Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecRF_VdwNone_GeomP1P1_sse4_1_single.c
Location:line 380, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwNone_GeomP1P1_VF_sse4_1_single
54 * Electrostatics interaction: ReactionField
55 * VdW interaction: None
56 * Geometry: Particle-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecRF_VdwNone_GeomP1P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
88 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
89 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
90 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
91 real *charge;
92 __m128 dummy_mask,cutoff_mask;
93 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
94 __m128 one = _mm_set1_ps(1.0);
95 __m128 two = _mm_set1_ps(2.0);
96 x = xx[0];
97 f = ff[0];
98
99 nri = nlist->nri;
100 iinr = nlist->iinr;
101 jindex = nlist->jindex;
102 jjnr = nlist->jjnr;
103 shiftidx = nlist->shift;
104 gid = nlist->gid;
105 shiftvec = fr->shift_vec[0];
106 fshift = fr->fshift[0];
107 facel = _mm_set1_ps(fr->epsfac);
108 charge = mdatoms->chargeA;
109 krf = _mm_set1_ps(fr->ic->k_rf);
110 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
111 crf = _mm_set1_ps(fr->ic->c_rf);
112
113 /* Avoid stupid compiler warnings */
114 jnrA = jnrB = jnrC = jnrD = 0;
115 j_coord_offsetA = 0;
116 j_coord_offsetB = 0;
117 j_coord_offsetC = 0;
118 j_coord_offsetD = 0;
119
120 outeriter = 0;
121 inneriter = 0;
122
123 for(iidx=0;iidx<4*DIM3;iidx++)
124 {
125 scratch[iidx] = 0.0;
126 }
127
128 /* Start outer loop over neighborlists */
129 for(iidx=0; iidx<nri; iidx++)
130 {
131 /* Load shift vector for this list */
132 i_shift_offset = DIM3*shiftidx[iidx];
133
134 /* Load limits for loop over neighbors */
135 j_index_start = jindex[iidx];
136 j_index_end = jindex[iidx+1];
137
138 /* Get outer coordinate index */
139 inr = iinr[iidx];
140 i_coord_offset = DIM3*inr;
141
142 /* Load i particle coords and add shift vector */
143 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
144
145 fix0 = _mm_setzero_ps();
146 fiy0 = _mm_setzero_ps();
147 fiz0 = _mm_setzero_ps();
148
149 /* Load parameters for i particles */
150 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
151
152 /* Reset potential sums */
153 velecsum = _mm_setzero_ps();
154
155 /* Start inner kernel loop */
156 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
157 {
158
159 /* Get j neighbor index, and coordinate index */
160 jnrA = jjnr[jidx];
161 jnrB = jjnr[jidx+1];
162 jnrC = jjnr[jidx+2];
163 jnrD = jjnr[jidx+3];
164 j_coord_offsetA = DIM3*jnrA;
165 j_coord_offsetB = DIM3*jnrB;
166 j_coord_offsetC = DIM3*jnrC;
167 j_coord_offsetD = DIM3*jnrD;
168
169 /* load j atom coordinates */
170 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
171 x+j_coord_offsetC,x+j_coord_offsetD,
172 &jx0,&jy0,&jz0);
173
174 /* Calculate displacement vector */
175 dx00 = _mm_sub_ps(ix0,jx0);
176 dy00 = _mm_sub_ps(iy0,jy0);
177 dz00 = _mm_sub_ps(iz0,jz0);
178
179 /* Calculate squared distance and things based on it */
180 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
181
182 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
183
184 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
185
186 /* Load parameters for j particles */
187 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
188 charge+jnrC+0,charge+jnrD+0);
189
190 /**************************
191 * CALCULATE INTERACTIONS *
192 **************************/
193
194 /* Compute parameters for interactions between i and j atoms */
195 qq00 = _mm_mul_ps(iq0,jq0);
196
197 /* REACTION-FIELD ELECTROSTATICS */
198 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
199 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
200
201 /* Update potential sum for this i atom from the interaction with this j atom. */
202 velecsum = _mm_add_ps(velecsum,velec);
203
204 fscal = felec;
205
206 /* Calculate temporary vectorial force */
207 tx = _mm_mul_ps(fscal,dx00);
208 ty = _mm_mul_ps(fscal,dy00);
209 tz = _mm_mul_ps(fscal,dz00);
210
211 /* Update vectorial force */
212 fix0 = _mm_add_ps(fix0,tx);
213 fiy0 = _mm_add_ps(fiy0,ty);
214 fiz0 = _mm_add_ps(fiz0,tz);
215
216 fjptrA = f+j_coord_offsetA;
217 fjptrB = f+j_coord_offsetB;
218 fjptrC = f+j_coord_offsetC;
219 fjptrD = f+j_coord_offsetD;
220 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
221
222 /* Inner loop uses 32 flops */
223 }
224
225 if(jidx<j_index_end)
226 {
227
228 /* Get j neighbor index, and coordinate index */
229 jnrlistA = jjnr[jidx];
230 jnrlistB = jjnr[jidx+1];
231 jnrlistC = jjnr[jidx+2];
232 jnrlistD = jjnr[jidx+3];
233 /* Sign of each element will be negative for non-real atoms.
234 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
235 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
236 */
237 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
238 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
239 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
240 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
241 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
242 j_coord_offsetA = DIM3*jnrA;
243 j_coord_offsetB = DIM3*jnrB;
244 j_coord_offsetC = DIM3*jnrC;
245 j_coord_offsetD = DIM3*jnrD;
246
247 /* load j atom coordinates */
248 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
249 x+j_coord_offsetC,x+j_coord_offsetD,
250 &jx0,&jy0,&jz0);
251
252 /* Calculate displacement vector */
253 dx00 = _mm_sub_ps(ix0,jx0);
254 dy00 = _mm_sub_ps(iy0,jy0);
255 dz00 = _mm_sub_ps(iz0,jz0);
256
257 /* Calculate squared distance and things based on it */
258 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
259
260 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
261
262 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
263
264 /* Load parameters for j particles */
265 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
266 charge+jnrC+0,charge+jnrD+0);
267
268 /**************************
269 * CALCULATE INTERACTIONS *
270 **************************/
271
272 /* Compute parameters for interactions between i and j atoms */
273 qq00 = _mm_mul_ps(iq0,jq0);
274
275 /* REACTION-FIELD ELECTROSTATICS */
276 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
277 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
278
279 /* Update potential sum for this i atom from the interaction with this j atom. */
280 velec = _mm_andnot_ps(dummy_mask,velec);
281 velecsum = _mm_add_ps(velecsum,velec);
282
283 fscal = felec;
284
285 fscal = _mm_andnot_ps(dummy_mask,fscal);
286
287 /* Calculate temporary vectorial force */
288 tx = _mm_mul_ps(fscal,dx00);
289 ty = _mm_mul_ps(fscal,dy00);
290 tz = _mm_mul_ps(fscal,dz00);
291
292 /* Update vectorial force */
293 fix0 = _mm_add_ps(fix0,tx);
294 fiy0 = _mm_add_ps(fiy0,ty);
295 fiz0 = _mm_add_ps(fiz0,tz);
296
297 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
298 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
299 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
300 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
301 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
302
303 /* Inner loop uses 32 flops */
304 }
305
306 /* End of innermost loop */
307
308 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
309 f+i_coord_offset,fshift+i_shift_offset);
310
311 ggid = gid[iidx];
312 /* Update potential energies */
313 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
314
315 /* Increment number of inner iterations */
316 inneriter += j_index_end - j_index_start;
317
318 /* Outer loop uses 8 flops */
319 }
320
321 /* Increment number of outer iterations */
322 outeriter += nri;
323
324 /* Update outer/inner flops */
325
326 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VF,outeriter*8 + inneriter*32)(nrnb)->n[eNR_NBKERNEL_ELEC_VF] += outeriter*8 + inneriter
*32
;
327}
328/*
329 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwNone_GeomP1P1_F_sse4_1_single
330 * Electrostatics interaction: ReactionField
331 * VdW interaction: None
332 * Geometry: Particle-Particle
333 * Calculate force/pot: Force
334 */
335void
336nb_kernel_ElecRF_VdwNone_GeomP1P1_F_sse4_1_single
337 (t_nblist * gmx_restrict nlist,
338 rvec * gmx_restrict xx,
339 rvec * gmx_restrict ff,
340 t_forcerec * gmx_restrict fr,
341 t_mdatoms * gmx_restrict mdatoms,
342 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
343 t_nrnb * gmx_restrict nrnb)
344{
345 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
346 * just 0 for non-waters.
347 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
348 * jnr indices corresponding to data put in the four positions in the SIMD register.
349 */
350 int i_shift_offset,i_coord_offset,outeriter,inneriter;
351 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
352 int jnrA,jnrB,jnrC,jnrD;
353 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
354 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
355 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
356 real rcutoff_scalar;
357 real *shiftvec,*fshift,*x,*f;
358 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
359 real scratch[4*DIM3];
360 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
361 int vdwioffset0;
362 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
363 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
364 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
365 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
366 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
367 real *charge;
368 __m128 dummy_mask,cutoff_mask;
369 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
370 __m128 one = _mm_set1_ps(1.0);
371 __m128 two = _mm_set1_ps(2.0);
372 x = xx[0];
373 f = ff[0];
374
375 nri = nlist->nri;
376 iinr = nlist->iinr;
377 jindex = nlist->jindex;
378 jjnr = nlist->jjnr;
379 shiftidx = nlist->shift;
380 gid = nlist->gid;
Value stored to 'gid' is never read
381 shiftvec = fr->shift_vec[0];
382 fshift = fr->fshift[0];
383 facel = _mm_set1_ps(fr->epsfac);
384 charge = mdatoms->chargeA;
385 krf = _mm_set1_ps(fr->ic->k_rf);
386 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
387 crf = _mm_set1_ps(fr->ic->c_rf);
388
389 /* Avoid stupid compiler warnings */
390 jnrA = jnrB = jnrC = jnrD = 0;
391 j_coord_offsetA = 0;
392 j_coord_offsetB = 0;
393 j_coord_offsetC = 0;
394 j_coord_offsetD = 0;
395
396 outeriter = 0;
397 inneriter = 0;
398
399 for(iidx=0;iidx<4*DIM3;iidx++)
400 {
401 scratch[iidx] = 0.0;
402 }
403
404 /* Start outer loop over neighborlists */
405 for(iidx=0; iidx<nri; iidx++)
406 {
407 /* Load shift vector for this list */
408 i_shift_offset = DIM3*shiftidx[iidx];
409
410 /* Load limits for loop over neighbors */
411 j_index_start = jindex[iidx];
412 j_index_end = jindex[iidx+1];
413
414 /* Get outer coordinate index */
415 inr = iinr[iidx];
416 i_coord_offset = DIM3*inr;
417
418 /* Load i particle coords and add shift vector */
419 gmx_mm_load_shift_and_1rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,&ix0,&iy0,&iz0);
420
421 fix0 = _mm_setzero_ps();
422 fiy0 = _mm_setzero_ps();
423 fiz0 = _mm_setzero_ps();
424
425 /* Load parameters for i particles */
426 iq0 = _mm_mul_ps(facel,_mm_load1_ps(charge+inr+0));
427
428 /* Start inner kernel loop */
429 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
430 {
431
432 /* Get j neighbor index, and coordinate index */
433 jnrA = jjnr[jidx];
434 jnrB = jjnr[jidx+1];
435 jnrC = jjnr[jidx+2];
436 jnrD = jjnr[jidx+3];
437 j_coord_offsetA = DIM3*jnrA;
438 j_coord_offsetB = DIM3*jnrB;
439 j_coord_offsetC = DIM3*jnrC;
440 j_coord_offsetD = DIM3*jnrD;
441
442 /* load j atom coordinates */
443 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
444 x+j_coord_offsetC,x+j_coord_offsetD,
445 &jx0,&jy0,&jz0);
446
447 /* Calculate displacement vector */
448 dx00 = _mm_sub_ps(ix0,jx0);
449 dy00 = _mm_sub_ps(iy0,jy0);
450 dz00 = _mm_sub_ps(iz0,jz0);
451
452 /* Calculate squared distance and things based on it */
453 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
454
455 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
456
457 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
458
459 /* Load parameters for j particles */
460 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
461 charge+jnrC+0,charge+jnrD+0);
462
463 /**************************
464 * CALCULATE INTERACTIONS *
465 **************************/
466
467 /* Compute parameters for interactions between i and j atoms */
468 qq00 = _mm_mul_ps(iq0,jq0);
469
470 /* REACTION-FIELD ELECTROSTATICS */
471 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
472
473 fscal = felec;
474
475 /* Calculate temporary vectorial force */
476 tx = _mm_mul_ps(fscal,dx00);
477 ty = _mm_mul_ps(fscal,dy00);
478 tz = _mm_mul_ps(fscal,dz00);
479
480 /* Update vectorial force */
481 fix0 = _mm_add_ps(fix0,tx);
482 fiy0 = _mm_add_ps(fiy0,ty);
483 fiz0 = _mm_add_ps(fiz0,tz);
484
485 fjptrA = f+j_coord_offsetA;
486 fjptrB = f+j_coord_offsetB;
487 fjptrC = f+j_coord_offsetC;
488 fjptrD = f+j_coord_offsetD;
489 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
490
491 /* Inner loop uses 27 flops */
492 }
493
494 if(jidx<j_index_end)
495 {
496
497 /* Get j neighbor index, and coordinate index */
498 jnrlistA = jjnr[jidx];
499 jnrlistB = jjnr[jidx+1];
500 jnrlistC = jjnr[jidx+2];
501 jnrlistD = jjnr[jidx+3];
502 /* Sign of each element will be negative for non-real atoms.
503 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
504 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
505 */
506 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
507 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
508 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
509 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
510 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
511 j_coord_offsetA = DIM3*jnrA;
512 j_coord_offsetB = DIM3*jnrB;
513 j_coord_offsetC = DIM3*jnrC;
514 j_coord_offsetD = DIM3*jnrD;
515
516 /* load j atom coordinates */
517 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
518 x+j_coord_offsetC,x+j_coord_offsetD,
519 &jx0,&jy0,&jz0);
520
521 /* Calculate displacement vector */
522 dx00 = _mm_sub_ps(ix0,jx0);
523 dy00 = _mm_sub_ps(iy0,jy0);
524 dz00 = _mm_sub_ps(iz0,jz0);
525
526 /* Calculate squared distance and things based on it */
527 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
528
529 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
530
531 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
532
533 /* Load parameters for j particles */
534 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
535 charge+jnrC+0,charge+jnrD+0);
536
537 /**************************
538 * CALCULATE INTERACTIONS *
539 **************************/
540
541 /* Compute parameters for interactions between i and j atoms */
542 qq00 = _mm_mul_ps(iq0,jq0);
543
544 /* REACTION-FIELD ELECTROSTATICS */
545 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
546
547 fscal = felec;
548
549 fscal = _mm_andnot_ps(dummy_mask,fscal);
550
551 /* Calculate temporary vectorial force */
552 tx = _mm_mul_ps(fscal,dx00);
553 ty = _mm_mul_ps(fscal,dy00);
554 tz = _mm_mul_ps(fscal,dz00);
555
556 /* Update vectorial force */
557 fix0 = _mm_add_ps(fix0,tx);
558 fiy0 = _mm_add_ps(fiy0,ty);
559 fiz0 = _mm_add_ps(fiz0,tz);
560
561 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
562 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
563 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
564 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
565 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,tx,ty,tz);
566
567 /* Inner loop uses 27 flops */
568 }
569
570 /* End of innermost loop */
571
572 gmx_mm_update_iforce_1atom_swizzle_ps(fix0,fiy0,fiz0,
573 f+i_coord_offset,fshift+i_shift_offset);
574
575 /* Increment number of inner iterations */
576 inneriter += j_index_end - j_index_start;
577
578 /* Outer loop uses 7 flops */
579 }
580
581 /* Increment number of outer iterations */
582 outeriter += nri;
583
584 /* Update outer/inner flops */
585
586 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_F,outeriter*7 + inneriter*27)(nrnb)->n[eNR_NBKERNEL_ELEC_F] += outeriter*7 + inneriter*
27
;
587}