velecsum += velec;
256
257 fscal = felec;
258
259 /* Calculate temporary vectorial force */
260 tx = fscal*dx10;
261 ty = fscal*dy10;
262 tz = fscal*dz10;
263
264 /* Update vectorial force */
265 fix1 += tx;
266 fiy1 += ty;
267 fiz1 += tz;
268 f[j_coord_offset+DIM3*0+XX0] -= tx;
269 f[j_coord_offset+DIM3*0+YY1] -= ty;
270 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
271
272 /**************************
273 * CALCULATE INTERACTIONS *
274 **************************/
275
276 qq20 = iq2*jq0;
277
278 /* REACTION-FIELD ELECTROSTATICS */
279 velec = qq20*(rinv20+krf*rsq20-crf);
280 felec = qq20*(rinv20*rinvsq20-krf2);
281
282 /* Update potential sums from outer loop */
283 velecsum += velec;
284
285 fscal = felec;
286
287 /* Calculate temporary vectorial force */
288 tx = fscal*dx20;
289 ty = fscal*dy20;
290 tz = fscal*dz20;
291
292 /* Update vectorial force */
293 fix2 += tx;
294 fiy2 += ty;
295 fiz2 += tz;
296 f[j_coord_offset+DIM3*0+XX0] -= tx;
297 f[j_coord_offset+DIM3*0+YY1] -= ty;
298 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
299
300 /* Inner loop uses 135 flops */
301 }
302 /* End of innermost loop */
303
304 tx = ty = tz = 0;
305 f[i_coord_offset+DIM3*0+XX0] += fix0;
306 f[i_coord_offset+DIM3*0+YY1] += fiy0;
307 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
308 tx += fix0;
309 ty += fiy0;
310 tz += fiz0;
311 f[i_coord_offset+DIM3*1+XX0] += fix1;
312 f[i_coord_offset+DIM3*1+YY1] += fiy1;
313 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
314 tx += fix1;
315 ty += fiy1;
316 tz += fiz1;
317 f[i_coord_offset+DIM3*2+XX0] += fix2;
318 f[i_coord_offset+DIM3*2+YY1] += fiy2;
319 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
320 tx += fix2;
321 ty += fiy2;
322 tz += fiz2;
323 fshift[i_shift_offset+XX0] += tx;
324 fshift[i_shift_offset+YY1] += ty;
325 fshift[i_shift_offset+ZZ2] += tz;
326
327 ggid = gid[iidx];
328 /* Update potential energies */
329 kernel_data->energygrp_elec[ggid] += velecsum;
330 kernel_data->energygrp_vdw[ggid] += vvdwsum;
331
332 /* Increment number of inner iterations */
333 inneriter += j_index_end - j_index_start;
334
335 /* Outer loop uses 32 flops */
336 }
337
338 /* Increment number of outer iterations */
339 outeriter += nri;
340
341 /* Update outer/inner flops */
342
343 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*32 + inneriter*135)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_VF] += outeriter*32 + inneriter
*135
;
344}
345/*
346 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwBham_GeomW3P1_F_c
347 * Electrostatics interaction: ReactionField
348 * VdW interaction: Buckingham
349 * Geometry: Water3-Particle
350 * Calculate force/pot: Force
351 */
352void
353nb_kernel_ElecRF_VdwBham_GeomW3P1_F_c
354 (t_nblist * gmx_restrict__restrict nlist,
355 rvec * gmx_restrict__restrict xx,
356 rvec * gmx_restrict__restrict ff,
357 t_forcerec * gmx_restrict__restrict fr,
358 t_mdatoms * gmx_restrict__restrict mdatoms,
359 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
360 t_nrnb * gmx_restrict__restrict nrnb)
361{
362 int i_shift_offset,i_coord_offset,j_coord_offset;
363 int j_index_start,j_index_end;
364 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
365 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
366 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
367 real *shiftvec,*fshift,*x,*f;
368 int vdwioffset0;
369 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
370 int vdwioffset1;
371 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
372 int vdwioffset2;
373 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
374 int vdwjidx0;
375 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
376 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
377 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
378 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
379 real velec,felec,velecsum,facel,crf,krf,krf2;
380 real *charge;
381 int nvdwtype;
382 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
383 int *vdwtype;
384 real *vdwparam;
385
386 x = xx[0];
387 f = ff[0];
388
389 nri = nlist->nri;
390 iinr = nlist->iinr;
391 jindex = nlist->jindex;
392 jjnr = nlist->jjnr;
393 shiftidx = nlist->shift;
394 gid = nlist->gid;
Value stored to 'gid' is never read
395 shiftvec = fr->shift_vec[0];
396 fshift = fr->fshift[0];
397 facel = fr->epsfac;
398 charge = mdatoms->chargeA;
399 krf = fr->ic->k_rf;
400 krf2 = krf*2.0;
401 crf = fr->ic->c_rf;
402 nvdwtype = fr->ntype;
403 vdwparam = fr->nbfp;
404 vdwtype = mdatoms->typeA;
405
406 /* Setup water-specific parameters */
407 inr = nlist->iinr[0];
408 iq0 = facel*charge[inr+0];
409 iq1 = facel*charge[inr+1];
410 iq2 = facel*charge[inr+2];
411 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
412
413 outeriter = 0;
414 inneriter = 0;
415
416 /* Start outer loop over neighborlists */
417 for(iidx=0; iidx<nri; iidx++)
418 {
419 /* Load shift vector for this list */
420 i_shift_offset = DIM3*shiftidx[iidx];
421 shX = shiftvec[i_shift_offset+XX0];
422 shY = shiftvec[i_shift_offset+YY1];
423 shZ = shiftvec[i_shift_offset+ZZ2];
424
425 /* Load limits for loop over neighbors */
426 j_index_start = jindex[iidx];
427 j_index_end = jindex[iidx+1];
428
429 /* Get outer coordinate index */
430 inr = iinr[iidx];
431 i_coord_offset = DIM3*inr;
432
433 /* Load i particle coords and add shift vector */
434 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
435 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
436 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
437 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
438 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
439 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
440 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
441 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
442 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
443
444 fix0 = 0.0;
445 fiy0 = 0.0;
446 fiz0 = 0.0;
447 fix1 = 0.0;
448 fiy1 = 0.0;
449 fiz1 = 0.0;
450 fix2 = 0.0;
451 fiy2 = 0.0;
452 fiz2 = 0.0;
453
454 /* Start inner kernel loop */
455 for(jidx=j_index_start; jidx<j_index_end; jidx++)
456 {
457 /* Get j neighbor index, and coordinate index */
458 jnr = jjnr[jidx];
459 j_coord_offset = DIM3*jnr;
460
461 /* load j atom coordinates */
462 jx0 = x[j_coord_offset+DIM3*0+XX0];
463 jy0 = x[j_coord_offset+DIM3*0+YY1];
464 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
465
466 /* Calculate displacement vector */
467 dx00 = ix0 - jx0;
468 dy00 = iy0 - jy0;
469 dz00 = iz0 - jz0;
470 dx10 = ix1 - jx0;
471 dy10 = iy1 - jy0;
472 dz10 = iz1 - jz0;
473 dx20 = ix2 - jx0;
474 dy20 = iy2 - jy0;
475 dz20 = iz2 - jz0;
476
477 /* Calculate squared distance and things based on it */
478 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
479 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
480 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
481
482 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
483 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
484 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
485
486 rinvsq00 = rinv00*rinv00;
487 rinvsq10 = rinv10*rinv10;
488 rinvsq20 = rinv20*rinv20;
489
490 /* Load parameters for j particles */
491 jq0 = charge[jnr+0];
492 vdwjidx0 = 3*vdwtype[jnr+0];
493
494 /**************************
495 * CALCULATE INTERACTIONS *
496 **************************/
497
498 r00 = rsq00*rinv00;
499
500 qq00 = iq0*jq0;
501 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
502 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
503 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
504
505 /* REACTION-FIELD ELECTROSTATICS */
506 felec = qq00*(rinv00*rinvsq00-krf2);
507
508 /* BUCKINGHAM DISPERSION/REPULSION */
509 rinvsix = rinvsq00*rinvsq00*rinvsq00;
510 vvdw6 = c6_00*rinvsix;
511 br = cexp2_00*r00;
512 vvdwexp = cexp1_00*exp(-br);
513 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
514
515 fscal = felec+fvdw;
516
517 /* Calculate temporary vectorial force */
518 tx = fscal*dx00;
519 ty = fscal*dy00;
520 tz = fscal*dz00;
521
522 /* Update vectorial force */
523 fix0 += tx;
524 fiy0 += ty;
525 fiz0 += tz;
526 f[j_coord_offset+DIM3*0+XX0] -= tx;
527 f[j_coord_offset+DIM3*0+YY1] -= ty;
528 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
529
530 /**************************
531 * CALCULATE INTERACTIONS *
532 **************************/
533
534 qq10 = iq1*jq0;
535
536 /* REACTION-FIELD ELECTROSTATICS */
537 felec = qq10*(rinv10*rinvsq10-krf2);
538
539 fscal = felec;
540
541 /* Calculate temporary vectorial force */
542 tx = fscal*dx10;
543 ty = fscal*dy10;
544 tz = fscal*dz10;
545
546 /* Update vectorial force */
547 fix1 += tx;
548 fiy1 += ty;
549 fiz1 += tz;
550 f[j_coord_offset+DIM3*0+XX0] -= tx;
551 f[j_coord_offset+DIM3*0+YY1] -= ty;
552 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
553
554 /**************************
555 * CALCULATE INTERACTIONS *
556 **************************/
557
558 qq20 = iq2*jq0;
559
560 /* REACTION-FIELD ELECTROSTATICS */
561 felec = qq20*(rinv20*rinvsq20-krf2);
562
563 fscal = felec;
564
565 /* Calculate temporary vectorial force */
566 tx = fscal*dx20;
567 ty = fscal*dy20;
568 tz = fscal*dz20;
569
570 /* Update vectorial force */
571 fix2 += tx;
572 fiy2 += ty;
573 fiz2 += tz;
574 f[j_coord_offset+DIM3*0+XX0] -= tx;
575 f[j_coord_offset+DIM3*0+YY1] -= ty;
576 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
577
578 /* Inner loop uses 117 flops */
579 }
580 /* End of innermost loop */
581
582 tx = ty = tz = 0;
583 f[i_coord_offset+DIM3*0+XX0] += fix0;
584 f[i_coord_offset+DIM3*0+YY1] += fiy0;
585 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
586 tx += fix0;
587 ty += fiy0;
588 tz += fiz0;
589 f[i_coord_offset+DIM3*1+XX0] += fix1;
590 f[i_coord_offset+DIM3*1+YY1] += fiy1;
591 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
592 tx += fix1;
593 ty += fiy1;
594 tz += fiz1;
595 f[i_coord_offset+DIM3*2+XX0] += fix2;
596 f[i_coord_offset+DIM3*2+YY1] += fiy2;
597 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
598 tx += fix2;
599 ty += fiy2;
600 tz += fiz2;
601 fshift[i_shift_offset+XX0] += tx;
602 fshift[i_shift_offset+YY1] += ty;
603 fshift[i_shift_offset+ZZ2] += tz;
604
605 /* Increment number of inner iterations */
606 inneriter += j_index_end - j_index_start;
607
608 /* Outer loop uses 30 flops */
609 }
610
611 /* Increment number of outer iterations */
612 outeriter += nri;
613
614 /* Update outer/inner flops */
615
616 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*30 + inneriter*117)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_F] += outeriter*30 + inneriter
*117
;
617}