Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_c.c
Location:line 443, column 5
Description:Value stored to 'crf' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_c
51 * Electrostatics interaction: ReactionField
52 * VdW interaction: LennardJones
53 * Geometry: Water3-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
81 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
82 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
83 real velec,felec,velecsum,facel,crf,krf,krf2;
84 real *charge;
85 int nvdwtype;
86 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
87 int *vdwtype;
88 real *vdwparam;
89 real rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
90
91 x = xx[0];
92 f = ff[0];
93
94 nri = nlist->nri;
95 iinr = nlist->iinr;
96 jindex = nlist->jindex;
97 jjnr = nlist->jjnr;
98 shiftidx = nlist->shift;
99 gid = nlist->gid;
100 shiftvec = fr->shift_vec[0];
101 fshift = fr->fshift[0];
102 facel = fr->epsfac;
103 charge = mdatoms->chargeA;
104 krf = fr->ic->k_rf;
105 krf2 = krf*2.0;
106 crf = fr->ic->c_rf;
107 nvdwtype = fr->ntype;
108 vdwparam = fr->nbfp;
109 vdwtype = mdatoms->typeA;
110
111 /* Setup water-specific parameters */
112 inr = nlist->iinr[0];
113 iq0 = facel*charge[inr+0];
114 iq1 = facel*charge[inr+1];
115 iq2 = facel*charge[inr+2];
116 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
117
118 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
119 rcutoff = fr->rcoulomb;
120 rcutoff2 = rcutoff*rcutoff;
121
122 rswitch = fr->rvdw_switch;
123 /* Setup switch parameters */
124 d = rcutoff-rswitch;
125 swV3 = -10.0/(d*d*d);
126 swV4 = 15.0/(d*d*d*d);
127 swV5 = -6.0/(d*d*d*d*d);
128 swF2 = -30.0/(d*d*d);
129 swF3 = 60.0/(d*d*d*d);
130 swF4 = -30.0/(d*d*d*d*d);
131
132 outeriter = 0;
133 inneriter = 0;
134
135 /* Start outer loop over neighborlists */
136 for(iidx=0; iidx<nri; iidx++)
137 {
138 /* Load shift vector for this list */
139 i_shift_offset = DIM3*shiftidx[iidx];
140 shX = shiftvec[i_shift_offset+XX0];
141 shY = shiftvec[i_shift_offset+YY1];
142 shZ = shiftvec[i_shift_offset+ZZ2];
143
144 /* Load limits for loop over neighbors */
145 j_index_start = jindex[iidx];
146 j_index_end = jindex[iidx+1];
147
148 /* Get outer coordinate index */
149 inr = iinr[iidx];
150 i_coord_offset = DIM3*inr;
151
152 /* Load i particle coords and add shift vector */
153 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
154 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
155 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
156 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
157 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
158 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
159 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
160 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
161 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
162
163 fix0 = 0.0;
164 fiy0 = 0.0;
165 fiz0 = 0.0;
166 fix1 = 0.0;
167 fiy1 = 0.0;
168 fiz1 = 0.0;
169 fix2 = 0.0;
170 fiy2 = 0.0;
171 fiz2 = 0.0;
172
173 /* Reset potential sums */
174 velecsum = 0.0;
175 vvdwsum = 0.0;
176
177 /* Start inner kernel loop */
178 for(jidx=j_index_start; jidx<j_index_end; jidx++)
179 {
180 /* Get j neighbor index, and coordinate index */
181 jnr = jjnr[jidx];
182 j_coord_offset = DIM3*jnr;
183
184 /* load j atom coordinates */
185 jx0 = x[j_coord_offset+DIM3*0+XX0];
186 jy0 = x[j_coord_offset+DIM3*0+YY1];
187 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
188
189 /* Calculate displacement vector */
190 dx00 = ix0 - jx0;
191 dy00 = iy0 - jy0;
192 dz00 = iz0 - jz0;
193 dx10 = ix1 - jx0;
194 dy10 = iy1 - jy0;
195 dz10 = iz1 - jz0;
196 dx20 = ix2 - jx0;
197 dy20 = iy2 - jy0;
198 dz20 = iz2 - jz0;
199
200 /* Calculate squared distance and things based on it */
201 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
202 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
203 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
204
205 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
206 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
207 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
208
209 rinvsq00 = rinv00*rinv00;
210 rinvsq10 = rinv10*rinv10;
211 rinvsq20 = rinv20*rinv20;
212
213 /* Load parameters for j particles */
214 jq0 = charge[jnr+0];
215 vdwjidx0 = 2*vdwtype[jnr+0];
216
217 /**************************
218 * CALCULATE INTERACTIONS *
219 **************************/
220
221 if (rsq00<rcutoff2)
222 {
223
224 r00 = rsq00*rinv00;
225
226 qq00 = iq0*jq0;
227 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
228 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
229
230 /* REACTION-FIELD ELECTROSTATICS */
231 velec = qq00*(rinv00+krf*rsq00-crf);
232 felec = qq00*(rinv00*rinvsq00-krf2);
233
234 /* LENNARD-JONES DISPERSION/REPULSION */
235
236 rinvsix = rinvsq00*rinvsq00*rinvsq00;
237 vvdw6 = c6_00*rinvsix;
238 vvdw12 = c12_00*rinvsix*rinvsix;
239 vvdw = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
240 fvdw = (vvdw12-vvdw6)*rinvsq00;
241
242 d = r00-rswitch;
243 d = (d>0.0) ? d : 0.0;
244 d2 = d*d;
245 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
246
247 dsw = d2*(swF2+d*(swF3+d*swF4));
248
249 /* Evaluate switch function */
250 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
251 fvdw = fvdw*sw - rinv00*vvdw*dsw;
252 vvdw *= sw;
253
254 /* Update potential sums from outer loop */
255 velecsum += velec;
256 vvdwsum += vvdw;
257
258 fscal = felec+fvdw;
259
260 /* Calculate temporary vectorial force */
261 tx = fscal*dx00;
262 ty = fscal*dy00;
263 tz = fscal*dz00;
264
265 /* Update vectorial force */
266 fix0 += tx;
267 fiy0 += ty;
268 fiz0 += tz;
269 f[j_coord_offset+DIM3*0+XX0] -= tx;
270 f[j_coord_offset+DIM3*0+YY1] -= ty;
271 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
272
273 }
274
275 /**************************
276 * CALCULATE INTERACTIONS *
277 **************************/
278
279 if (rsq10<rcutoff2)
280 {
281
282 qq10 = iq1*jq0;
283
284 /* REACTION-FIELD ELECTROSTATICS */
285 velec = qq10*(rinv10+krf*rsq10-crf);
286 felec = qq10*(rinv10*rinvsq10-krf2);
287
288 /* Update potential sums from outer loop */
289 velecsum += velec;
290
291 fscal = felec;
292
293 /* Calculate temporary vectorial force */
294 tx = fscal*dx10;
295 ty = fscal*dy10;
296 tz = fscal*dz10;
297
298 /* Update vectorial force */
299 fix1 += tx;
300 fiy1 += ty;
301 fiz1 += tz;
302 f[j_coord_offset+DIM3*0+XX0] -= tx;
303 f[j_coord_offset+DIM3*0+YY1] -= ty;
304 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
305
306 }
307
308 /**************************
309 * CALCULATE INTERACTIONS *
310 **************************/
311
312 if (rsq20<rcutoff2)
313 {
314
315 qq20 = iq2*jq0;
316
317 /* REACTION-FIELD ELECTROSTATICS */
318 velec = qq20*(rinv20+krf*rsq20-crf);
319 felec = qq20*(rinv20*rinvsq20-krf2);
320
321 /* Update potential sums from outer loop */
322 velecsum += velec;
323
324 fscal = felec;
325
326 /* Calculate temporary vectorial force */
327 tx = fscal*dx20;
328 ty = fscal*dy20;
329 tz = fscal*dz20;
330
331 /* Update vectorial force */
332 fix2 += tx;
333 fiy2 += ty;
334 fiz2 += tz;
335 f[j_coord_offset+DIM3*0+XX0] -= tx;
336 f[j_coord_offset+DIM3*0+YY1] -= ty;
337 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
338
339 }
340
341 /* Inner loop uses 127 flops */
342 }
343 /* End of innermost loop */
344
345 tx = ty = tz = 0;
346 f[i_coord_offset+DIM3*0+XX0] += fix0;
347 f[i_coord_offset+DIM3*0+YY1] += fiy0;
348 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
349 tx += fix0;
350 ty += fiy0;
351 tz += fiz0;
352 f[i_coord_offset+DIM3*1+XX0] += fix1;
353 f[i_coord_offset+DIM3*1+YY1] += fiy1;
354 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
355 tx += fix1;
356 ty += fiy1;
357 tz += fiz1;
358 f[i_coord_offset+DIM3*2+XX0] += fix2;
359 f[i_coord_offset+DIM3*2+YY1] += fiy2;
360 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
361 tx += fix2;
362 ty += fiy2;
363 tz += fiz2;
364 fshift[i_shift_offset+XX0] += tx;
365 fshift[i_shift_offset+YY1] += ty;
366 fshift[i_shift_offset+ZZ2] += tz;
367
368 ggid = gid[iidx];
369 /* Update potential energies */
370 kernel_data->energygrp_elec[ggid] += velecsum;
371 kernel_data->energygrp_vdw[ggid] += vvdwsum;
372
373 /* Increment number of inner iterations */
374 inneriter += j_index_end - j_index_start;
375
376 /* Outer loop uses 32 flops */
377 }
378
379 /* Increment number of outer iterations */
380 outeriter += nri;
381
382 /* Update outer/inner flops */
383
384 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*32 + inneriter*127)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_VF] += outeriter*32 + inneriter
*127
;
385}
386/*
387 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_c
388 * Electrostatics interaction: ReactionField
389 * VdW interaction: LennardJones
390 * Geometry: Water3-Particle
391 * Calculate force/pot: Force
392 */
393void
394nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_c
395 (t_nblist * gmx_restrict__restrict nlist,
396 rvec * gmx_restrict__restrict xx,
397 rvec * gmx_restrict__restrict ff,
398 t_forcerec * gmx_restrict__restrict fr,
399 t_mdatoms * gmx_restrict__restrict mdatoms,
400 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
401 t_nrnb * gmx_restrict__restrict nrnb)
402{
403 int i_shift_offset,i_coord_offset,j_coord_offset;
404 int j_index_start,j_index_end;
405 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
406 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
407 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
408 real *shiftvec,*fshift,*x,*f;
409 int vdwioffset0;
410 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
411 int vdwioffset1;
412 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
413 int vdwioffset2;
414 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
415 int vdwjidx0;
416 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
417 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
418 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
419 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
420 real velec,felec,velecsum,facel,crf,krf,krf2;
421 real *charge;
422 int nvdwtype;
423 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
424 int *vdwtype;
425 real *vdwparam;
426 real rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
427
428 x = xx[0];
429 f = ff[0];
430
431 nri = nlist->nri;
432 iinr = nlist->iinr;
433 jindex = nlist->jindex;
434 jjnr = nlist->jjnr;
435 shiftidx = nlist->shift;
436 gid = nlist->gid;
437 shiftvec = fr->shift_vec[0];
438 fshift = fr->fshift[0];
439 facel = fr->epsfac;
440 charge = mdatoms->chargeA;
441 krf = fr->ic->k_rf;
442 krf2 = krf*2.0;
443 crf = fr->ic->c_rf;
Value stored to 'crf' is never read
444 nvdwtype = fr->ntype;
445 vdwparam = fr->nbfp;
446 vdwtype = mdatoms->typeA;
447
448 /* Setup water-specific parameters */
449 inr = nlist->iinr[0];
450 iq0 = facel*charge[inr+0];
451 iq1 = facel*charge[inr+1];
452 iq2 = facel*charge[inr+2];
453 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
454
455 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
456 rcutoff = fr->rcoulomb;
457 rcutoff2 = rcutoff*rcutoff;
458
459 rswitch = fr->rvdw_switch;
460 /* Setup switch parameters */
461 d = rcutoff-rswitch;
462 swV3 = -10.0/(d*d*d);
463 swV4 = 15.0/(d*d*d*d);
464 swV5 = -6.0/(d*d*d*d*d);
465 swF2 = -30.0/(d*d*d);
466 swF3 = 60.0/(d*d*d*d);
467 swF4 = -30.0/(d*d*d*d*d);
468
469 outeriter = 0;
470 inneriter = 0;
471
472 /* Start outer loop over neighborlists */
473 for(iidx=0; iidx<nri; iidx++)
474 {
475 /* Load shift vector for this list */
476 i_shift_offset = DIM3*shiftidx[iidx];
477 shX = shiftvec[i_shift_offset+XX0];
478 shY = shiftvec[i_shift_offset+YY1];
479 shZ = shiftvec[i_shift_offset+ZZ2];
480
481 /* Load limits for loop over neighbors */
482 j_index_start = jindex[iidx];
483 j_index_end = jindex[iidx+1];
484
485 /* Get outer coordinate index */
486 inr = iinr[iidx];
487 i_coord_offset = DIM3*inr;
488
489 /* Load i particle coords and add shift vector */
490 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
491 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
492 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
493 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
494 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
495 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
496 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
497 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
498 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
499
500 fix0 = 0.0;
501 fiy0 = 0.0;
502 fiz0 = 0.0;
503 fix1 = 0.0;
504 fiy1 = 0.0;
505 fiz1 = 0.0;
506 fix2 = 0.0;
507 fiy2 = 0.0;
508 fiz2 = 0.0;
509
510 /* Start inner kernel loop */
511 for(jidx=j_index_start; jidx<j_index_end; jidx++)
512 {
513 /* Get j neighbor index, and coordinate index */
514 jnr = jjnr[jidx];
515 j_coord_offset = DIM3*jnr;
516
517 /* load j atom coordinates */
518 jx0 = x[j_coord_offset+DIM3*0+XX0];
519 jy0 = x[j_coord_offset+DIM3*0+YY1];
520 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
521
522 /* Calculate displacement vector */
523 dx00 = ix0 - jx0;
524 dy00 = iy0 - jy0;
525 dz00 = iz0 - jz0;
526 dx10 = ix1 - jx0;
527 dy10 = iy1 - jy0;
528 dz10 = iz1 - jz0;
529 dx20 = ix2 - jx0;
530 dy20 = iy2 - jy0;
531 dz20 = iz2 - jz0;
532
533 /* Calculate squared distance and things based on it */
534 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
535 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
536 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
537
538 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
539 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
540 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
541
542 rinvsq00 = rinv00*rinv00;
543 rinvsq10 = rinv10*rinv10;
544 rinvsq20 = rinv20*rinv20;
545
546 /* Load parameters for j particles */
547 jq0 = charge[jnr+0];
548 vdwjidx0 = 2*vdwtype[jnr+0];
549
550 /**************************
551 * CALCULATE INTERACTIONS *
552 **************************/
553
554 if (rsq00<rcutoff2)
555 {
556
557 r00 = rsq00*rinv00;
558
559 qq00 = iq0*jq0;
560 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
561 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
562
563 /* REACTION-FIELD ELECTROSTATICS */
564 felec = qq00*(rinv00*rinvsq00-krf2);
565
566 /* LENNARD-JONES DISPERSION/REPULSION */
567
568 rinvsix = rinvsq00*rinvsq00*rinvsq00;
569 vvdw6 = c6_00*rinvsix;
570 vvdw12 = c12_00*rinvsix*rinvsix;
571 vvdw = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
572 fvdw = (vvdw12-vvdw6)*rinvsq00;
573
574 d = r00-rswitch;
575 d = (d>0.0) ? d : 0.0;
576 d2 = d*d;
577 sw = 1.0+d2*d*(swV3+d*(swV4+d*swV5));
578
579 dsw = d2*(swF2+d*(swF3+d*swF4));
580
581 /* Evaluate switch function */
582 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
583 fvdw = fvdw*sw - rinv00*vvdw*dsw;
584
585 fscal = felec+fvdw;
586
587 /* Calculate temporary vectorial force */
588 tx = fscal*dx00;
589 ty = fscal*dy00;
590 tz = fscal*dz00;
591
592 /* Update vectorial force */
593 fix0 += tx;
594 fiy0 += ty;
595 fiz0 += tz;
596 f[j_coord_offset+DIM3*0+XX0] -= tx;
597 f[j_coord_offset+DIM3*0+YY1] -= ty;
598 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
599
600 }
601
602 /**************************
603 * CALCULATE INTERACTIONS *
604 **************************/
605
606 if (rsq10<rcutoff2)
607 {
608
609 qq10 = iq1*jq0;
610
611 /* REACTION-FIELD ELECTROSTATICS */
612 felec = qq10*(rinv10*rinvsq10-krf2);
613
614 fscal = felec;
615
616 /* Calculate temporary vectorial force */
617 tx = fscal*dx10;
618 ty = fscal*dy10;
619 tz = fscal*dz10;
620
621 /* Update vectorial force */
622 fix1 += tx;
623 fiy1 += ty;
624 fiz1 += tz;
625 f[j_coord_offset+DIM3*0+XX0] -= tx;
626 f[j_coord_offset+DIM3*0+YY1] -= ty;
627 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
628
629 }
630
631 /**************************
632 * CALCULATE INTERACTIONS *
633 **************************/
634
635 if (rsq20<rcutoff2)
636 {
637
638 qq20 = iq2*jq0;
639
640 /* REACTION-FIELD ELECTROSTATICS */
641 felec = qq20*(rinv20*rinvsq20-krf2);
642
643 fscal = felec;
644
645 /* Calculate temporary vectorial force */
646 tx = fscal*dx20;
647 ty = fscal*dy20;
648 tz = fscal*dz20;
649
650 /* Update vectorial force */
651 fix2 += tx;
652 fiy2 += ty;
653 fiz2 += tz;
654 f[j_coord_offset+DIM3*0+XX0] -= tx;
655 f[j_coord_offset+DIM3*0+YY1] -= ty;
656 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
657
658 }
659
660 /* Inner loop uses 110 flops */
661 }
662 /* End of innermost loop */
663
664 tx = ty = tz = 0;
665 f[i_coord_offset+DIM3*0+XX0] += fix0;
666 f[i_coord_offset+DIM3*0+YY1] += fiy0;
667 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
668 tx += fix0;
669 ty += fiy0;
670 tz += fiz0;
671 f[i_coord_offset+DIM3*1+XX0] += fix1;
672 f[i_coord_offset+DIM3*1+YY1] += fiy1;
673 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
674 tx += fix1;
675 ty += fiy1;
676 tz += fiz1;
677 f[i_coord_offset+DIM3*2+XX0] += fix2;
678 f[i_coord_offset+DIM3*2+YY1] += fiy2;
679 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
680 tx += fix2;
681 ty += fiy2;
682 tz += fiz2;
683 fshift[i_shift_offset+XX0] += tx;
684 fshift[i_shift_offset+YY1] += ty;
685 fshift[i_shift_offset+ZZ2] += tz;
686
687 /* Increment number of inner iterations */
688 inneriter += j_index_end - j_index_start;
689
690 /* Outer loop uses 30 flops */
691 }
692
693 /* Increment number of outer iterations */
694 outeriter += nri;
695
696 /* Update outer/inner flops */
697
698 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*30 + inneriter*110)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_F] += outeriter*30 + inneriter
*110
;
699}