Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecCoul_VdwCSTab_GeomW3W3_c.c
Location:line 644, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwCSTab_GeomW3W3_VF_c
51 * Electrostatics interaction: Coulomb
52 * VdW interaction: CubicSplineTable
53 * Geometry: Water3-Water3
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecCoul_VdwCSTab_GeomW3W3_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 int vdwjidx1;
81 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
82 int vdwjidx2;
83 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
84 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
85 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
86 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
87 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
88 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
89 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
90 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
91 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
92 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
93 real velec,felec,velecsum,facel,crf,krf,krf2;
94 real *charge;
95 int nvdwtype;
96 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
97 int *vdwtype;
98 real *vdwparam;
99 int vfitab;
100 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
101 real *vftab;
102
103 x = xx[0];
104 f = ff[0];
105
106 nri = nlist->nri;
107 iinr = nlist->iinr;
108 jindex = nlist->jindex;
109 jjnr = nlist->jjnr;
110 shiftidx = nlist->shift;
111 gid = nlist->gid;
112 shiftvec = fr->shift_vec[0];
113 fshift = fr->fshift[0];
114 facel = fr->epsfac;
115 charge = mdatoms->chargeA;
116 nvdwtype = fr->ntype;
117 vdwparam = fr->nbfp;
118 vdwtype = mdatoms->typeA;
119
120 vftab = kernel_data->table_vdw->data;
121 vftabscale = kernel_data->table_vdw->scale;
122
123 /* Setup water-specific parameters */
124 inr = nlist->iinr[0];
125 iq0 = facel*charge[inr+0];
126 iq1 = facel*charge[inr+1];
127 iq2 = facel*charge[inr+2];
128 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
129
130 jq0 = charge[inr+0];
131 jq1 = charge[inr+1];
132 jq2 = charge[inr+2];
133 vdwjidx0 = 2*vdwtype[inr+0];
134 qq00 = iq0*jq0;
135 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
136 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
137 qq01 = iq0*jq1;
138 qq02 = iq0*jq2;
139 qq10 = iq1*jq0;
140 qq11 = iq1*jq1;
141 qq12 = iq1*jq2;
142 qq20 = iq2*jq0;
143 qq21 = iq2*jq1;
144 qq22 = iq2*jq2;
145
146 outeriter = 0;
147 inneriter = 0;
148
149 /* Start outer loop over neighborlists */
150 for(iidx=0; iidx<nri; iidx++)
151 {
152 /* Load shift vector for this list */
153 i_shift_offset = DIM3*shiftidx[iidx];
154 shX = shiftvec[i_shift_offset+XX0];
155 shY = shiftvec[i_shift_offset+YY1];
156 shZ = shiftvec[i_shift_offset+ZZ2];
157
158 /* Load limits for loop over neighbors */
159 j_index_start = jindex[iidx];
160 j_index_end = jindex[iidx+1];
161
162 /* Get outer coordinate index */
163 inr = iinr[iidx];
164 i_coord_offset = DIM3*inr;
165
166 /* Load i particle coords and add shift vector */
167 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
168 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
169 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
170 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
171 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
172 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
173 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
174 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
175 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
176
177 fix0 = 0.0;
178 fiy0 = 0.0;
179 fiz0 = 0.0;
180 fix1 = 0.0;
181 fiy1 = 0.0;
182 fiz1 = 0.0;
183 fix2 = 0.0;
184 fiy2 = 0.0;
185 fiz2 = 0.0;
186
187 /* Reset potential sums */
188 velecsum = 0.0;
189 vvdwsum = 0.0;
190
191 /* Start inner kernel loop */
192 for(jidx=j_index_start; jidx<j_index_end; jidx++)
193 {
194 /* Get j neighbor index, and coordinate index */
195 jnr = jjnr[jidx];
196 j_coord_offset = DIM3*jnr;
197
198 /* load j atom coordinates */
199 jx0 = x[j_coord_offset+DIM3*0+XX0];
200 jy0 = x[j_coord_offset+DIM3*0+YY1];
201 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
202 jx1 = x[j_coord_offset+DIM3*1+XX0];
203 jy1 = x[j_coord_offset+DIM3*1+YY1];
204 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
205 jx2 = x[j_coord_offset+DIM3*2+XX0];
206 jy2 = x[j_coord_offset+DIM3*2+YY1];
207 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
208
209 /* Calculate displacement vector */
210 dx00 = ix0 - jx0;
211 dy00 = iy0 - jy0;
212 dz00 = iz0 - jz0;
213 dx01 = ix0 - jx1;
214 dy01 = iy0 - jy1;
215 dz01 = iz0 - jz1;
216 dx02 = ix0 - jx2;
217 dy02 = iy0 - jy2;
218 dz02 = iz0 - jz2;
219 dx10 = ix1 - jx0;
220 dy10 = iy1 - jy0;
221 dz10 = iz1 - jz0;
222 dx11 = ix1 - jx1;
223 dy11 = iy1 - jy1;
224 dz11 = iz1 - jz1;
225 dx12 = ix1 - jx2;
226 dy12 = iy1 - jy2;
227 dz12 = iz1 - jz2;
228 dx20 = ix2 - jx0;
229 dy20 = iy2 - jy0;
230 dz20 = iz2 - jz0;
231 dx21 = ix2 - jx1;
232 dy21 = iy2 - jy1;
233 dz21 = iz2 - jz1;
234 dx22 = ix2 - jx2;
235 dy22 = iy2 - jy2;
236 dz22 = iz2 - jz2;
237
238 /* Calculate squared distance and things based on it */
239 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
240 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
241 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
242 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
243 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
244 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
245 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
246 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
247 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
248
249 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
250 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
251 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
252 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
253 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
254 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
255 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
256 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
257 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
258
259 rinvsq00 = rinv00*rinv00;
260 rinvsq01 = rinv01*rinv01;
261 rinvsq02 = rinv02*rinv02;
262 rinvsq10 = rinv10*rinv10;
263 rinvsq11 = rinv11*rinv11;
264 rinvsq12 = rinv12*rinv12;
265 rinvsq20 = rinv20*rinv20;
266 rinvsq21 = rinv21*rinv21;
267 rinvsq22 = rinv22*rinv22;
268
269 /**************************
270 * CALCULATE INTERACTIONS *
271 **************************/
272
273 r00 = rsq00*rinv00;
274
275 /* Calculate table index by multiplying r with table scale and truncate to integer */
276 rt = r00*vftabscale;
277 vfitab = rt;
278 vfeps = rt-vfitab;
279 vfitab = 2*4*vfitab;
280
281 /* COULOMB ELECTROSTATICS */
282 velec = qq00*rinv00;
283 felec = velec*rinvsq00;
284
285 /* CUBIC SPLINE TABLE DISPERSION */
286 vfitab += 0;
287 Y = vftab[vfitab];
288 F = vftab[vfitab+1];
289 Geps = vfeps*vftab[vfitab+2];
290 Heps2 = vfeps*vfeps*vftab[vfitab+3];
291 Fp = F+Geps+Heps2;
292 VV = Y+vfeps*Fp;
293 vvdw6 = c6_00*VV;
294 FF = Fp+Geps+2.0*Heps2;
295 fvdw6 = c6_00*FF;
296
297 /* CUBIC SPLINE TABLE REPULSION */
298 Y = vftab[vfitab+4];
299 F = vftab[vfitab+5];
300 Geps = vfeps*vftab[vfitab+6];
301 Heps2 = vfeps*vfeps*vftab[vfitab+7];
302 Fp = F+Geps+Heps2;
303 VV = Y+vfeps*Fp;
304 vvdw12 = c12_00*VV;
305 FF = Fp+Geps+2.0*Heps2;
306 fvdw12 = c12_00*FF;
307 vvdw = vvdw12+vvdw6;
308 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
309
310 /* Update potential sums from outer loop */
311 velecsum += velec;
312 vvdwsum += vvdw;
313
314 fscal = felec+fvdw;
315
316 /* Calculate temporary vectorial force */
317 tx = fscal*dx00;
318 ty = fscal*dy00;
319 tz = fscal*dz00;
320
321 /* Update vectorial force */
322 fix0 += tx;
323 fiy0 += ty;
324 fiz0 += tz;
325 f[j_coord_offset+DIM3*0+XX0] -= tx;
326 f[j_coord_offset+DIM3*0+YY1] -= ty;
327 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
328
329 /**************************
330 * CALCULATE INTERACTIONS *
331 **************************/
332
333 /* COULOMB ELECTROSTATICS */
334 velec = qq01*rinv01;
335 felec = velec*rinvsq01;
336
337 /* Update potential sums from outer loop */
338 velecsum += velec;
339
340 fscal = felec;
341
342 /* Calculate temporary vectorial force */
343 tx = fscal*dx01;
344 ty = fscal*dy01;
345 tz = fscal*dz01;
346
347 /* Update vectorial force */
348 fix0 += tx;
349 fiy0 += ty;
350 fiz0 += tz;
351 f[j_coord_offset+DIM3*1+XX0] -= tx;
352 f[j_coord_offset+DIM3*1+YY1] -= ty;
353 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
354
355 /**************************
356 * CALCULATE INTERACTIONS *
357 **************************/
358
359 /* COULOMB ELECTROSTATICS */
360 velec = qq02*rinv02;
361 felec = velec*rinvsq02;
362
363 /* Update potential sums from outer loop */
364 velecsum += velec;
365
366 fscal = felec;
367
368 /* Calculate temporary vectorial force */
369 tx = fscal*dx02;
370 ty = fscal*dy02;
371 tz = fscal*dz02;
372
373 /* Update vectorial force */
374 fix0 += tx;
375 fiy0 += ty;
376 fiz0 += tz;
377 f[j_coord_offset+DIM3*2+XX0] -= tx;
378 f[j_coord_offset+DIM3*2+YY1] -= ty;
379 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
380
381 /**************************
382 * CALCULATE INTERACTIONS *
383 **************************/
384
385 /* COULOMB ELECTROSTATICS */
386 velec = qq10*rinv10;
387 felec = velec*rinvsq10;
388
389 /* Update potential sums from outer loop */
390 velecsum += velec;
391
392 fscal = felec;
393
394 /* Calculate temporary vectorial force */
395 tx = fscal*dx10;
396 ty = fscal*dy10;
397 tz = fscal*dz10;
398
399 /* Update vectorial force */
400 fix1 += tx;
401 fiy1 += ty;
402 fiz1 += tz;
403 f[j_coord_offset+DIM3*0+XX0] -= tx;
404 f[j_coord_offset+DIM3*0+YY1] -= ty;
405 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
406
407 /**************************
408 * CALCULATE INTERACTIONS *
409 **************************/
410
411 /* COULOMB ELECTROSTATICS */
412 velec = qq11*rinv11;
413 felec = velec*rinvsq11;
414
415 /* Update potential sums from outer loop */
416 velecsum += velec;
417
418 fscal = felec;
419
420 /* Calculate temporary vectorial force */
421 tx = fscal*dx11;
422 ty = fscal*dy11;
423 tz = fscal*dz11;
424
425 /* Update vectorial force */
426 fix1 += tx;
427 fiy1 += ty;
428 fiz1 += tz;
429 f[j_coord_offset+DIM3*1+XX0] -= tx;
430 f[j_coord_offset+DIM3*1+YY1] -= ty;
431 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
432
433 /**************************
434 * CALCULATE INTERACTIONS *
435 **************************/
436
437 /* COULOMB ELECTROSTATICS */
438 velec = qq12*rinv12;
439 felec = velec*rinvsq12;
440
441 /* Update potential sums from outer loop */
442 velecsum += velec;
443
444 fscal = felec;
445
446 /* Calculate temporary vectorial force */
447 tx = fscal*dx12;
448 ty = fscal*dy12;
449 tz = fscal*dz12;
450
451 /* Update vectorial force */
452 fix1 += tx;
453 fiy1 += ty;
454 fiz1 += tz;
455 f[j_coord_offset+DIM3*2+XX0] -= tx;
456 f[j_coord_offset+DIM3*2+YY1] -= ty;
457 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
458
459 /**************************
460 * CALCULATE INTERACTIONS *
461 **************************/
462
463 /* COULOMB ELECTROSTATICS */
464 velec = qq20*rinv20;
465 felec = velec*rinvsq20;
466
467 /* Update potential sums from outer loop */
468 velecsum += velec;
469
470 fscal = felec;
471
472 /* Calculate temporary vectorial force */
473 tx = fscal*dx20;
474 ty = fscal*dy20;
475 tz = fscal*dz20;
476
477 /* Update vectorial force */
478 fix2 += tx;
479 fiy2 += ty;
480 fiz2 += tz;
481 f[j_coord_offset+DIM3*0+XX0] -= tx;
482 f[j_coord_offset+DIM3*0+YY1] -= ty;
483 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
484
485 /**************************
486 * CALCULATE INTERACTIONS *
487 **************************/
488
489 /* COULOMB ELECTROSTATICS */
490 velec = qq21*rinv21;
491 felec = velec*rinvsq21;
492
493 /* Update potential sums from outer loop */
494 velecsum += velec;
495
496 fscal = felec;
497
498 /* Calculate temporary vectorial force */
499 tx = fscal*dx21;
500 ty = fscal*dy21;
501 tz = fscal*dz21;
502
503 /* Update vectorial force */
504 fix2 += tx;
505 fiy2 += ty;
506 fiz2 += tz;
507 f[j_coord_offset+DIM3*1+XX0] -= tx;
508 f[j_coord_offset+DIM3*1+YY1] -= ty;
509 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
510
511 /**************************
512 * CALCULATE INTERACTIONS *
513 **************************/
514
515 /* COULOMB ELECTROSTATICS */
516 velec = qq22*rinv22;
517 felec = velec*rinvsq22;
518
519 /* Update potential sums from outer loop */
520 velecsum += velec;
521
522 fscal = felec;
523
524 /* Calculate temporary vectorial force */
525 tx = fscal*dx22;
526 ty = fscal*dy22;
527 tz = fscal*dz22;
528
529 /* Update vectorial force */
530 fix2 += tx;
531 fiy2 += ty;
532 fiz2 += tz;
533 f[j_coord_offset+DIM3*2+XX0] -= tx;
534 f[j_coord_offset+DIM3*2+YY1] -= ty;
535 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
536
537 /* Inner loop uses 277 flops */
538 }
539 /* End of innermost loop */
540
541 tx = ty = tz = 0;
542 f[i_coord_offset+DIM3*0+XX0] += fix0;
543 f[i_coord_offset+DIM3*0+YY1] += fiy0;
544 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
545 tx += fix0;
546 ty += fiy0;
547 tz += fiz0;
548 f[i_coord_offset+DIM3*1+XX0] += fix1;
549 f[i_coord_offset+DIM3*1+YY1] += fiy1;
550 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
551 tx += fix1;
552 ty += fiy1;
553 tz += fiz1;
554 f[i_coord_offset+DIM3*2+XX0] += fix2;
555 f[i_coord_offset+DIM3*2+YY1] += fiy2;
556 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
557 tx += fix2;
558 ty += fiy2;
559 tz += fiz2;
560 fshift[i_shift_offset+XX0] += tx;
561 fshift[i_shift_offset+YY1] += ty;
562 fshift[i_shift_offset+ZZ2] += tz;
563
564 ggid = gid[iidx];
565 /* Update potential energies */
566 kernel_data->energygrp_elec[ggid] += velecsum;
567 kernel_data->energygrp_vdw[ggid] += vvdwsum;
568
569 /* Increment number of inner iterations */
570 inneriter += j_index_end - j_index_start;
571
572 /* Outer loop uses 32 flops */
573 }
574
575 /* Increment number of outer iterations */
576 outeriter += nri;
577
578 /* Update outer/inner flops */
579
580 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*32 + inneriter*277)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_VF] += outeriter*32 +
inneriter*277
;
581}
582/*
583 * Gromacs nonbonded kernel: nb_kernel_ElecCoul_VdwCSTab_GeomW3W3_F_c
584 * Electrostatics interaction: Coulomb
585 * VdW interaction: CubicSplineTable
586 * Geometry: Water3-Water3
587 * Calculate force/pot: Force
588 */
589void
590nb_kernel_ElecCoul_VdwCSTab_GeomW3W3_F_c
591 (t_nblist * gmx_restrict__restrict nlist,
592 rvec * gmx_restrict__restrict xx,
593 rvec * gmx_restrict__restrict ff,
594 t_forcerec * gmx_restrict__restrict fr,
595 t_mdatoms * gmx_restrict__restrict mdatoms,
596 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
597 t_nrnb * gmx_restrict__restrict nrnb)
598{
599 int i_shift_offset,i_coord_offset,j_coord_offset;
600 int j_index_start,j_index_end;
601 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
602 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
603 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
604 real *shiftvec,*fshift,*x,*f;
605 int vdwioffset0;
606 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
607 int vdwioffset1;
608 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
609 int vdwioffset2;
610 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
611 int vdwjidx0;
612 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
613 int vdwjidx1;
614 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
615 int vdwjidx2;
616 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
617 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
618 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
619 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
620 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
621 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
622 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
623 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
624 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
625 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
626 real velec,felec,velecsum,facel,crf,krf,krf2;
627 real *charge;
628 int nvdwtype;
629 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
630 int *vdwtype;
631 real *vdwparam;
632 int vfitab;
633 real rt,vfeps,vftabscale,Y,F,Geps,Heps2,Fp,VV,FF;
634 real *vftab;
635
636 x = xx[0];
637 f = ff[0];
638
639 nri = nlist->nri;
640 iinr = nlist->iinr;
641 jindex = nlist->jindex;
642 jjnr = nlist->jjnr;
643 shiftidx = nlist->shift;
644 gid = nlist->gid;
Value stored to 'gid' is never read
645 shiftvec = fr->shift_vec[0];
646 fshift = fr->fshift[0];
647 facel = fr->epsfac;
648 charge = mdatoms->chargeA;
649 nvdwtype = fr->ntype;
650 vdwparam = fr->nbfp;
651 vdwtype = mdatoms->typeA;
652
653 vftab = kernel_data->table_vdw->data;
654 vftabscale = kernel_data->table_vdw->scale;
655
656 /* Setup water-specific parameters */
657 inr = nlist->iinr[0];
658 iq0 = facel*charge[inr+0];
659 iq1 = facel*charge[inr+1];
660 iq2 = facel*charge[inr+2];
661 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
662
663 jq0 = charge[inr+0];
664 jq1 = charge[inr+1];
665 jq2 = charge[inr+2];
666 vdwjidx0 = 2*vdwtype[inr+0];
667 qq00 = iq0*jq0;
668 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
669 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
670 qq01 = iq0*jq1;
671 qq02 = iq0*jq2;
672 qq10 = iq1*jq0;
673 qq11 = iq1*jq1;
674 qq12 = iq1*jq2;
675 qq20 = iq2*jq0;
676 qq21 = iq2*jq1;
677 qq22 = iq2*jq2;
678
679 outeriter = 0;
680 inneriter = 0;
681
682 /* Start outer loop over neighborlists */
683 for(iidx=0; iidx<nri; iidx++)
684 {
685 /* Load shift vector for this list */
686 i_shift_offset = DIM3*shiftidx[iidx];
687 shX = shiftvec[i_shift_offset+XX0];
688 shY = shiftvec[i_shift_offset+YY1];
689 shZ = shiftvec[i_shift_offset+ZZ2];
690
691 /* Load limits for loop over neighbors */
692 j_index_start = jindex[iidx];
693 j_index_end = jindex[iidx+1];
694
695 /* Get outer coordinate index */
696 inr = iinr[iidx];
697 i_coord_offset = DIM3*inr;
698
699 /* Load i particle coords and add shift vector */
700 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
701 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
702 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
703 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
704 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
705 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
706 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
707 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
708 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
709
710 fix0 = 0.0;
711 fiy0 = 0.0;
712 fiz0 = 0.0;
713 fix1 = 0.0;
714 fiy1 = 0.0;
715 fiz1 = 0.0;
716 fix2 = 0.0;
717 fiy2 = 0.0;
718 fiz2 = 0.0;
719
720 /* Start inner kernel loop */
721 for(jidx=j_index_start; jidx<j_index_end; jidx++)
722 {
723 /* Get j neighbor index, and coordinate index */
724 jnr = jjnr[jidx];
725 j_coord_offset = DIM3*jnr;
726
727 /* load j atom coordinates */
728 jx0 = x[j_coord_offset+DIM3*0+XX0];
729 jy0 = x[j_coord_offset+DIM3*0+YY1];
730 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
731 jx1 = x[j_coord_offset+DIM3*1+XX0];
732 jy1 = x[j_coord_offset+DIM3*1+YY1];
733 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
734 jx2 = x[j_coord_offset+DIM3*2+XX0];
735 jy2 = x[j_coord_offset+DIM3*2+YY1];
736 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
737
738 /* Calculate displacement vector */
739 dx00 = ix0 - jx0;
740 dy00 = iy0 - jy0;
741 dz00 = iz0 - jz0;
742 dx01 = ix0 - jx1;
743 dy01 = iy0 - jy1;
744 dz01 = iz0 - jz1;
745 dx02 = ix0 - jx2;
746 dy02 = iy0 - jy2;
747 dz02 = iz0 - jz2;
748 dx10 = ix1 - jx0;
749 dy10 = iy1 - jy0;
750 dz10 = iz1 - jz0;
751 dx11 = ix1 - jx1;
752 dy11 = iy1 - jy1;
753 dz11 = iz1 - jz1;
754 dx12 = ix1 - jx2;
755 dy12 = iy1 - jy2;
756 dz12 = iz1 - jz2;
757 dx20 = ix2 - jx0;
758 dy20 = iy2 - jy0;
759 dz20 = iz2 - jz0;
760 dx21 = ix2 - jx1;
761 dy21 = iy2 - jy1;
762 dz21 = iz2 - jz1;
763 dx22 = ix2 - jx2;
764 dy22 = iy2 - jy2;
765 dz22 = iz2 - jz2;
766
767 /* Calculate squared distance and things based on it */
768 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
769 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
770 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
771 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
772 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
773 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
774 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
775 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
776 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
777
778 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
779 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
780 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
781 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
782 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
783 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
784 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
785 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
786 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
787
788 rinvsq00 = rinv00*rinv00;
789 rinvsq01 = rinv01*rinv01;
790 rinvsq02 = rinv02*rinv02;
791 rinvsq10 = rinv10*rinv10;
792 rinvsq11 = rinv11*rinv11;
793 rinvsq12 = rinv12*rinv12;
794 rinvsq20 = rinv20*rinv20;
795 rinvsq21 = rinv21*rinv21;
796 rinvsq22 = rinv22*rinv22;
797
798 /**************************
799 * CALCULATE INTERACTIONS *
800 **************************/
801
802 r00 = rsq00*rinv00;
803
804 /* Calculate table index by multiplying r with table scale and truncate to integer */
805 rt = r00*vftabscale;
806 vfitab = rt;
807 vfeps = rt-vfitab;
808 vfitab = 2*4*vfitab;
809
810 /* COULOMB ELECTROSTATICS */
811 velec = qq00*rinv00;
812 felec = velec*rinvsq00;
813
814 /* CUBIC SPLINE TABLE DISPERSION */
815 vfitab += 0;
816 F = vftab[vfitab+1];
817 Geps = vfeps*vftab[vfitab+2];
818 Heps2 = vfeps*vfeps*vftab[vfitab+3];
819 Fp = F+Geps+Heps2;
820 FF = Fp+Geps+2.0*Heps2;
821 fvdw6 = c6_00*FF;
822
823 /* CUBIC SPLINE TABLE REPULSION */
824 F = vftab[vfitab+5];
825 Geps = vfeps*vftab[vfitab+6];
826 Heps2 = vfeps*vfeps*vftab[vfitab+7];
827 Fp = F+Geps+Heps2;
828 FF = Fp+Geps+2.0*Heps2;
829 fvdw12 = c12_00*FF;
830 fvdw = -(fvdw6+fvdw12)*vftabscale*rinv00;
831
832 fscal = felec+fvdw;
833
834 /* Calculate temporary vectorial force */
835 tx = fscal*dx00;
836 ty = fscal*dy00;
837 tz = fscal*dz00;
838
839 /* Update vectorial force */
840 fix0 += tx;
841 fiy0 += ty;
842 fiz0 += tz;
843 f[j_coord_offset+DIM3*0+XX0] -= tx;
844 f[j_coord_offset+DIM3*0+YY1] -= ty;
845 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
846
847 /**************************
848 * CALCULATE INTERACTIONS *
849 **************************/
850
851 /* COULOMB ELECTROSTATICS */
852 velec = qq01*rinv01;
853 felec = velec*rinvsq01;
854
855 fscal = felec;
856
857 /* Calculate temporary vectorial force */
858 tx = fscal*dx01;
859 ty = fscal*dy01;
860 tz = fscal*dz01;
861
862 /* Update vectorial force */
863 fix0 += tx;
864 fiy0 += ty;
865 fiz0 += tz;
866 f[j_coord_offset+DIM3*1+XX0] -= tx;
867 f[j_coord_offset+DIM3*1+YY1] -= ty;
868 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
869
870 /**************************
871 * CALCULATE INTERACTIONS *
872 **************************/
873
874 /* COULOMB ELECTROSTATICS */
875 velec = qq02*rinv02;
876 felec = velec*rinvsq02;
877
878 fscal = felec;
879
880 /* Calculate temporary vectorial force */
881 tx = fscal*dx02;
882 ty = fscal*dy02;
883 tz = fscal*dz02;
884
885 /* Update vectorial force */
886 fix0 += tx;
887 fiy0 += ty;
888 fiz0 += tz;
889 f[j_coord_offset+DIM3*2+XX0] -= tx;
890 f[j_coord_offset+DIM3*2+YY1] -= ty;
891 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
892
893 /**************************
894 * CALCULATE INTERACTIONS *
895 **************************/
896
897 /* COULOMB ELECTROSTATICS */
898 velec = qq10*rinv10;
899 felec = velec*rinvsq10;
900
901 fscal = felec;
902
903 /* Calculate temporary vectorial force */
904 tx = fscal*dx10;
905 ty = fscal*dy10;
906 tz = fscal*dz10;
907
908 /* Update vectorial force */
909 fix1 += tx;
910 fiy1 += ty;
911 fiz1 += tz;
912 f[j_coord_offset+DIM3*0+XX0] -= tx;
913 f[j_coord_offset+DIM3*0+YY1] -= ty;
914 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
915
916 /**************************
917 * CALCULATE INTERACTIONS *
918 **************************/
919
920 /* COULOMB ELECTROSTATICS */
921 velec = qq11*rinv11;
922 felec = velec*rinvsq11;
923
924 fscal = felec;
925
926 /* Calculate temporary vectorial force */
927 tx = fscal*dx11;
928 ty = fscal*dy11;
929 tz = fscal*dz11;
930
931 /* Update vectorial force */
932 fix1 += tx;
933 fiy1 += ty;
934 fiz1 += tz;
935 f[j_coord_offset+DIM3*1+XX0] -= tx;
936 f[j_coord_offset+DIM3*1+YY1] -= ty;
937 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
938
939 /**************************
940 * CALCULATE INTERACTIONS *
941 **************************/
942
943 /* COULOMB ELECTROSTATICS */
944 velec = qq12*rinv12;
945 felec = velec*rinvsq12;
946
947 fscal = felec;
948
949 /* Calculate temporary vectorial force */
950 tx = fscal*dx12;
951 ty = fscal*dy12;
952 tz = fscal*dz12;
953
954 /* Update vectorial force */
955 fix1 += tx;
956 fiy1 += ty;
957 fiz1 += tz;
958 f[j_coord_offset+DIM3*2+XX0] -= tx;
959 f[j_coord_offset+DIM3*2+YY1] -= ty;
960 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
961
962 /**************************
963 * CALCULATE INTERACTIONS *
964 **************************/
965
966 /* COULOMB ELECTROSTATICS */
967 velec = qq20*rinv20;
968 felec = velec*rinvsq20;
969
970 fscal = felec;
971
972 /* Calculate temporary vectorial force */
973 tx = fscal*dx20;
974 ty = fscal*dy20;
975 tz = fscal*dz20;
976
977 /* Update vectorial force */
978 fix2 += tx;
979 fiy2 += ty;
980 fiz2 += tz;
981 f[j_coord_offset+DIM3*0+XX0] -= tx;
982 f[j_coord_offset+DIM3*0+YY1] -= ty;
983 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
984
985 /**************************
986 * CALCULATE INTERACTIONS *
987 **************************/
988
989 /* COULOMB ELECTROSTATICS */
990 velec = qq21*rinv21;
991 felec = velec*rinvsq21;
992
993 fscal = felec;
994
995 /* Calculate temporary vectorial force */
996 tx = fscal*dx21;
997 ty = fscal*dy21;
998 tz = fscal*dz21;
999
1000 /* Update vectorial force */
1001 fix2 += tx;
1002 fiy2 += ty;
1003 fiz2 += tz;
1004 f[j_coord_offset+DIM3*1+XX0] -= tx;
1005 f[j_coord_offset+DIM3*1+YY1] -= ty;
1006 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1007
1008 /**************************
1009 * CALCULATE INTERACTIONS *
1010 **************************/
1011
1012 /* COULOMB ELECTROSTATICS */
1013 velec = qq22*rinv22;
1014 felec = velec*rinvsq22;
1015
1016 fscal = felec;
1017
1018 /* Calculate temporary vectorial force */
1019 tx = fscal*dx22;
1020 ty = fscal*dy22;
1021 tz = fscal*dz22;
1022
1023 /* Update vectorial force */
1024 fix2 += tx;
1025 fiy2 += ty;
1026 fiz2 += tz;
1027 f[j_coord_offset+DIM3*2+XX0] -= tx;
1028 f[j_coord_offset+DIM3*2+YY1] -= ty;
1029 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1030
1031 /* Inner loop uses 260 flops */
1032 }
1033 /* End of innermost loop */
1034
1035 tx = ty = tz = 0;
1036 f[i_coord_offset+DIM3*0+XX0] += fix0;
1037 f[i_coord_offset+DIM3*0+YY1] += fiy0;
1038 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
1039 tx += fix0;
1040 ty += fiy0;
1041 tz += fiz0;
1042 f[i_coord_offset+DIM3*1+XX0] += fix1;
1043 f[i_coord_offset+DIM3*1+YY1] += fiy1;
1044 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
1045 tx += fix1;
1046 ty += fiy1;
1047 tz += fiz1;
1048 f[i_coord_offset+DIM3*2+XX0] += fix2;
1049 f[i_coord_offset+DIM3*2+YY1] += fiy2;
1050 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
1051 tx += fix2;
1052 ty += fiy2;
1053 tz += fiz2;
1054 fshift[i_shift_offset+XX0] += tx;
1055 fshift[i_shift_offset+YY1] += ty;
1056 fshift[i_shift_offset+ZZ2] += tz;
1057
1058 /* Increment number of inner iterations */
1059 inneriter += j_index_end - j_index_start;
1060
1061 /* Outer loop uses 30 flops */
1062 }
1063
1064 /* Increment number of outer iterations */
1065 outeriter += nri;
1066
1067 /* Update outer/inner flops */
1068
1069 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*30 + inneriter*260)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_F] += outeriter*30 + inneriter
*260
;
1070}