Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEw_VdwCSTab_GeomW4P1_c.c
Location:line 520, column 5
Description:Value stored to 'ewtabhalfspace' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: CubicSplineTable
53 * Geometry: Water4-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEw_VdwCSTab_GeomW4P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwioffset3;
79 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80 int vdwjidx0;
81 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
83 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
84 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
85 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
86 real velec,felec,velecsum,facel,crf,krf,krf2;
87 real *charge;
88 int nvdwtype;
89 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
90 int *vdwtype;
91 real *vdwparam;
92 int vfitab;
93 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
94 real *vftab;
95 int ewitab;
96 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
97 real *ewtab;
98
99 x = xx[0];
100 f = ff[0];
101
102 nri = nlist->nri;
103 iinr = nlist->iinr;
104 jindex = nlist->jindex;
105 jjnr = nlist->jjnr;
106 shiftidx = nlist->shift;
107 gid = nlist->gid;
108 shiftvec = fr->shift_vec[0];
109 fshift = fr->fshift[0];
110 facel = fr->epsfac;
111 charge = mdatoms->chargeA;
112 nvdwtype = fr->ntype;
113 vdwparam = fr->nbfp;
114 vdwtype = mdatoms->typeA;
115
116 vftab = kernel_data->table_vdw->data;
117 vftabscale = kernel_data->table_vdw->scale;
118
119 sh_ewald = fr->ic->sh_ewald;
120 ewtab = fr->ic->tabq_coul_FDV0;
121 ewtabscale = fr->ic->tabq_scale;
122 ewtabhalfspace = 0.5/ewtabscale;
123
124 /* Setup water-specific parameters */
125 inr = nlist->iinr[0];
126 iq1 = facel*charge[inr+1];
127 iq2 = facel*charge[inr+2];
128 iq3 = facel*charge[inr+3];
129 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
130
131 outeriter = 0;
132 inneriter = 0;
133
134 /* Start outer loop over neighborlists */
135 for(iidx=0; iidx<nri; iidx++)
136 {
137 /* Load shift vector for this list */
138 i_shift_offset = DIM3*shiftidx[iidx];
139 shX = shiftvec[i_shift_offset+XX0];
140 shY = shiftvec[i_shift_offset+YY1];
141 shZ = shiftvec[i_shift_offset+ZZ2];
142
143 /* Load limits for loop over neighbors */
144 j_index_start = jindex[iidx];
145 j_index_end = jindex[iidx+1];
146
147 /* Get outer coordinate index */
148 inr = iinr[iidx];
149 i_coord_offset = DIM3*inr;
150
151 /* Load i particle coords and add shift vector */
152 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
153 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
154 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
155 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
156 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
157 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
158 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
159 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
160 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
161 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
162 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
163 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
164
165 fix0 = 0.0;
166 fiy0 = 0.0;
167 fiz0 = 0.0;
168 fix1 = 0.0;
169 fiy1 = 0.0;
170 fiz1 = 0.0;
171 fix2 = 0.0;
172 fiy2 = 0.0;
173 fiz2 = 0.0;
174 fix3 = 0.0;
175 fiy3 = 0.0;
176 fiz3 = 0.0;
177
178 /* Reset potential sums */
179 velecsum = 0.0;
180 vvdwsum = 0.0;
181
182 /* Start inner kernel loop */
183 for(jidx=j_index_start; jidx<j_index_end; jidx++)
184 {
185 /* Get j neighbor index, and coordinate index */
186 jnr = jjnr[jidx];
187 j_coord_offset = DIM3*jnr;
188
189 /* load j atom coordinates */
190 jx0 = x[j_coord_offset+DIM3*0+XX0];
191 jy0 = x[j_coord_offset+DIM3*0+YY1];
192 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
193
194 /* Calculate displacement vector */
195 dx00 = ix0 - jx0;
196 dy00 = iy0 - jy0;
197 dz00 = iz0 - jz0;
198 dx10 = ix1 - jx0;
199 dy10 = iy1 - jy0;
200 dz10 = iz1 - jz0;
201 dx20 = ix2 - jx0;
202 dy20 = iy2 - jy0;
203 dz20 = iz2 - jz0;
204 dx30 = ix3 - jx0;
205 dy30 = iy3 - jy0;
206 dz30 = iz3 - jz0;
207
208 /* Calculate squared distance and things based on it */
209 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
210 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
211 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
212 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
213
214 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
215 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
216 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
217 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
218
219 rinvsq10 = rinv10*rinv10;
220 rinvsq20 = rinv20*rinv20;
221 rinvsq30 = rinv30*rinv30;
222
223 /* Load parameters for j particles */
224 jq0 = charge[jnr+0];
225 vdwjidx0 = 2*vdwtype[jnr+0];
226
227 /**************************
228 * CALCULATE INTERACTIONS *
229 **************************/
230
231 r00 = rsq00*rinv00;
232
233 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
234 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
235
236 /* Calculate table index by multiplying r with table scale and truncate to integer */
237 rt = r00*vftabscale;
238 vfitab = rt;
239 vfeps = rt-vfitab;
240 vfitab = 2*4*vfitab;
241
242 /* CUBIC SPLINE TABLE DISPERSION */
243 vfitab += 0;
244 Y = vftab[vfitab];
245 F = vftab[vfitab+1];
246 Geps = vfeps*vftab[vfitab+2];
247 Heps2 = vfeps*vfeps*vftab[vfitab+3];
248 Fp = F+Geps+Heps2;
249 VV = Y+vfeps*Fp;
250 vvdw6 = c6_00*VV;
251 FF = Fp+Geps+2.0*Heps2;
252 fvdw6 = c6_00*FF;
253
254 /* CUBIC SPLINE TABLE REPULSION */
255 Y = vftab[vfitab+4];
256 F = vftab[vfitab+5];
257 Geps = vfeps*vftab[vfitab+6];
258 Heps2 = vfeps*vfeps*vftab[vfitab+7];
259 Fp = F+Geps+Heps2;
260 VV = Y+vfeps*Fp;
261 vvdw12 = c12_00*VV;
262 FF = Fp+Geps+2.0*Heps2;
263 fvdw12 = c12_00*FF;
264 vvdw = vvdw12+vvdw6;
265 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
266
267 /* Update potential sums from outer loop */
268 vvdwsum += vvdw;
269
270 fscal = fvdw;
271
272 /* Calculate temporary vectorial force */
273 tx = fscal*dx00;
274 ty = fscal*dy00;
275 tz = fscal*dz00;
276
277 /* Update vectorial force */
278 fix0 += tx;
279 fiy0 += ty;
280 fiz0 += tz;
281 f[j_coord_offset+DIM3*0+XX0] -= tx;
282 f[j_coord_offset+DIM3*0+YY1] -= ty;
283 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
284
285 /**************************
286 * CALCULATE INTERACTIONS *
287 **************************/
288
289 r10 = rsq10*rinv10;
290
291 qq10 = iq1*jq0;
292
293 /* EWALD ELECTROSTATICS */
294
295 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
296 ewrt = r10*ewtabscale;
297 ewitab = ewrt;
298 eweps = ewrt-ewitab;
299 ewitab = 4*ewitab;
300 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
301 velec = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
302 felec = qq10*rinv10*(rinvsq10-felec);
303
304 /* Update potential sums from outer loop */
305 velecsum += velec;
306
307 fscal = felec;
308
309 /* Calculate temporary vectorial force */
310 tx = fscal*dx10;
311 ty = fscal*dy10;
312 tz = fscal*dz10;
313
314 /* Update vectorial force */
315 fix1 += tx;
316 fiy1 += ty;
317 fiz1 += tz;
318 f[j_coord_offset+DIM3*0+XX0] -= tx;
319 f[j_coord_offset+DIM3*0+YY1] -= ty;
320 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
321
322 /**************************
323 * CALCULATE INTERACTIONS *
324 **************************/
325
326 r20 = rsq20*rinv20;
327
328 qq20 = iq2*jq0;
329
330 /* EWALD ELECTROSTATICS */
331
332 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
333 ewrt = r20*ewtabscale;
334 ewitab = ewrt;
335 eweps = ewrt-ewitab;
336 ewitab = 4*ewitab;
337 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
338 velec = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
339 felec = qq20*rinv20*(rinvsq20-felec);
340
341 /* Update potential sums from outer loop */
342 velecsum += velec;
343
344 fscal = felec;
345
346 /* Calculate temporary vectorial force */
347 tx = fscal*dx20;
348 ty = fscal*dy20;
349 tz = fscal*dz20;
350
351 /* Update vectorial force */
352 fix2 += tx;
353 fiy2 += ty;
354 fiz2 += tz;
355 f[j_coord_offset+DIM3*0+XX0] -= tx;
356 f[j_coord_offset+DIM3*0+YY1] -= ty;
357 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
358
359 /**************************
360 * CALCULATE INTERACTIONS *
361 **************************/
362
363 r30 = rsq30*rinv30;
364
365 qq30 = iq3*jq0;
366
367 /* EWALD ELECTROSTATICS */
368
369 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
370 ewrt = r30*ewtabscale;
371 ewitab = ewrt;
372 eweps = ewrt-ewitab;
373 ewitab = 4*ewitab;
374 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
375 velec = qq30*(rinv30-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
376 felec = qq30*rinv30*(rinvsq30-felec);
377
378 /* Update potential sums from outer loop */
379 velecsum += velec;
380
381 fscal = felec;
382
383 /* Calculate temporary vectorial force */
384 tx = fscal*dx30;
385 ty = fscal*dy30;
386 tz = fscal*dz30;
387
388 /* Update vectorial force */
389 fix3 += tx;
390 fiy3 += ty;
391 fiz3 += tz;
392 f[j_coord_offset+DIM3*0+XX0] -= tx;
393 f[j_coord_offset+DIM3*0+YY1] -= ty;
394 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
395
396 /* Inner loop uses 178 flops */
397 }
398 /* End of innermost loop */
399
400 tx = ty = tz = 0;
401 f[i_coord_offset+DIM3*0+XX0] += fix0;
402 f[i_coord_offset+DIM3*0+YY1] += fiy0;
403 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
404 tx += fix0;
405 ty += fiy0;
406 tz += fiz0;
407 f[i_coord_offset+DIM3*1+XX0] += fix1;
408 f[i_coord_offset+DIM3*1+YY1] += fiy1;
409 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
410 tx += fix1;
411 ty += fiy1;
412 tz += fiz1;
413 f[i_coord_offset+DIM3*2+XX0] += fix2;
414 f[i_coord_offset+DIM3*2+YY1] += fiy2;
415 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
416 tx += fix2;
417 ty += fiy2;
418 tz += fiz2;
419 f[i_coord_offset+DIM3*3+XX0] += fix3;
420 f[i_coord_offset+DIM3*3+YY1] += fiy3;
421 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
422 tx += fix3;
423 ty += fiy3;
424 tz += fiz3;
425 fshift[i_shift_offset+XX0] += tx;
426 fshift[i_shift_offset+YY1] += ty;
427 fshift[i_shift_offset+ZZ2] += tz;
428
429 ggid = gid[iidx];
430 /* Update potential energies */
431 kernel_data->energygrp_elec[ggid] += velecsum;
432 kernel_data->energygrp_vdw[ggid] += vvdwsum;
433
434 /* Increment number of inner iterations */
435 inneriter += j_index_end - j_index_start;
436
437 /* Outer loop uses 41 flops */
438 }
439
440 /* Increment number of outer iterations */
441 outeriter += nri;
442
443 /* Update outer/inner flops */
444
445 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*41 + inneriter*178)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_VF] += outeriter*41 + inneriter
*178
;
446}
447/*
448 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_c
449 * Electrostatics interaction: Ewald
450 * VdW interaction: CubicSplineTable
451 * Geometry: Water4-Particle
452 * Calculate force/pot: Force
453 */
454void
455nb_kernel_ElecEw_VdwCSTab_GeomW4P1_F_c
456 (t_nblist * gmx_restrict__restrict nlist,
457 rvec * gmx_restrict__restrict xx,
458 rvec * gmx_restrict__restrict ff,
459 t_forcerec * gmx_restrict__restrict fr,
460 t_mdatoms * gmx_restrict__restrict mdatoms,
461 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
462 t_nrnb * gmx_restrict__restrict nrnb)
463{
464 int i_shift_offset,i_coord_offset,j_coord_offset;
465 int j_index_start,j_index_end;
466 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
467 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
468 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
469 real *shiftvec,*fshift,*x,*f;
470 int vdwioffset0;
471 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
472 int vdwioffset1;
473 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
474 int vdwioffset2;
475 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
476 int vdwioffset3;
477 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
478 int vdwjidx0;
479 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
480 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
481 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
482 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
483 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
484 real velec,felec,velecsum,facel,crf,krf,krf2;
485 real *charge;
486 int nvdwtype;
487 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
488 int *vdwtype;
489 real *vdwparam;
490 int vfitab;
491 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
492 real *vftab;
493 int ewitab;
494 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
495 real *ewtab;
496
497 x = xx[0];
498 f = ff[0];
499
500 nri = nlist->nri;
501 iinr = nlist->iinr;
502 jindex = nlist->jindex;
503 jjnr = nlist->jjnr;
504 shiftidx = nlist->shift;
505 gid = nlist->gid;
506 shiftvec = fr->shift_vec[0];
507 fshift = fr->fshift[0];
508 facel = fr->epsfac;
509 charge = mdatoms->chargeA;
510 nvdwtype = fr->ntype;
511 vdwparam = fr->nbfp;
512 vdwtype = mdatoms->typeA;
513
514 vftab = kernel_data->table_vdw->data;
515 vftabscale = kernel_data->table_vdw->scale;
516
517 sh_ewald = fr->ic->sh_ewald;
518 ewtab = fr->ic->tabq_coul_F;
519 ewtabscale = fr->ic->tabq_scale;
520 ewtabhalfspace = 0.5/ewtabscale;
Value stored to 'ewtabhalfspace' is never read
521
522 /* Setup water-specific parameters */
523 inr = nlist->iinr[0];
524 iq1 = facel*charge[inr+1];
525 iq2 = facel*charge[inr+2];
526 iq3 = facel*charge[inr+3];
527 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
528
529 outeriter = 0;
530 inneriter = 0;
531
532 /* Start outer loop over neighborlists */
533 for(iidx=0; iidx<nri; iidx++)
534 {
535 /* Load shift vector for this list */
536 i_shift_offset = DIM3*shiftidx[iidx];
537 shX = shiftvec[i_shift_offset+XX0];
538 shY = shiftvec[i_shift_offset+YY1];
539 shZ = shiftvec[i_shift_offset+ZZ2];
540
541 /* Load limits for loop over neighbors */
542 j_index_start = jindex[iidx];
543 j_index_end = jindex[iidx+1];
544
545 /* Get outer coordinate index */
546 inr = iinr[iidx];
547 i_coord_offset = DIM3*inr;
548
549 /* Load i particle coords and add shift vector */
550 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
551 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
552 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
553 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
554 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
555 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
556 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
557 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
558 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
559 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
560 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
561 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
562
563 fix0 = 0.0;
564 fiy0 = 0.0;
565 fiz0 = 0.0;
566 fix1 = 0.0;
567 fiy1 = 0.0;
568 fiz1 = 0.0;
569 fix2 = 0.0;
570 fiy2 = 0.0;
571 fiz2 = 0.0;
572 fix3 = 0.0;
573 fiy3 = 0.0;
574 fiz3 = 0.0;
575
576 /* Start inner kernel loop */
577 for(jidx=j_index_start; jidx<j_index_end; jidx++)
578 {
579 /* Get j neighbor index, and coordinate index */
580 jnr = jjnr[jidx];
581 j_coord_offset = DIM3*jnr;
582
583 /* load j atom coordinates */
584 jx0 = x[j_coord_offset+DIM3*0+XX0];
585 jy0 = x[j_coord_offset+DIM3*0+YY1];
586 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
587
588 /* Calculate displacement vector */
589 dx00 = ix0 - jx0;
590 dy00 = iy0 - jy0;
591 dz00 = iz0 - jz0;
592 dx10 = ix1 - jx0;
593 dy10 = iy1 - jy0;
594 dz10 = iz1 - jz0;
595 dx20 = ix2 - jx0;
596 dy20 = iy2 - jy0;
597 dz20 = iz2 - jz0;
598 dx30 = ix3 - jx0;
599 dy30 = iy3 - jy0;
600 dz30 = iz3 - jz0;
601
602 /* Calculate squared distance and things based on it */
603 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
604 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
605 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
606 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
607
608 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
609 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
610 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
611 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
612
613 rinvsq10 = rinv10*rinv10;
614 rinvsq20 = rinv20*rinv20;
615 rinvsq30 = rinv30*rinv30;
616
617 /* Load parameters for j particles */
618 jq0 = charge[jnr+0];
619 vdwjidx0 = 2*vdwtype[jnr+0];
620
621 /**************************
622 * CALCULATE INTERACTIONS *
623 **************************/
624
625 r00 = rsq00*rinv00;
626
627 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
628 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
629
630 /* Calculate table index by multiplying r with table scale and truncate to integer */
631 rt = r00*vftabscale;
632 vfitab = rt;
633 vfeps = rt-vfitab;
634 vfitab = 2*4*vfitab;
635
636 /* CUBIC SPLINE TABLE DISPERSION */
637 vfitab += 0;
638 F = vftab[vfitab+1];
639 Geps = vfeps*vftab[vfitab+2];
640 Heps2 = vfeps*vfeps*vftab[vfitab+3];
641 Fp = F+Geps+Heps2;
642 FF = Fp+Geps+2.0*Heps2;
643 fvdw6 = c6_00*FF;
644
645 /* CUBIC SPLINE TABLE REPULSION */
646 F = vftab[vfitab+5];
647 Geps = vfeps*vftab[vfitab+6];
648 Heps2 = vfeps*vfeps*vftab[vfitab+7];
649 Fp = F+Geps+Heps2;
650 FF = Fp+Geps+2.0*Heps2;
651 fvdw12 = c12_00*FF;
652 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
653
654 fscal = fvdw;
655
656 /* Calculate temporary vectorial force */
657 tx = fscal*dx00;
658 ty = fscal*dy00;
659 tz = fscal*dz00;
660
661 /* Update vectorial force */
662 fix0 += tx;
663 fiy0 += ty;
664 fiz0 += tz;
665 f[j_coord_offset+DIM3*0+XX0] -= tx;
666 f[j_coord_offset+DIM3*0+YY1] -= ty;
667 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
668
669 /**************************
670 * CALCULATE INTERACTIONS *
671 **************************/
672
673 r10 = rsq10*rinv10;
674
675 qq10 = iq1*jq0;
676
677 /* EWALD ELECTROSTATICS */
678
679 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
680 ewrt = r10*ewtabscale;
681 ewitab = ewrt;
682 eweps = ewrt-ewitab;
683 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
684 felec = qq10*rinv10*(rinvsq10-felec);
685
686 fscal = felec;
687
688 /* Calculate temporary vectorial force */
689 tx = fscal*dx10;
690 ty = fscal*dy10;
691 tz = fscal*dz10;
692
693 /* Update vectorial force */
694 fix1 += tx;
695 fiy1 += ty;
696 fiz1 += tz;
697 f[j_coord_offset+DIM3*0+XX0] -= tx;
698 f[j_coord_offset+DIM3*0+YY1] -= ty;
699 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
700
701 /**************************
702 * CALCULATE INTERACTIONS *
703 **************************/
704
705 r20 = rsq20*rinv20;
706
707 qq20 = iq2*jq0;
708
709 /* EWALD ELECTROSTATICS */
710
711 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
712 ewrt = r20*ewtabscale;
713 ewitab = ewrt;
714 eweps = ewrt-ewitab;
715 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
716 felec = qq20*rinv20*(rinvsq20-felec);
717
718 fscal = felec;
719
720 /* Calculate temporary vectorial force */
721 tx = fscal*dx20;
722 ty = fscal*dy20;
723 tz = fscal*dz20;
724
725 /* Update vectorial force */
726 fix2 += tx;
727 fiy2 += ty;
728 fiz2 += tz;
729 f[j_coord_offset+DIM3*0+XX0] -= tx;
730 f[j_coord_offset+DIM3*0+YY1] -= ty;
731 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
732
733 /**************************
734 * CALCULATE INTERACTIONS *
735 **************************/
736
737 r30 = rsq30*rinv30;
738
739 qq30 = iq3*jq0;
740
741 /* EWALD ELECTROSTATICS */
742
743 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
744 ewrt = r30*ewtabscale;
745 ewitab = ewrt;
746 eweps = ewrt-ewitab;
747 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
748 felec = qq30*rinv30*(rinvsq30-felec);
749
750 fscal = felec;
751
752 /* Calculate temporary vectorial force */
753 tx = fscal*dx30;
754 ty = fscal*dy30;
755 tz = fscal*dz30;
756
757 /* Update vectorial force */
758 fix3 += tx;
759 fiy3 += ty;
760 fiz3 += tz;
761 f[j_coord_offset+DIM3*0+XX0] -= tx;
762 f[j_coord_offset+DIM3*0+YY1] -= ty;
763 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
764
765 /* Inner loop uses 149 flops */
766 }
767 /* End of innermost loop */
768
769 tx = ty = tz = 0;
770 f[i_coord_offset+DIM3*0+XX0] += fix0;
771 f[i_coord_offset+DIM3*0+YY1] += fiy0;
772 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
773 tx += fix0;
774 ty += fiy0;
775 tz += fiz0;
776 f[i_coord_offset+DIM3*1+XX0] += fix1;
777 f[i_coord_offset+DIM3*1+YY1] += fiy1;
778 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
779 tx += fix1;
780 ty += fiy1;
781 tz += fiz1;
782 f[i_coord_offset+DIM3*2+XX0] += fix2;
783 f[i_coord_offset+DIM3*2+YY1] += fiy2;
784 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
785 tx += fix2;
786 ty += fiy2;
787 tz += fiz2;
788 f[i_coord_offset+DIM3*3+XX0] += fix3;
789 f[i_coord_offset+DIM3*3+YY1] += fiy3;
790 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
791 tx += fix3;
792 ty += fiy3;
793 tz += fiz3;
794 fshift[i_shift_offset+XX0] += tx;
795 fshift[i_shift_offset+YY1] += ty;
796 fshift[i_shift_offset+ZZ2] += tz;
797
798 /* Increment number of inner iterations */
799 inneriter += j_index_end - j_index_start;
800
801 /* Outer loop uses 39 flops */
802 }
803
804 /* Increment number of outer iterations */
805 outeriter += nri;
806
807 /* Update outer/inner flops */
808
809 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*39 + inneriter*149)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_F] += outeriter*39 + inneriter
*149
;
810}