Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecNone_VdwLJSh_GeomP1P1_sse4_1_single.c
Location:line 420, column 22
Description:Value stored to 'signbit' during its initialization is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_sse4_1_single
54 * Electrostatics interaction: None
55 * VdW interaction: LennardJones
56 * Geometry: Particle-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecNone_VdwLJSh_GeomP1P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90 int nvdwtype;
91 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
92 int *vdwtype;
93 real *vdwparam;
94 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
95 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
96 __m128 dummy_mask,cutoff_mask;
97 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
98 __m128 one = _mm_set1_ps(1.0);
99 __m128 two = _mm_set1_ps(2.0);
100 x = xx[0];
101 f = ff[0];
102
103 nri = nlist->nri;
104 iinr = nlist->iinr;
105 jindex = nlist->jindex;
106 jjnr = nlist->jjnr;
107 shiftidx = nlist->shift;
108 gid = nlist->gid;
109 shiftvec = fr->shift_vec[0];
110 fshift = fr->fshift[0];
111 nvdwtype = fr->ntype;
112 vdwparam = fr->nbfp;
113 vdwtype = mdatoms->typeA;
114
115 rcutoff_scalar = fr->rvdw;
116 rcutoff = _mm_set1_ps(rcutoff_scalar);
117 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
118
119 sh_vdw_invrcut6 = _mm_set1_ps(fr->ic->sh_invrc6);
120 rvdw = _mm_set1_ps(fr->rvdw);
121
122 /* Avoid stupid compiler warnings */
123 jnrA = jnrB = jnrC = jnrD = 0;
124 j_coord_offsetA = 0;
125 j_coord_offsetB = 0;
126 j_coord_offsetC = 0;
127 j_coord_offsetD = 0;
128
129 outeriter = 0;
130 inneriter = 0;
131
132 for(iidx=0;iidx<4*DIM3;iidx++)
133 {
134 scratch[iidx] = 0.0;
135 }
136
137 /* Start outer loop over neighborlists */
138 for(iidx=0; iidx<nri; iidx++)
139 {
140 /* Load shift vector for this list */
141 i_shift_offset = DIM3*shiftidx[iidx];
142
143 /* Load limits for loop over neighbors */
144 j_index_start = jindex[iidx];
145 j_index_end = jindex[iidx+1];
146
147 /* Get outer coordinate index */
148 inr = iinr[iidx];
149 i_coord_offset = DIM3*inr;
150
151 /* Load i particle coords and add shift vector */
152 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
153
154 fix0 = _mm_setzero_ps();
155 fiy0 = _mm_setzero_ps();
156 fiz0 = _mm_setzero_ps();
157
158 /* Load parameters for i particles */
159 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
160
161 /* Reset potential sums */
162 vvdwsum = _mm_setzero_ps();
163
164 /* Start inner kernel loop */
165 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
166 {
167
168 /* Get j neighbor index, and coordinate index */
169 jnrA = jjnr[jidx];
170 jnrB = jjnr[jidx+1];
171 jnrC = jjnr[jidx+2];
172 jnrD = jjnr[jidx+3];
173 j_coord_offsetA = DIM3*jnrA;
174 j_coord_offsetB = DIM3*jnrB;
175 j_coord_offsetC = DIM3*jnrC;
176 j_coord_offsetD = DIM3*jnrD;
177
178 /* load j atom coordinates */
179 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
180 x+j_coord_offsetC,x+j_coord_offsetD,
181 &jx0,&jy0,&jz0);
182
183 /* Calculate displacement vector */
184 dx00 = _mm_sub_ps(ix0,jx0);
185 dy00 = _mm_sub_ps(iy0,jy0);
186 dz00 = _mm_sub_ps(iz0,jz0);
187
188 /* Calculate squared distance and things based on it */
189 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
190
191 rinvsq00 = gmx_mm_inv_psgmx_simd_inv_f(rsq00);
192
193 /* Load parameters for j particles */
194 vdwjidx0A = 2*vdwtype[jnrA+0];
195 vdwjidx0B = 2*vdwtype[jnrB+0];
196 vdwjidx0C = 2*vdwtype[jnrC+0];
197 vdwjidx0D = 2*vdwtype[jnrD+0];
198
199 /**************************
200 * CALCULATE INTERACTIONS *
201 **************************/
202
203 if (gmx_mm_any_lt(rsq00,rcutoff2))
204 {
205
206 /* Compute parameters for interactions between i and j atoms */
207 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
208 vdwparam+vdwioffset0+vdwjidx0B,
209 vdwparam+vdwioffset0+vdwjidx0C,
210 vdwparam+vdwioffset0+vdwjidx0D,
211 &c6_00,&c12_00);
212
213 /* LENNARD-JONES DISPERSION/REPULSION */
214
215 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
216 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
217 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
218 vvdw = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
219 _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
220 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
221
222 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
223
224 /* Update potential sum for this i atom from the interaction with this j atom. */
225 vvdw = _mm_and_ps(vvdw,cutoff_mask);
226 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
227
228 fscal = fvdw;
229
230 fscal = _mm_and_ps(fscal,cutoff_mask);
231
232 /* Calculate temporary vectorial force */
233 tx = _mm_mul_ps(fscal,dx00);
234 ty = _mm_mul_ps(fscal,dy00);
235 tz = _mm_mul_ps(fscal,dz00);
236
237 /* Update vectorial force */
238 fix0 = _mm_add_ps(fix0,tx);
239 fiy0 = _mm_add_ps(fiy0,ty);
240 fiz0 = _mm_add_ps(fiz0,tz);
241
242 fjptrA = f+j_coord_offsetA;
243 fjptrB = f+j_coord_offsetB;
244 fjptrC = f+j_coord_offsetC;
245 fjptrD = f+j_coord_offsetD;
246 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
247
248 }
249
250 /* Inner loop uses 41 flops */
251 }
252
253 if(jidx<j_index_end)
254 {
255
256 /* Get j neighbor index, and coordinate index */
257 jnrlistA = jjnr[jidx];
258 jnrlistB = jjnr[jidx+1];
259 jnrlistC = jjnr[jidx+2];
260 jnrlistD = jjnr[jidx+3];
261 /* Sign of each element will be negative for non-real atoms.
262 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
263 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
264 */
265 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
266 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
267 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
268 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
269 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
270 j_coord_offsetA = DIM3*jnrA;
271 j_coord_offsetB = DIM3*jnrB;
272 j_coord_offsetC = DIM3*jnrC;
273 j_coord_offsetD = DIM3*jnrD;
274
275 /* load j atom coordinates */
276 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
277 x+j_coord_offsetC,x+j_coord_offsetD,
278 &jx0,&jy0,&jz0);
279
280 /* Calculate displacement vector */
281 dx00 = _mm_sub_ps(ix0,jx0);
282 dy00 = _mm_sub_ps(iy0,jy0);
283 dz00 = _mm_sub_ps(iz0,jz0);
284
285 /* Calculate squared distance and things based on it */
286 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
287
288 rinvsq00 = gmx_mm_inv_psgmx_simd_inv_f(rsq00);
289
290 /* Load parameters for j particles */
291 vdwjidx0A = 2*vdwtype[jnrA+0];
292 vdwjidx0B = 2*vdwtype[jnrB+0];
293 vdwjidx0C = 2*vdwtype[jnrC+0];
294 vdwjidx0D = 2*vdwtype[jnrD+0];
295
296 /**************************
297 * CALCULATE INTERACTIONS *
298 **************************/
299
300 if (gmx_mm_any_lt(rsq00,rcutoff2))
301 {
302
303 /* Compute parameters for interactions between i and j atoms */
304 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
305 vdwparam+vdwioffset0+vdwjidx0B,
306 vdwparam+vdwioffset0+vdwjidx0C,
307 vdwparam+vdwioffset0+vdwjidx0D,
308 &c6_00,&c12_00);
309
310 /* LENNARD-JONES DISPERSION/REPULSION */
311
312 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
313 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
314 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
315 vvdw = _mm_sub_ps(_mm_mul_ps( _mm_sub_ps(vvdw12 , _mm_mul_ps(c12_00,_mm_mul_ps(sh_vdw_invrcut6,sh_vdw_invrcut6))), one_twelfth) ,
316 _mm_mul_ps( _mm_sub_ps(vvdw6,_mm_mul_ps(c6_00,sh_vdw_invrcut6)),one_sixth));
317 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
318
319 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
320
321 /* Update potential sum for this i atom from the interaction with this j atom. */
322 vvdw = _mm_and_ps(vvdw,cutoff_mask);
323 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
324 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
325
326 fscal = fvdw;
327
328 fscal = _mm_and_ps(fscal,cutoff_mask);
329
330 fscal = _mm_andnot_ps(dummy_mask,fscal);
331
332 /* Calculate temporary vectorial force */
333 tx = _mm_mul_ps(fscal,dx00);
334 ty = _mm_mul_ps(fscal,dy00);
335 tz = _mm_mul_ps(fscal,dz00);
336
337 /* Update vectorial force */
338 fix0 = _mm_add_ps(fix0,tx);
339 fiy0 = _mm_add_ps(fiy0,ty);
340 fiz0 = _mm_add_ps(fiz0,tz);
341
342 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
343 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
344 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
345 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
346 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
347
348 }
349
350 /* Inner loop uses 41 flops */
351 }
352
353 /* End of innermost loop */
354
355 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
356 f+i_coord_offset,fshift+i_shift_offset);
357
358 ggid = gid[iidx];
359 /* Update potential energies */
360 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
361
362 /* Increment number of inner iterations */
363 inneriter += j_index_end - j_index_start;
364
365 /* Outer loop uses 7 flops */
366 }
367
368 /* Increment number of outer iterations */
369 outeriter += nri;
370
371 /* Update outer/inner flops */
372
373 inc_nrnb(nrnb,eNR_NBKERNEL_VDW_VF,outeriter*7 + inneriter*41)(nrnb)->n[eNR_NBKERNEL_VDW_VF] += outeriter*7 + inneriter*
41
;
374}
375/*
376 * Gromacs nonbonded kernel: nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_sse4_1_single
377 * Electrostatics interaction: None
378 * VdW interaction: LennardJones
379 * Geometry: Particle-Particle
380 * Calculate force/pot: Force
381 */
382void
383nb_kernel_ElecNone_VdwLJSh_GeomP1P1_F_sse4_1_single
384 (t_nblist * gmx_restrict nlist,
385 rvec * gmx_restrict xx,
386 rvec * gmx_restrict ff,
387 t_forcerec * gmx_restrict fr,
388 t_mdatoms * gmx_restrict mdatoms,
389 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
390 t_nrnb * gmx_restrict nrnb)
391{
392 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
393 * just 0 for non-waters.
394 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
395 * jnr indices corresponding to data put in the four positions in the SIMD register.
396 */
397 int i_shift_offset,i_coord_offset,outeriter,inneriter;
398 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
399 int jnrA,jnrB,jnrC,jnrD;
400 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
401 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
402 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
403 real rcutoff_scalar;
404 real *shiftvec,*fshift,*x,*f;
405 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
406 real scratch[4*DIM3];
407 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
408 int vdwioffset0;
409 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
410 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
411 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
412 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
413 int nvdwtype;
414 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
415 int *vdwtype;
416 real *vdwparam;
417 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
418 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
419 __m128 dummy_mask,cutoff_mask;
420 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
Value stored to 'signbit' during its initialization is never read
421 __m128 one = _mm_set1_ps(1.0);
422 __m128 two = _mm_set1_ps(2.0);
423 x = xx[0];
424 f = ff[0];
425
426 nri = nlist->nri;
427 iinr = nlist->iinr;
428 jindex = nlist->jindex;
429 jjnr = nlist->jjnr;
430 shiftidx = nlist->shift;
431 gid = nlist->gid;
432 shiftvec = fr->shift_vec[0];
433 fshift = fr->fshift[0];
434 nvdwtype = fr->ntype;
435 vdwparam = fr->nbfp;
436 vdwtype = mdatoms->typeA;
437
438 rcutoff_scalar = fr->rvdw;
439 rcutoff = _mm_set1_ps(rcutoff_scalar);
440 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
441
442 sh_vdw_invrcut6 = _mm_set1_ps(fr->ic->sh_invrc6);
443 rvdw = _mm_set1_ps(fr->rvdw);
444
445 /* Avoid stupid compiler warnings */
446 jnrA = jnrB = jnrC = jnrD = 0;
447 j_coord_offsetA = 0;
448 j_coord_offsetB = 0;
449 j_coord_offsetC = 0;
450 j_coord_offsetD = 0;
451
452 outeriter = 0;
453 inneriter = 0;
454
455 for(iidx=0;iidx<4*DIM3;iidx++)
456 {
457 scratch[iidx] = 0.0;
458 }
459
460 /* Start outer loop over neighborlists */
461 for(iidx=0; iidx<nri; iidx++)
462 {
463 /* Load shift vector for this list */
464 i_shift_offset = DIM3*shiftidx[iidx];
465
466 /* Load limits for loop over neighbors */
467 j_index_start = jindex[iidx];
468 j_index_end = jindex[iidx+1];
469
470 /* Get outer coordinate index */
471 inr = iinr[iidx];
472 i_coord_offset = DIM3*inr;
473
474 /* Load i particle coords and add shift vector */
475 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
476
477 fix0 = _mm_setzero_ps();
478 fiy0 = _mm_setzero_ps();
479 fiz0 = _mm_setzero_ps();
480
481 /* Load parameters for i particles */
482 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
483
484 /* Start inner kernel loop */
485 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
486 {
487
488 /* Get j neighbor index, and coordinate index */
489 jnrA = jjnr[jidx];
490 jnrB = jjnr[jidx+1];
491 jnrC = jjnr[jidx+2];
492 jnrD = jjnr[jidx+3];
493 j_coord_offsetA = DIM3*jnrA;
494 j_coord_offsetB = DIM3*jnrB;
495 j_coord_offsetC = DIM3*jnrC;
496 j_coord_offsetD = DIM3*jnrD;
497
498 /* load j atom coordinates */
499 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
500 x+j_coord_offsetC,x+j_coord_offsetD,
501 &jx0,&jy0,&jz0);
502
503 /* Calculate displacement vector */
504 dx00 = _mm_sub_ps(ix0,jx0);
505 dy00 = _mm_sub_ps(iy0,jy0);
506 dz00 = _mm_sub_ps(iz0,jz0);
507
508 /* Calculate squared distance and things based on it */
509 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
510
511 rinvsq00 = gmx_mm_inv_psgmx_simd_inv_f(rsq00);
512
513 /* Load parameters for j particles */
514 vdwjidx0A = 2*vdwtype[jnrA+0];
515 vdwjidx0B = 2*vdwtype[jnrB+0];
516 vdwjidx0C = 2*vdwtype[jnrC+0];
517 vdwjidx0D = 2*vdwtype[jnrD+0];
518
519 /**************************
520 * CALCULATE INTERACTIONS *
521 **************************/
522
523 if (gmx_mm_any_lt(rsq00,rcutoff2))
524 {
525
526 /* Compute parameters for interactions between i and j atoms */
527 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
528 vdwparam+vdwioffset0+vdwjidx0B,
529 vdwparam+vdwioffset0+vdwjidx0C,
530 vdwparam+vdwioffset0+vdwjidx0D,
531 &c6_00,&c12_00);
532
533 /* LENNARD-JONES DISPERSION/REPULSION */
534
535 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
536 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
537
538 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
539
540 fscal = fvdw;
541
542 fscal = _mm_and_ps(fscal,cutoff_mask);
543
544 /* Calculate temporary vectorial force */
545 tx = _mm_mul_ps(fscal,dx00);
546 ty = _mm_mul_ps(fscal,dy00);
547 tz = _mm_mul_ps(fscal,dz00);
548
549 /* Update vectorial force */
550 fix0 = _mm_add_ps(fix0,tx);
551 fiy0 = _mm_add_ps(fiy0,ty);
552 fiz0 = _mm_add_ps(fiz0,tz);
553
554 fjptrA = f+j_coord_offsetA;
555 fjptrB = f+j_coord_offsetB;
556 fjptrC = f+j_coord_offsetC;
557 fjptrD = f+j_coord_offsetD;
558 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
559
560 }
561
562 /* Inner loop uses 30 flops */
563 }
564
565 if(jidx<j_index_end)
566 {
567
568 /* Get j neighbor index, and coordinate index */
569 jnrlistA = jjnr[jidx];
570 jnrlistB = jjnr[jidx+1];
571 jnrlistC = jjnr[jidx+2];
572 jnrlistD = jjnr[jidx+3];
573 /* Sign of each element will be negative for non-real atoms.
574 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
575 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
576 */
577 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
578 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
579 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
580 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
581 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
582 j_coord_offsetA = DIM3*jnrA;
583 j_coord_offsetB = DIM3*jnrB;
584 j_coord_offsetC = DIM3*jnrC;
585 j_coord_offsetD = DIM3*jnrD;
586
587 /* load j atom coordinates */
588 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
589 x+j_coord_offsetC,x+j_coord_offsetD,
590 &jx0,&jy0,&jz0);
591
592 /* Calculate displacement vector */
593 dx00 = _mm_sub_ps(ix0,jx0);
594 dy00 = _mm_sub_ps(iy0,jy0);
595 dz00 = _mm_sub_ps(iz0,jz0);
596
597 /* Calculate squared distance and things based on it */
598 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
599
600 rinvsq00 = gmx_mm_inv_psgmx_simd_inv_f(rsq00);
601
602 /* Load parameters for j particles */
603 vdwjidx0A = 2*vdwtype[jnrA+0];
604 vdwjidx0B = 2*vdwtype[jnrB+0];
605 vdwjidx0C = 2*vdwtype[jnrC+0];
606 vdwjidx0D = 2*vdwtype[jnrD+0];
607
608 /**************************
609 * CALCULATE INTERACTIONS *
610 **************************/
611
612 if (gmx_mm_any_lt(rsq00,rcutoff2))
613 {
614
615 /* Compute parameters for interactions between i and j atoms */
616 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
617 vdwparam+vdwioffset0+vdwjidx0B,
618 vdwparam+vdwioffset0+vdwjidx0C,
619 vdwparam+vdwioffset0+vdwjidx0D,
620 &c6_00,&c12_00);
621
622 /* LENNARD-JONES DISPERSION/REPULSION */
623
624 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
625 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
626
627 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
628
629 fscal = fvdw;
630
631 fscal = _mm_and_ps(fscal,cutoff_mask);
632
633 fscal = _mm_andnot_ps(dummy_mask,fscal);
634
635 /* Calculate temporary vectorial force */
636 tx = _mm_mul_ps(fscal,dx00);
637 ty = _mm_mul_ps(fscal,dy00);
638 tz = _mm_mul_ps(fscal,dz00);
639
640 /* Update vectorial force */
641 fix0 = _mm_add_ps(fix0,tx);
642 fiy0 = _mm_add_ps(fiy0,ty);
643 fiz0 = _mm_add_ps(fiz0,tz);
644
645 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
646 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
647 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
648 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
649 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
650
651 }
652
653 /* Inner loop uses 30 flops */
654 }
655
656 /* End of innermost loop */
657
658 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
659 f+i_coord_offset,fshift+i_shift_offset);
660
661 /* Increment number of inner iterations */
662 inneriter += j_index_end - j_index_start;
663
664 /* Outer loop uses 6 flops */
665 }
666
667 /* Increment number of outer iterations */
668 outeriter += nri;
669
670 /* Update outer/inner flops */
671
672 inc_nrnb(nrnb,eNR_NBKERNEL_VDW_F,outeriter*6 + inneriter*30)(nrnb)->n[eNR_NBKERNEL_VDW_F] += outeriter*6 + inneriter*30;
673}