Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEw_VdwLJEw_GeomW3W3_c.c
Location:line 132, column 5
Description:Value stored to 'sh_lj_ewald' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJEw_GeomW3W3_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: LJEwald
53 * Geometry: Water3-Water3
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEw_VdwLJEw_GeomW3W3_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwjidx0;
79 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
80 int vdwjidx1;
81 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
82 int vdwjidx2;
83 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
84 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
85 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
86 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
87 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
88 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
89 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
90 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
91 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
92 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
93 real velec,felec,velecsum,facel,crf,krf,krf2;
94 real *charge;
95 int nvdwtype;
96 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
97 int *vdwtype;
98 real *vdwparam;
99 real c6grid_00;
100 real c6grid_01;
101 real c6grid_02;
102 real c6grid_10;
103 real c6grid_11;
104 real c6grid_12;
105 real c6grid_20;
106 real c6grid_21;
107 real c6grid_22;
108 real ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,sh_lj_ewald;
109 real *vdwgridparam;
110 int ewitab;
111 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
112 real *ewtab;
113
114 x = xx[0];
115 f = ff[0];
116
117 nri = nlist->nri;
118 iinr = nlist->iinr;
119 jindex = nlist->jindex;
120 jjnr = nlist->jjnr;
121 shiftidx = nlist->shift;
122 gid = nlist->gid;
123 shiftvec = fr->shift_vec[0];
124 fshift = fr->fshift[0];
125 facel = fr->epsfac;
126 charge = mdatoms->chargeA;
127 nvdwtype = fr->ntype;
128 vdwparam = fr->nbfp;
129 vdwtype = mdatoms->typeA;
130 vdwgridparam = fr->ljpme_c6grid;
131 ewclj = fr->ewaldcoeff_lj;
132 sh_lj_ewald = fr->ic->sh_lj_ewald;
Value stored to 'sh_lj_ewald' is never read
133 ewclj2 = ewclj*ewclj;
134 ewclj6 = ewclj2*ewclj2*ewclj2;
135
136 sh_ewald = fr->ic->sh_ewald;
137 ewtab = fr->ic->tabq_coul_FDV0;
138 ewtabscale = fr->ic->tabq_scale;
139 ewtabhalfspace = 0.5/ewtabscale;
140
141 /* Setup water-specific parameters */
142 inr = nlist->iinr[0];
143 iq0 = facel*charge[inr+0];
144 iq1 = facel*charge[inr+1];
145 iq2 = facel*charge[inr+2];
146 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
147
148 jq0 = charge[inr+0];
149 jq1 = charge[inr+1];
150 jq2 = charge[inr+2];
151 vdwjidx0 = 2*vdwtype[inr+0];
152 qq00 = iq0*jq0;
153 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
154 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
155 c6grid_00 = vdwgridparam[vdwioffset0+vdwjidx0];
156 qq01 = iq0*jq1;
157 qq02 = iq0*jq2;
158 qq10 = iq1*jq0;
159 qq11 = iq1*jq1;
160 qq12 = iq1*jq2;
161 qq20 = iq2*jq0;
162 qq21 = iq2*jq1;
163 qq22 = iq2*jq2;
164
165 outeriter = 0;
166 inneriter = 0;
167
168 /* Start outer loop over neighborlists */
169 for(iidx=0; iidx<nri; iidx++)
170 {
171 /* Load shift vector for this list */
172 i_shift_offset = DIM3*shiftidx[iidx];
173 shX = shiftvec[i_shift_offset+XX0];
174 shY = shiftvec[i_shift_offset+YY1];
175 shZ = shiftvec[i_shift_offset+ZZ2];
176
177 /* Load limits for loop over neighbors */
178 j_index_start = jindex[iidx];
179 j_index_end = jindex[iidx+1];
180
181 /* Get outer coordinate index */
182 inr = iinr[iidx];
183 i_coord_offset = DIM3*inr;
184
185 /* Load i particle coords and add shift vector */
186 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
187 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
188 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
189 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
190 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
191 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
192 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
193 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
194 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
195
196 fix0 = 0.0;
197 fiy0 = 0.0;
198 fiz0 = 0.0;
199 fix1 = 0.0;
200 fiy1 = 0.0;
201 fiz1 = 0.0;
202 fix2 = 0.0;
203 fiy2 = 0.0;
204 fiz2 = 0.0;
205
206 /* Reset potential sums */
207 velecsum = 0.0;
208 vvdwsum = 0.0;
209
210 /* Start inner kernel loop */
211 for(jidx=j_index_start; jidx<j_index_end; jidx++)
212 {
213 /* Get j neighbor index, and coordinate index */
214 jnr = jjnr[jidx];
215 j_coord_offset = DIM3*jnr;
216
217 /* load j atom coordinates */
218 jx0 = x[j_coord_offset+DIM3*0+XX0];
219 jy0 = x[j_coord_offset+DIM3*0+YY1];
220 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
221 jx1 = x[j_coord_offset+DIM3*1+XX0];
222 jy1 = x[j_coord_offset+DIM3*1+YY1];
223 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
224 jx2 = x[j_coord_offset+DIM3*2+XX0];
225 jy2 = x[j_coord_offset+DIM3*2+YY1];
226 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
227
228 /* Calculate displacement vector */
229 dx00 = ix0 - jx0;
230 dy00 = iy0 - jy0;
231 dz00 = iz0 - jz0;
232 dx01 = ix0 - jx1;
233 dy01 = iy0 - jy1;
234 dz01 = iz0 - jz1;
235 dx02 = ix0 - jx2;
236 dy02 = iy0 - jy2;
237 dz02 = iz0 - jz2;
238 dx10 = ix1 - jx0;
239 dy10 = iy1 - jy0;
240 dz10 = iz1 - jz0;
241 dx11 = ix1 - jx1;
242 dy11 = iy1 - jy1;
243 dz11 = iz1 - jz1;
244 dx12 = ix1 - jx2;
245 dy12 = iy1 - jy2;
246 dz12 = iz1 - jz2;
247 dx20 = ix2 - jx0;
248 dy20 = iy2 - jy0;
249 dz20 = iz2 - jz0;
250 dx21 = ix2 - jx1;
251 dy21 = iy2 - jy1;
252 dz21 = iz2 - jz1;
253 dx22 = ix2 - jx2;
254 dy22 = iy2 - jy2;
255 dz22 = iz2 - jz2;
256
257 /* Calculate squared distance and things based on it */
258 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
259 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
260 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
261 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
262 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
263 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
264 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
265 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
266 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
267
268 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
269 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
270 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
271 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
272 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
273 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
274 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
275 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
276 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
277
278 rinvsq00 = rinv00*rinv00;
279 rinvsq01 = rinv01*rinv01;
280 rinvsq02 = rinv02*rinv02;
281 rinvsq10 = rinv10*rinv10;
282 rinvsq11 = rinv11*rinv11;
283 rinvsq12 = rinv12*rinv12;
284 rinvsq20 = rinv20*rinv20;
285 rinvsq21 = rinv21*rinv21;
286 rinvsq22 = rinv22*rinv22;
287
288 /**************************
289 * CALCULATE INTERACTIONS *
290 **************************/
291
292 r00 = rsq00*rinv00;
293
294 /* EWALD ELECTROSTATICS */
295
296 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
297 ewrt = r00*ewtabscale;
298 ewitab = ewrt;
299 eweps = ewrt-ewitab;
300 ewitab = 4*ewitab;
301 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
302 velec = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
303 felec = qq00*rinv00*(rinvsq00-felec);
304
305 rinvsix = rinvsq00*rinvsq00*rinvsq00;
306 ewcljrsq = ewclj2*rsq00;
307 exponent = exp(-ewcljrsq);
308 poly = exponent*(1.0 + ewcljrsq + ewcljrsq*ewcljrsq*0.5);
309 vvdw6 = (c6_00-c6grid_00*(1.0-poly))*rinvsix;
310 vvdw12 = c12_00*rinvsix*rinvsix;
311 vvdw = vvdw12*(1.0/12.0) - vvdw6*(1.0/6.0);
312 fvdw = (vvdw12 - vvdw6 - c6grid_00*(1.0/6.0)*exponent*ewclj6)*rinvsq00;
313
314 /* Update potential sums from outer loop */
315 velecsum += velec;
316 vvdwsum += vvdw;
317
318 fscal = felec+fvdw;
319
320 /* Calculate temporary vectorial force */
321 tx = fscal*dx00;
322 ty = fscal*dy00;
323 tz = fscal*dz00;
324
325 /* Update vectorial force */
326 fix0 += tx;
327 fiy0 += ty;
328 fiz0 += tz;
329 f[j_coord_offset+DIM3*0+XX0] -= tx;
330 f[j_coord_offset+DIM3*0+YY1] -= ty;
331 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
332
333 /**************************
334 * CALCULATE INTERACTIONS *
335 **************************/
336
337 r01 = rsq01*rinv01;
338
339 /* EWALD ELECTROSTATICS */
340
341 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
342 ewrt = r01*ewtabscale;
343 ewitab = ewrt;
344 eweps = ewrt-ewitab;
345 ewitab = 4*ewitab;
346 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
347 velec = qq01*(rinv01-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
348 felec = qq01*rinv01*(rinvsq01-felec);
349
350 /* Update potential sums from outer loop */
351 velecsum += velec;
352
353 fscal = felec;
354
355 /* Calculate temporary vectorial force */
356 tx = fscal*dx01;
357 ty = fscal*dy01;
358 tz = fscal*dz01;
359
360 /* Update vectorial force */
361 fix0 += tx;
362 fiy0 += ty;
363 fiz0 += tz;
364 f[j_coord_offset+DIM3*1+XX0] -= tx;
365 f[j_coord_offset+DIM3*1+YY1] -= ty;
366 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
367
368 /**************************
369 * CALCULATE INTERACTIONS *
370 **************************/
371
372 r02 = rsq02*rinv02;
373
374 /* EWALD ELECTROSTATICS */
375
376 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
377 ewrt = r02*ewtabscale;
378 ewitab = ewrt;
379 eweps = ewrt-ewitab;
380 ewitab = 4*ewitab;
381 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
382 velec = qq02*(rinv02-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
383 felec = qq02*rinv02*(rinvsq02-felec);
384
385 /* Update potential sums from outer loop */
386 velecsum += velec;
387
388 fscal = felec;
389
390 /* Calculate temporary vectorial force */
391 tx = fscal*dx02;
392 ty = fscal*dy02;
393 tz = fscal*dz02;
394
395 /* Update vectorial force */
396 fix0 += tx;
397 fiy0 += ty;
398 fiz0 += tz;
399 f[j_coord_offset+DIM3*2+XX0] -= tx;
400 f[j_coord_offset+DIM3*2+YY1] -= ty;
401 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
402
403 /**************************
404 * CALCULATE INTERACTIONS *
405 **************************/
406
407 r10 = rsq10*rinv10;
408
409 /* EWALD ELECTROSTATICS */
410
411 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
412 ewrt = r10*ewtabscale;
413 ewitab = ewrt;
414 eweps = ewrt-ewitab;
415 ewitab = 4*ewitab;
416 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
417 velec = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
418 felec = qq10*rinv10*(rinvsq10-felec);
419
420 /* Update potential sums from outer loop */
421 velecsum += velec;
422
423 fscal = felec;
424
425 /* Calculate temporary vectorial force */
426 tx = fscal*dx10;
427 ty = fscal*dy10;
428 tz = fscal*dz10;
429
430 /* Update vectorial force */
431 fix1 += tx;
432 fiy1 += ty;
433 fiz1 += tz;
434 f[j_coord_offset+DIM3*0+XX0] -= tx;
435 f[j_coord_offset+DIM3*0+YY1] -= ty;
436 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
437
438 /**************************
439 * CALCULATE INTERACTIONS *
440 **************************/
441
442 r11 = rsq11*rinv11;
443
444 /* EWALD ELECTROSTATICS */
445
446 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
447 ewrt = r11*ewtabscale;
448 ewitab = ewrt;
449 eweps = ewrt-ewitab;
450 ewitab = 4*ewitab;
451 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
452 velec = qq11*(rinv11-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
453 felec = qq11*rinv11*(rinvsq11-felec);
454
455 /* Update potential sums from outer loop */
456 velecsum += velec;
457
458 fscal = felec;
459
460 /* Calculate temporary vectorial force */
461 tx = fscal*dx11;
462 ty = fscal*dy11;
463 tz = fscal*dz11;
464
465 /* Update vectorial force */
466 fix1 += tx;
467 fiy1 += ty;
468 fiz1 += tz;
469 f[j_coord_offset+DIM3*1+XX0] -= tx;
470 f[j_coord_offset+DIM3*1+YY1] -= ty;
471 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
472
473 /**************************
474 * CALCULATE INTERACTIONS *
475 **************************/
476
477 r12 = rsq12*rinv12;
478
479 /* EWALD ELECTROSTATICS */
480
481 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
482 ewrt = r12*ewtabscale;
483 ewitab = ewrt;
484 eweps = ewrt-ewitab;
485 ewitab = 4*ewitab;
486 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
487 velec = qq12*(rinv12-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
488 felec = qq12*rinv12*(rinvsq12-felec);
489
490 /* Update potential sums from outer loop */
491 velecsum += velec;
492
493 fscal = felec;
494
495 /* Calculate temporary vectorial force */
496 tx = fscal*dx12;
497 ty = fscal*dy12;
498 tz = fscal*dz12;
499
500 /* Update vectorial force */
501 fix1 += tx;
502 fiy1 += ty;
503 fiz1 += tz;
504 f[j_coord_offset+DIM3*2+XX0] -= tx;
505 f[j_coord_offset+DIM3*2+YY1] -= ty;
506 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
507
508 /**************************
509 * CALCULATE INTERACTIONS *
510 **************************/
511
512 r20 = rsq20*rinv20;
513
514 /* EWALD ELECTROSTATICS */
515
516 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
517 ewrt = r20*ewtabscale;
518 ewitab = ewrt;
519 eweps = ewrt-ewitab;
520 ewitab = 4*ewitab;
521 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
522 velec = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
523 felec = qq20*rinv20*(rinvsq20-felec);
524
525 /* Update potential sums from outer loop */
526 velecsum += velec;
527
528 fscal = felec;
529
530 /* Calculate temporary vectorial force */
531 tx = fscal*dx20;
532 ty = fscal*dy20;
533 tz = fscal*dz20;
534
535 /* Update vectorial force */
536 fix2 += tx;
537 fiy2 += ty;
538 fiz2 += tz;
539 f[j_coord_offset+DIM3*0+XX0] -= tx;
540 f[j_coord_offset+DIM3*0+YY1] -= ty;
541 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
542
543 /**************************
544 * CALCULATE INTERACTIONS *
545 **************************/
546
547 r21 = rsq21*rinv21;
548
549 /* EWALD ELECTROSTATICS */
550
551 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
552 ewrt = r21*ewtabscale;
553 ewitab = ewrt;
554 eweps = ewrt-ewitab;
555 ewitab = 4*ewitab;
556 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
557 velec = qq21*(rinv21-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
558 felec = qq21*rinv21*(rinvsq21-felec);
559
560 /* Update potential sums from outer loop */
561 velecsum += velec;
562
563 fscal = felec;
564
565 /* Calculate temporary vectorial force */
566 tx = fscal*dx21;
567 ty = fscal*dy21;
568 tz = fscal*dz21;
569
570 /* Update vectorial force */
571 fix2 += tx;
572 fiy2 += ty;
573 fiz2 += tz;
574 f[j_coord_offset+DIM3*1+XX0] -= tx;
575 f[j_coord_offset+DIM3*1+YY1] -= ty;
576 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
577
578 /**************************
579 * CALCULATE INTERACTIONS *
580 **************************/
581
582 r22 = rsq22*rinv22;
583
584 /* EWALD ELECTROSTATICS */
585
586 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
587 ewrt = r22*ewtabscale;
588 ewitab = ewrt;
589 eweps = ewrt-ewitab;
590 ewitab = 4*ewitab;
591 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
592 velec = qq22*(rinv22-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
593 felec = qq22*rinv22*(rinvsq22-felec);
594
595 /* Update potential sums from outer loop */
596 velecsum += velec;
597
598 fscal = felec;
599
600 /* Calculate temporary vectorial force */
601 tx = fscal*dx22;
602 ty = fscal*dy22;
603 tz = fscal*dz22;
604
605 /* Update vectorial force */
606 fix2 += tx;
607 fiy2 += ty;
608 fiz2 += tz;
609 f[j_coord_offset+DIM3*2+XX0] -= tx;
610 f[j_coord_offset+DIM3*2+YY1] -= ty;
611 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
612
613 /* Inner loop uses 386 flops */
614 }
615 /* End of innermost loop */
616
617 tx = ty = tz = 0;
618 f[i_coord_offset+DIM3*0+XX0] += fix0;
619 f[i_coord_offset+DIM3*0+YY1] += fiy0;
620 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
621 tx += fix0;
622 ty += fiy0;
623 tz += fiz0;
624 f[i_coord_offset+DIM3*1+XX0] += fix1;
625 f[i_coord_offset+DIM3*1+YY1] += fiy1;
626 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
627 tx += fix1;
628 ty += fiy1;
629 tz += fiz1;
630 f[i_coord_offset+DIM3*2+XX0] += fix2;
631 f[i_coord_offset+DIM3*2+YY1] += fiy2;
632 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
633 tx += fix2;
634 ty += fiy2;
635 tz += fiz2;
636 fshift[i_shift_offset+XX0] += tx;
637 fshift[i_shift_offset+YY1] += ty;
638 fshift[i_shift_offset+ZZ2] += tz;
639
640 ggid = gid[iidx];
641 /* Update potential energies */
642 kernel_data->energygrp_elec[ggid] += velecsum;
643 kernel_data->energygrp_vdw[ggid] += vvdwsum;
644
645 /* Increment number of inner iterations */
646 inneriter += j_index_end - j_index_start;
647
648 /* Outer loop uses 32 flops */
649 }
650
651 /* Increment number of outer iterations */
652 outeriter += nri;
653
654 /* Update outer/inner flops */
655
656 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_VF,outeriter*32 + inneriter*386)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_VF] += outeriter*32 +
inneriter*386
;
657}
658/*
659 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwLJEw_GeomW3W3_F_c
660 * Electrostatics interaction: Ewald
661 * VdW interaction: LJEwald
662 * Geometry: Water3-Water3
663 * Calculate force/pot: Force
664 */
665void
666nb_kernel_ElecEw_VdwLJEw_GeomW3W3_F_c
667 (t_nblist * gmx_restrict__restrict nlist,
668 rvec * gmx_restrict__restrict xx,
669 rvec * gmx_restrict__restrict ff,
670 t_forcerec * gmx_restrict__restrict fr,
671 t_mdatoms * gmx_restrict__restrict mdatoms,
672 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
673 t_nrnb * gmx_restrict__restrict nrnb)
674{
675 int i_shift_offset,i_coord_offset,j_coord_offset;
676 int j_index_start,j_index_end;
677 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
678 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
679 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
680 real *shiftvec,*fshift,*x,*f;
681 int vdwioffset0;
682 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
683 int vdwioffset1;
684 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
685 int vdwioffset2;
686 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
687 int vdwjidx0;
688 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
689 int vdwjidx1;
690 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
691 int vdwjidx2;
692 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
693 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
694 real dx01,dy01,dz01,rsq01,rinv01,rinvsq01,r01,qq01,c6_01,c12_01,cexp1_01,cexp2_01;
695 real dx02,dy02,dz02,rsq02,rinv02,rinvsq02,r02,qq02,c6_02,c12_02,cexp1_02,cexp2_02;
696 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
697 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
698 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
699 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
700 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
701 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
702 real velec,felec,velecsum,facel,crf,krf,krf2;
703 real *charge;
704 int nvdwtype;
705 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
706 int *vdwtype;
707 real *vdwparam;
708 real c6grid_00;
709 real c6grid_01;
710 real c6grid_02;
711 real c6grid_10;
712 real c6grid_11;
713 real c6grid_12;
714 real c6grid_20;
715 real c6grid_21;
716 real c6grid_22;
717 real ewclj,ewclj2,ewclj6,ewcljrsq,poly,exponent,sh_lj_ewald;
718 real *vdwgridparam;
719 int ewitab;
720 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
721 real *ewtab;
722
723 x = xx[0];
724 f = ff[0];
725
726 nri = nlist->nri;
727 iinr = nlist->iinr;
728 jindex = nlist->jindex;
729 jjnr = nlist->jjnr;
730 shiftidx = nlist->shift;
731 gid = nlist->gid;
732 shiftvec = fr->shift_vec[0];
733 fshift = fr->fshift[0];
734 facel = fr->epsfac;
735 charge = mdatoms->chargeA;
736 nvdwtype = fr->ntype;
737 vdwparam = fr->nbfp;
738 vdwtype = mdatoms->typeA;
739 vdwgridparam = fr->ljpme_c6grid;
740 ewclj = fr->ewaldcoeff_lj;
741 sh_lj_ewald = fr->ic->sh_lj_ewald;
742 ewclj2 = ewclj*ewclj;
743 ewclj6 = ewclj2*ewclj2*ewclj2;
744
745 sh_ewald = fr->ic->sh_ewald;
746 ewtab = fr->ic->tabq_coul_F;
747 ewtabscale = fr->ic->tabq_scale;
748 ewtabhalfspace = 0.5/ewtabscale;
749
750 /* Setup water-specific parameters */
751 inr = nlist->iinr[0];
752 iq0 = facel*charge[inr+0];
753 iq1 = facel*charge[inr+1];
754 iq2 = facel*charge[inr+2];
755 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
756
757 jq0 = charge[inr+0];
758 jq1 = charge[inr+1];
759 jq2 = charge[inr+2];
760 vdwjidx0 = 2*vdwtype[inr+0];
761 qq00 = iq0*jq0;
762 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
763 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
764 c6grid_00 = vdwgridparam[vdwioffset0+vdwjidx0];
765 qq01 = iq0*jq1;
766 qq02 = iq0*jq2;
767 qq10 = iq1*jq0;
768 qq11 = iq1*jq1;
769 qq12 = iq1*jq2;
770 qq20 = iq2*jq0;
771 qq21 = iq2*jq1;
772 qq22 = iq2*jq2;
773
774 outeriter = 0;
775 inneriter = 0;
776
777 /* Start outer loop over neighborlists */
778 for(iidx=0; iidx<nri; iidx++)
779 {
780 /* Load shift vector for this list */
781 i_shift_offset = DIM3*shiftidx[iidx];
782 shX = shiftvec[i_shift_offset+XX0];
783 shY = shiftvec[i_shift_offset+YY1];
784 shZ = shiftvec[i_shift_offset+ZZ2];
785
786 /* Load limits for loop over neighbors */
787 j_index_start = jindex[iidx];
788 j_index_end = jindex[iidx+1];
789
790 /* Get outer coordinate index */
791 inr = iinr[iidx];
792 i_coord_offset = DIM3*inr;
793
794 /* Load i particle coords and add shift vector */
795 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
796 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
797 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
798 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
799 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
800 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
801 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
802 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
803 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
804
805 fix0 = 0.0;
806 fiy0 = 0.0;
807 fiz0 = 0.0;
808 fix1 = 0.0;
809 fiy1 = 0.0;
810 fiz1 = 0.0;
811 fix2 = 0.0;
812 fiy2 = 0.0;
813 fiz2 = 0.0;
814
815 /* Start inner kernel loop */
816 for(jidx=j_index_start; jidx<j_index_end; jidx++)
817 {
818 /* Get j neighbor index, and coordinate index */
819 jnr = jjnr[jidx];
820 j_coord_offset = DIM3*jnr;
821
822 /* load j atom coordinates */
823 jx0 = x[j_coord_offset+DIM3*0+XX0];
824 jy0 = x[j_coord_offset+DIM3*0+YY1];
825 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
826 jx1 = x[j_coord_offset+DIM3*1+XX0];
827 jy1 = x[j_coord_offset+DIM3*1+YY1];
828 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
829 jx2 = x[j_coord_offset+DIM3*2+XX0];
830 jy2 = x[j_coord_offset+DIM3*2+YY1];
831 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
832
833 /* Calculate displacement vector */
834 dx00 = ix0 - jx0;
835 dy00 = iy0 - jy0;
836 dz00 = iz0 - jz0;
837 dx01 = ix0 - jx1;
838 dy01 = iy0 - jy1;
839 dz01 = iz0 - jz1;
840 dx02 = ix0 - jx2;
841 dy02 = iy0 - jy2;
842 dz02 = iz0 - jz2;
843 dx10 = ix1 - jx0;
844 dy10 = iy1 - jy0;
845 dz10 = iz1 - jz0;
846 dx11 = ix1 - jx1;
847 dy11 = iy1 - jy1;
848 dz11 = iz1 - jz1;
849 dx12 = ix1 - jx2;
850 dy12 = iy1 - jy2;
851 dz12 = iz1 - jz2;
852 dx20 = ix2 - jx0;
853 dy20 = iy2 - jy0;
854 dz20 = iz2 - jz0;
855 dx21 = ix2 - jx1;
856 dy21 = iy2 - jy1;
857 dz21 = iz2 - jz1;
858 dx22 = ix2 - jx2;
859 dy22 = iy2 - jy2;
860 dz22 = iz2 - jz2;
861
862 /* Calculate squared distance and things based on it */
863 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
864 rsq01 = dx01*dx01+dy01*dy01+dz01*dz01;
865 rsq02 = dx02*dx02+dy02*dy02+dz02*dz02;
866 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
867 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
868 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
869 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
870 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
871 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
872
873 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
874 rinv01 = gmx_invsqrt(rsq01)gmx_software_invsqrt(rsq01);
875 rinv02 = gmx_invsqrt(rsq02)gmx_software_invsqrt(rsq02);
876 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
877 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
878 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
879 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
880 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
881 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
882
883 rinvsq00 = rinv00*rinv00;
884 rinvsq01 = rinv01*rinv01;
885 rinvsq02 = rinv02*rinv02;
886 rinvsq10 = rinv10*rinv10;
887 rinvsq11 = rinv11*rinv11;
888 rinvsq12 = rinv12*rinv12;
889 rinvsq20 = rinv20*rinv20;
890 rinvsq21 = rinv21*rinv21;
891 rinvsq22 = rinv22*rinv22;
892
893 /**************************
894 * CALCULATE INTERACTIONS *
895 **************************/
896
897 r00 = rsq00*rinv00;
898
899 /* EWALD ELECTROSTATICS */
900
901 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
902 ewrt = r00*ewtabscale;
903 ewitab = ewrt;
904 eweps = ewrt-ewitab;
905 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
906 felec = qq00*rinv00*(rinvsq00-felec);
907
908 rinvsix = rinvsq00*rinvsq00*rinvsq00;
909 ewcljrsq = ewclj2*rsq00;
910 exponent = exp(-ewcljrsq);
911 poly = exponent*(1.0 + ewcljrsq + ewcljrsq*ewcljrsq*0.5);
912 fvdw = (((c12_00*rinvsix - c6_00 + c6grid_00*(1.0-poly))*rinvsix) - c6grid_00*(1.0/6.0)*exponent*ewclj6)*rinvsq00;
913
914 fscal = felec+fvdw;
915
916 /* Calculate temporary vectorial force */
917 tx = fscal*dx00;
918 ty = fscal*dy00;
919 tz = fscal*dz00;
920
921 /* Update vectorial force */
922 fix0 += tx;
923 fiy0 += ty;
924 fiz0 += tz;
925 f[j_coord_offset+DIM3*0+XX0] -= tx;
926 f[j_coord_offset+DIM3*0+YY1] -= ty;
927 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
928
929 /**************************
930 * CALCULATE INTERACTIONS *
931 **************************/
932
933 r01 = rsq01*rinv01;
934
935 /* EWALD ELECTROSTATICS */
936
937 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
938 ewrt = r01*ewtabscale;
939 ewitab = ewrt;
940 eweps = ewrt-ewitab;
941 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
942 felec = qq01*rinv01*(rinvsq01-felec);
943
944 fscal = felec;
945
946 /* Calculate temporary vectorial force */
947 tx = fscal*dx01;
948 ty = fscal*dy01;
949 tz = fscal*dz01;
950
951 /* Update vectorial force */
952 fix0 += tx;
953 fiy0 += ty;
954 fiz0 += tz;
955 f[j_coord_offset+DIM3*1+XX0] -= tx;
956 f[j_coord_offset+DIM3*1+YY1] -= ty;
957 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
958
959 /**************************
960 * CALCULATE INTERACTIONS *
961 **************************/
962
963 r02 = rsq02*rinv02;
964
965 /* EWALD ELECTROSTATICS */
966
967 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
968 ewrt = r02*ewtabscale;
969 ewitab = ewrt;
970 eweps = ewrt-ewitab;
971 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
972 felec = qq02*rinv02*(rinvsq02-felec);
973
974 fscal = felec;
975
976 /* Calculate temporary vectorial force */
977 tx = fscal*dx02;
978 ty = fscal*dy02;
979 tz = fscal*dz02;
980
981 /* Update vectorial force */
982 fix0 += tx;
983 fiy0 += ty;
984 fiz0 += tz;
985 f[j_coord_offset+DIM3*2+XX0] -= tx;
986 f[j_coord_offset+DIM3*2+YY1] -= ty;
987 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
988
989 /**************************
990 * CALCULATE INTERACTIONS *
991 **************************/
992
993 r10 = rsq10*rinv10;
994
995 /* EWALD ELECTROSTATICS */
996
997 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
998 ewrt = r10*ewtabscale;
999 ewitab = ewrt;
1000 eweps = ewrt-ewitab;
1001 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1002 felec = qq10*rinv10*(rinvsq10-felec);
1003
1004 fscal = felec;
1005
1006 /* Calculate temporary vectorial force */
1007 tx = fscal*dx10;
1008 ty = fscal*dy10;
1009 tz = fscal*dz10;
1010
1011 /* Update vectorial force */
1012 fix1 += tx;
1013 fiy1 += ty;
1014 fiz1 += tz;
1015 f[j_coord_offset+DIM3*0+XX0] -= tx;
1016 f[j_coord_offset+DIM3*0+YY1] -= ty;
1017 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
1018
1019 /**************************
1020 * CALCULATE INTERACTIONS *
1021 **************************/
1022
1023 r11 = rsq11*rinv11;
1024
1025 /* EWALD ELECTROSTATICS */
1026
1027 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1028 ewrt = r11*ewtabscale;
1029 ewitab = ewrt;
1030 eweps = ewrt-ewitab;
1031 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1032 felec = qq11*rinv11*(rinvsq11-felec);
1033
1034 fscal = felec;
1035
1036 /* Calculate temporary vectorial force */
1037 tx = fscal*dx11;
1038 ty = fscal*dy11;
1039 tz = fscal*dz11;
1040
1041 /* Update vectorial force */
1042 fix1 += tx;
1043 fiy1 += ty;
1044 fiz1 += tz;
1045 f[j_coord_offset+DIM3*1+XX0] -= tx;
1046 f[j_coord_offset+DIM3*1+YY1] -= ty;
1047 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1048
1049 /**************************
1050 * CALCULATE INTERACTIONS *
1051 **************************/
1052
1053 r12 = rsq12*rinv12;
1054
1055 /* EWALD ELECTROSTATICS */
1056
1057 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1058 ewrt = r12*ewtabscale;
1059 ewitab = ewrt;
1060 eweps = ewrt-ewitab;
1061 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1062 felec = qq12*rinv12*(rinvsq12-felec);
1063
1064 fscal = felec;
1065
1066 /* Calculate temporary vectorial force */
1067 tx = fscal*dx12;
1068 ty = fscal*dy12;
1069 tz = fscal*dz12;
1070
1071 /* Update vectorial force */
1072 fix1 += tx;
1073 fiy1 += ty;
1074 fiz1 += tz;
1075 f[j_coord_offset+DIM3*2+XX0] -= tx;
1076 f[j_coord_offset+DIM3*2+YY1] -= ty;
1077 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1078
1079 /**************************
1080 * CALCULATE INTERACTIONS *
1081 **************************/
1082
1083 r20 = rsq20*rinv20;
1084
1085 /* EWALD ELECTROSTATICS */
1086
1087 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1088 ewrt = r20*ewtabscale;
1089 ewitab = ewrt;
1090 eweps = ewrt-ewitab;
1091 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1092 felec = qq20*rinv20*(rinvsq20-felec);
1093
1094 fscal = felec;
1095
1096 /* Calculate temporary vectorial force */
1097 tx = fscal*dx20;
1098 ty = fscal*dy20;
1099 tz = fscal*dz20;
1100
1101 /* Update vectorial force */
1102 fix2 += tx;
1103 fiy2 += ty;
1104 fiz2 += tz;
1105 f[j_coord_offset+DIM3*0+XX0] -= tx;
1106 f[j_coord_offset+DIM3*0+YY1] -= ty;
1107 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
1108
1109 /**************************
1110 * CALCULATE INTERACTIONS *
1111 **************************/
1112
1113 r21 = rsq21*rinv21;
1114
1115 /* EWALD ELECTROSTATICS */
1116
1117 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1118 ewrt = r21*ewtabscale;
1119 ewitab = ewrt;
1120 eweps = ewrt-ewitab;
1121 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1122 felec = qq21*rinv21*(rinvsq21-felec);
1123
1124 fscal = felec;
1125
1126 /* Calculate temporary vectorial force */
1127 tx = fscal*dx21;
1128 ty = fscal*dy21;
1129 tz = fscal*dz21;
1130
1131 /* Update vectorial force */
1132 fix2 += tx;
1133 fiy2 += ty;
1134 fiz2 += tz;
1135 f[j_coord_offset+DIM3*1+XX0] -= tx;
1136 f[j_coord_offset+DIM3*1+YY1] -= ty;
1137 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1138
1139 /**************************
1140 * CALCULATE INTERACTIONS *
1141 **************************/
1142
1143 r22 = rsq22*rinv22;
1144
1145 /* EWALD ELECTROSTATICS */
1146
1147 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1148 ewrt = r22*ewtabscale;
1149 ewitab = ewrt;
1150 eweps = ewrt-ewitab;
1151 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1152 felec = qq22*rinv22*(rinvsq22-felec);
1153
1154 fscal = felec;
1155
1156 /* Calculate temporary vectorial force */
1157 tx = fscal*dx22;
1158 ty = fscal*dy22;
1159 tz = fscal*dz22;
1160
1161 /* Update vectorial force */
1162 fix2 += tx;
1163 fiy2 += ty;
1164 fiz2 += tz;
1165 f[j_coord_offset+DIM3*2+XX0] -= tx;
1166 f[j_coord_offset+DIM3*2+YY1] -= ty;
1167 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1168
1169 /* Inner loop uses 318 flops */
1170 }
1171 /* End of innermost loop */
1172
1173 tx = ty = tz = 0;
1174 f[i_coord_offset+DIM3*0+XX0] += fix0;
1175 f[i_coord_offset+DIM3*0+YY1] += fiy0;
1176 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
1177 tx += fix0;
1178 ty += fiy0;
1179 tz += fiz0;
1180 f[i_coord_offset+DIM3*1+XX0] += fix1;
1181 f[i_coord_offset+DIM3*1+YY1] += fiy1;
1182 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
1183 tx += fix1;
1184 ty += fiy1;
1185 tz += fiz1;
1186 f[i_coord_offset+DIM3*2+XX0] += fix2;
1187 f[i_coord_offset+DIM3*2+YY1] += fiy2;
1188 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
1189 tx += fix2;
1190 ty += fiy2;
1191 tz += fiz2;
1192 fshift[i_shift_offset+XX0] += tx;
1193 fshift[i_shift_offset+YY1] += ty;
1194 fshift[i_shift_offset+ZZ2] += tz;
1195
1196 /* Increment number of inner iterations */
1197 inneriter += j_index_end - j_index_start;
1198
1199 /* Outer loop uses 30 flops */
1200 }
1201
1202 /* Increment number of outer iterations */
1203 outeriter += nri;
1204
1205 /* Update outer/inner flops */
1206
1207 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3W3_F,outeriter*30 + inneriter*318)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3W3_F] += outeriter*30 + inneriter
*318
;
1208}