Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEwSh_VdwLJSh_GeomW4W4_c.c
Location:line 810, column 5
Description:Value stored to 'gid' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJSh_GeomW4W4_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: LennardJones
53 * Geometry: Water4-Water4
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEwSh_VdwLJSh_GeomW4W4_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwioffset3;
79 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80 int vdwjidx0;
81 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82 int vdwjidx1;
83 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
84 int vdwjidx2;
85 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
86 int vdwjidx3;
87 real jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
88 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
89 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
90 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
91 real dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
92 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
93 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
94 real dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
95 real dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
96 real dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
97 real dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
98 real velec,felec,velecsum,facel,crf,krf,krf2;
99 real *charge;
100 int nvdwtype;
101 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
102 int *vdwtype;
103 real *vdwparam;
104 int ewitab;
105 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
106 real *ewtab;
107
108 x = xx[0];
109 f = ff[0];
110
111 nri = nlist->nri;
112 iinr = nlist->iinr;
113 jindex = nlist->jindex;
114 jjnr = nlist->jjnr;
115 shiftidx = nlist->shift;
116 gid = nlist->gid;
117 shiftvec = fr->shift_vec[0];
118 fshift = fr->fshift[0];
119 facel = fr->epsfac;
120 charge = mdatoms->chargeA;
121 nvdwtype = fr->ntype;
122 vdwparam = fr->nbfp;
123 vdwtype = mdatoms->typeA;
124
125 sh_ewald = fr->ic->sh_ewald;
126 ewtab = fr->ic->tabq_coul_FDV0;
127 ewtabscale = fr->ic->tabq_scale;
128 ewtabhalfspace = 0.5/ewtabscale;
129
130 /* Setup water-specific parameters */
131 inr = nlist->iinr[0];
132 iq1 = facel*charge[inr+1];
133 iq2 = facel*charge[inr+2];
134 iq3 = facel*charge[inr+3];
135 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
136
137 jq1 = charge[inr+1];
138 jq2 = charge[inr+2];
139 jq3 = charge[inr+3];
140 vdwjidx0 = 2*vdwtype[inr+0];
141 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
142 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
143 qq11 = iq1*jq1;
144 qq12 = iq1*jq2;
145 qq13 = iq1*jq3;
146 qq21 = iq2*jq1;
147 qq22 = iq2*jq2;
148 qq23 = iq2*jq3;
149 qq31 = iq3*jq1;
150 qq32 = iq3*jq2;
151 qq33 = iq3*jq3;
152
153 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
154 rcutoff = fr->rcoulomb;
155 rcutoff2 = rcutoff*rcutoff;
156
157 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
158 rvdw = fr->rvdw;
159
160 outeriter = 0;
161 inneriter = 0;
162
163 /* Start outer loop over neighborlists */
164 for(iidx=0; iidx<nri; iidx++)
165 {
166 /* Load shift vector for this list */
167 i_shift_offset = DIM3*shiftidx[iidx];
168 shX = shiftvec[i_shift_offset+XX0];
169 shY = shiftvec[i_shift_offset+YY1];
170 shZ = shiftvec[i_shift_offset+ZZ2];
171
172 /* Load limits for loop over neighbors */
173 j_index_start = jindex[iidx];
174 j_index_end = jindex[iidx+1];
175
176 /* Get outer coordinate index */
177 inr = iinr[iidx];
178 i_coord_offset = DIM3*inr;
179
180 /* Load i particle coords and add shift vector */
181 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
182 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
183 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
184 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
185 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
186 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
187 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
188 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
189 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
190 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
191 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
192 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
193
194 fix0 = 0.0;
195 fiy0 = 0.0;
196 fiz0 = 0.0;
197 fix1 = 0.0;
198 fiy1 = 0.0;
199 fiz1 = 0.0;
200 fix2 = 0.0;
201 fiy2 = 0.0;
202 fiz2 = 0.0;
203 fix3 = 0.0;
204 fiy3 = 0.0;
205 fiz3 = 0.0;
206
207 /* Reset potential sums */
208 velecsum = 0.0;
209 vvdwsum = 0.0;
210
211 /* Start inner kernel loop */
212 for(jidx=j_index_start; jidx<j_index_end; jidx++)
213 {
214 /* Get j neighbor index, and coordinate index */
215 jnr = jjnr[jidx];
216 j_coord_offset = DIM3*jnr;
217
218 /* load j atom coordinates */
219 jx0 = x[j_coord_offset+DIM3*0+XX0];
220 jy0 = x[j_coord_offset+DIM3*0+YY1];
221 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
222 jx1 = x[j_coord_offset+DIM3*1+XX0];
223 jy1 = x[j_coord_offset+DIM3*1+YY1];
224 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
225 jx2 = x[j_coord_offset+DIM3*2+XX0];
226 jy2 = x[j_coord_offset+DIM3*2+YY1];
227 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
228 jx3 = x[j_coord_offset+DIM3*3+XX0];
229 jy3 = x[j_coord_offset+DIM3*3+YY1];
230 jz3 = x[j_coord_offset+DIM3*3+ZZ2];
231
232 /* Calculate displacement vector */
233 dx00 = ix0 - jx0;
234 dy00 = iy0 - jy0;
235 dz00 = iz0 - jz0;
236 dx11 = ix1 - jx1;
237 dy11 = iy1 - jy1;
238 dz11 = iz1 - jz1;
239 dx12 = ix1 - jx2;
240 dy12 = iy1 - jy2;
241 dz12 = iz1 - jz2;
242 dx13 = ix1 - jx3;
243 dy13 = iy1 - jy3;
244 dz13 = iz1 - jz3;
245 dx21 = ix2 - jx1;
246 dy21 = iy2 - jy1;
247 dz21 = iz2 - jz1;
248 dx22 = ix2 - jx2;
249 dy22 = iy2 - jy2;
250 dz22 = iz2 - jz2;
251 dx23 = ix2 - jx3;
252 dy23 = iy2 - jy3;
253 dz23 = iz2 - jz3;
254 dx31 = ix3 - jx1;
255 dy31 = iy3 - jy1;
256 dz31 = iz3 - jz1;
257 dx32 = ix3 - jx2;
258 dy32 = iy3 - jy2;
259 dz32 = iz3 - jz2;
260 dx33 = ix3 - jx3;
261 dy33 = iy3 - jy3;
262 dz33 = iz3 - jz3;
263
264 /* Calculate squared distance and things based on it */
265 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
266 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
267 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
268 rsq13 = dx13*dx13+dy13*dy13+dz13*dz13;
269 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
270 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
271 rsq23 = dx23*dx23+dy23*dy23+dz23*dz23;
272 rsq31 = dx31*dx31+dy31*dy31+dz31*dz31;
273 rsq32 = dx32*dx32+dy32*dy32+dz32*dz32;
274 rsq33 = dx33*dx33+dy33*dy33+dz33*dz33;
275
276 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
277 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
278 rinv13 = gmx_invsqrt(rsq13)gmx_software_invsqrt(rsq13);
279 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
280 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
281 rinv23 = gmx_invsqrt(rsq23)gmx_software_invsqrt(rsq23);
282 rinv31 = gmx_invsqrt(rsq31)gmx_software_invsqrt(rsq31);
283 rinv32 = gmx_invsqrt(rsq32)gmx_software_invsqrt(rsq32);
284 rinv33 = gmx_invsqrt(rsq33)gmx_software_invsqrt(rsq33);
285
286 rinvsq00 = 1.0/rsq00;
287 rinvsq11 = rinv11*rinv11;
288 rinvsq12 = rinv12*rinv12;
289 rinvsq13 = rinv13*rinv13;
290 rinvsq21 = rinv21*rinv21;
291 rinvsq22 = rinv22*rinv22;
292 rinvsq23 = rinv23*rinv23;
293 rinvsq31 = rinv31*rinv31;
294 rinvsq32 = rinv32*rinv32;
295 rinvsq33 = rinv33*rinv33;
296
297 /**************************
298 * CALCULATE INTERACTIONS *
299 **************************/
300
301 if (rsq00<rcutoff2)
302 {
303
304 /* LENNARD-JONES DISPERSION/REPULSION */
305
306 rinvsix = rinvsq00*rinvsq00*rinvsq00;
307 vvdw6 = c6_00*rinvsix;
308 vvdw12 = c12_00*rinvsix*rinvsix;
309 vvdw = (vvdw12 - c12_00*sh_vdw_invrcut6*sh_vdw_invrcut6)*(1.0/12.0) - (vvdw6 - c6_00*sh_vdw_invrcut6)*(1.0/6.0);
310 fvdw = (vvdw12-vvdw6)*rinvsq00;
311
312 /* Update potential sums from outer loop */
313 vvdwsum += vvdw;
314
315 fscal = fvdw;
316
317 /* Calculate temporary vectorial force */
318 tx = fscal*dx00;
319 ty = fscal*dy00;
320 tz = fscal*dz00;
321
322 /* Update vectorial force */
323 fix0 += tx;
324 fiy0 += ty;
325 fiz0 += tz;
326 f[j_coord_offset+DIM3*0+XX0] -= tx;
327 f[j_coord_offset+DIM3*0+YY1] -= ty;
328 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
329
330 }
331
332 /**************************
333 * CALCULATE INTERACTIONS *
334 **************************/
335
336 if (rsq11<rcutoff2)
337 {
338
339 r11 = rsq11*rinv11;
340
341 /* EWALD ELECTROSTATICS */
342
343 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
344 ewrt = r11*ewtabscale;
345 ewitab = ewrt;
346 eweps = ewrt-ewitab;
347 ewitab = 4*ewitab;
348 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
349 velec = qq11*((rinv11-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
350 felec = qq11*rinv11*(rinvsq11-felec);
351
352 /* Update potential sums from outer loop */
353 velecsum += velec;
354
355 fscal = felec;
356
357 /* Calculate temporary vectorial force */
358 tx = fscal*dx11;
359 ty = fscal*dy11;
360 tz = fscal*dz11;
361
362 /* Update vectorial force */
363 fix1 += tx;
364 fiy1 += ty;
365 fiz1 += tz;
366 f[j_coord_offset+DIM3*1+XX0] -= tx;
367 f[j_coord_offset+DIM3*1+YY1] -= ty;
368 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
369
370 }
371
372 /**************************
373 * CALCULATE INTERACTIONS *
374 **************************/
375
376 if (rsq12<rcutoff2)
377 {
378
379 r12 = rsq12*rinv12;
380
381 /* EWALD ELECTROSTATICS */
382
383 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
384 ewrt = r12*ewtabscale;
385 ewitab = ewrt;
386 eweps = ewrt-ewitab;
387 ewitab = 4*ewitab;
388 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
389 velec = qq12*((rinv12-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
390 felec = qq12*rinv12*(rinvsq12-felec);
391
392 /* Update potential sums from outer loop */
393 velecsum += velec;
394
395 fscal = felec;
396
397 /* Calculate temporary vectorial force */
398 tx = fscal*dx12;
399 ty = fscal*dy12;
400 tz = fscal*dz12;
401
402 /* Update vectorial force */
403 fix1 += tx;
404 fiy1 += ty;
405 fiz1 += tz;
406 f[j_coord_offset+DIM3*2+XX0] -= tx;
407 f[j_coord_offset+DIM3*2+YY1] -= ty;
408 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
409
410 }
411
412 /**************************
413 * CALCULATE INTERACTIONS *
414 **************************/
415
416 if (rsq13<rcutoff2)
417 {
418
419 r13 = rsq13*rinv13;
420
421 /* EWALD ELECTROSTATICS */
422
423 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
424 ewrt = r13*ewtabscale;
425 ewitab = ewrt;
426 eweps = ewrt-ewitab;
427 ewitab = 4*ewitab;
428 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
429 velec = qq13*((rinv13-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
430 felec = qq13*rinv13*(rinvsq13-felec);
431
432 /* Update potential sums from outer loop */
433 velecsum += velec;
434
435 fscal = felec;
436
437 /* Calculate temporary vectorial force */
438 tx = fscal*dx13;
439 ty = fscal*dy13;
440 tz = fscal*dz13;
441
442 /* Update vectorial force */
443 fix1 += tx;
444 fiy1 += ty;
445 fiz1 += tz;
446 f[j_coord_offset+DIM3*3+XX0] -= tx;
447 f[j_coord_offset+DIM3*3+YY1] -= ty;
448 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
449
450 }
451
452 /**************************
453 * CALCULATE INTERACTIONS *
454 **************************/
455
456 if (rsq21<rcutoff2)
457 {
458
459 r21 = rsq21*rinv21;
460
461 /* EWALD ELECTROSTATICS */
462
463 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
464 ewrt = r21*ewtabscale;
465 ewitab = ewrt;
466 eweps = ewrt-ewitab;
467 ewitab = 4*ewitab;
468 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
469 velec = qq21*((rinv21-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
470 felec = qq21*rinv21*(rinvsq21-felec);
471
472 /* Update potential sums from outer loop */
473 velecsum += velec;
474
475 fscal = felec;
476
477 /* Calculate temporary vectorial force */
478 tx = fscal*dx21;
479 ty = fscal*dy21;
480 tz = fscal*dz21;
481
482 /* Update vectorial force */
483 fix2 += tx;
484 fiy2 += ty;
485 fiz2 += tz;
486 f[j_coord_offset+DIM3*1+XX0] -= tx;
487 f[j_coord_offset+DIM3*1+YY1] -= ty;
488 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
489
490 }
491
492 /**************************
493 * CALCULATE INTERACTIONS *
494 **************************/
495
496 if (rsq22<rcutoff2)
497 {
498
499 r22 = rsq22*rinv22;
500
501 /* EWALD ELECTROSTATICS */
502
503 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
504 ewrt = r22*ewtabscale;
505 ewitab = ewrt;
506 eweps = ewrt-ewitab;
507 ewitab = 4*ewitab;
508 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
509 velec = qq22*((rinv22-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
510 felec = qq22*rinv22*(rinvsq22-felec);
511
512 /* Update potential sums from outer loop */
513 velecsum += velec;
514
515 fscal = felec;
516
517 /* Calculate temporary vectorial force */
518 tx = fscal*dx22;
519 ty = fscal*dy22;
520 tz = fscal*dz22;
521
522 /* Update vectorial force */
523 fix2 += tx;
524 fiy2 += ty;
525 fiz2 += tz;
526 f[j_coord_offset+DIM3*2+XX0] -= tx;
527 f[j_coord_offset+DIM3*2+YY1] -= ty;
528 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
529
530 }
531
532 /**************************
533 * CALCULATE INTERACTIONS *
534 **************************/
535
536 if (rsq23<rcutoff2)
537 {
538
539 r23 = rsq23*rinv23;
540
541 /* EWALD ELECTROSTATICS */
542
543 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
544 ewrt = r23*ewtabscale;
545 ewitab = ewrt;
546 eweps = ewrt-ewitab;
547 ewitab = 4*ewitab;
548 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
549 velec = qq23*((rinv23-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
550 felec = qq23*rinv23*(rinvsq23-felec);
551
552 /* Update potential sums from outer loop */
553 velecsum += velec;
554
555 fscal = felec;
556
557 /* Calculate temporary vectorial force */
558 tx = fscal*dx23;
559 ty = fscal*dy23;
560 tz = fscal*dz23;
561
562 /* Update vectorial force */
563 fix2 += tx;
564 fiy2 += ty;
565 fiz2 += tz;
566 f[j_coord_offset+DIM3*3+XX0] -= tx;
567 f[j_coord_offset+DIM3*3+YY1] -= ty;
568 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
569
570 }
571
572 /**************************
573 * CALCULATE INTERACTIONS *
574 **************************/
575
576 if (rsq31<rcutoff2)
577 {
578
579 r31 = rsq31*rinv31;
580
581 /* EWALD ELECTROSTATICS */
582
583 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
584 ewrt = r31*ewtabscale;
585 ewitab = ewrt;
586 eweps = ewrt-ewitab;
587 ewitab = 4*ewitab;
588 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
589 velec = qq31*((rinv31-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
590 felec = qq31*rinv31*(rinvsq31-felec);
591
592 /* Update potential sums from outer loop */
593 velecsum += velec;
594
595 fscal = felec;
596
597 /* Calculate temporary vectorial force */
598 tx = fscal*dx31;
599 ty = fscal*dy31;
600 tz = fscal*dz31;
601
602 /* Update vectorial force */
603 fix3 += tx;
604 fiy3 += ty;
605 fiz3 += tz;
606 f[j_coord_offset+DIM3*1+XX0] -= tx;
607 f[j_coord_offset+DIM3*1+YY1] -= ty;
608 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
609
610 }
611
612 /**************************
613 * CALCULATE INTERACTIONS *
614 **************************/
615
616 if (rsq32<rcutoff2)
617 {
618
619 r32 = rsq32*rinv32;
620
621 /* EWALD ELECTROSTATICS */
622
623 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
624 ewrt = r32*ewtabscale;
625 ewitab = ewrt;
626 eweps = ewrt-ewitab;
627 ewitab = 4*ewitab;
628 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
629 velec = qq32*((rinv32-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
630 felec = qq32*rinv32*(rinvsq32-felec);
631
632 /* Update potential sums from outer loop */
633 velecsum += velec;
634
635 fscal = felec;
636
637 /* Calculate temporary vectorial force */
638 tx = fscal*dx32;
639 ty = fscal*dy32;
640 tz = fscal*dz32;
641
642 /* Update vectorial force */
643 fix3 += tx;
644 fiy3 += ty;
645 fiz3 += tz;
646 f[j_coord_offset+DIM3*2+XX0] -= tx;
647 f[j_coord_offset+DIM3*2+YY1] -= ty;
648 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
649
650 }
651
652 /**************************
653 * CALCULATE INTERACTIONS *
654 **************************/
655
656 if (rsq33<rcutoff2)
657 {
658
659 r33 = rsq33*rinv33;
660
661 /* EWALD ELECTROSTATICS */
662
663 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
664 ewrt = r33*ewtabscale;
665 ewitab = ewrt;
666 eweps = ewrt-ewitab;
667 ewitab = 4*ewitab;
668 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
669 velec = qq33*((rinv33-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
670 felec = qq33*rinv33*(rinvsq33-felec);
671
672 /* Update potential sums from outer loop */
673 velecsum += velec;
674
675 fscal = felec;
676
677 /* Calculate temporary vectorial force */
678 tx = fscal*dx33;
679 ty = fscal*dy33;
680 tz = fscal*dz33;
681
682 /* Update vectorial force */
683 fix3 += tx;
684 fiy3 += ty;
685 fiz3 += tz;
686 f[j_coord_offset+DIM3*3+XX0] -= tx;
687 f[j_coord_offset+DIM3*3+YY1] -= ty;
688 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
689
690 }
691
692 /* Inner loop uses 406 flops */
693 }
694 /* End of innermost loop */
695
696 tx = ty = tz = 0;
697 f[i_coord_offset+DIM3*0+XX0] += fix0;
698 f[i_coord_offset+DIM3*0+YY1] += fiy0;
699 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
700 tx += fix0;
701 ty += fiy0;
702 tz += fiz0;
703 f[i_coord_offset+DIM3*1+XX0] += fix1;
704 f[i_coord_offset+DIM3*1+YY1] += fiy1;
705 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
706 tx += fix1;
707 ty += fiy1;
708 tz += fiz1;
709 f[i_coord_offset+DIM3*2+XX0] += fix2;
710 f[i_coord_offset+DIM3*2+YY1] += fiy2;
711 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
712 tx += fix2;
713 ty += fiy2;
714 tz += fiz2;
715 f[i_coord_offset+DIM3*3+XX0] += fix3;
716 f[i_coord_offset+DIM3*3+YY1] += fiy3;
717 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
718 tx += fix3;
719 ty += fiy3;
720 tz += fiz3;
721 fshift[i_shift_offset+XX0] += tx;
722 fshift[i_shift_offset+YY1] += ty;
723 fshift[i_shift_offset+ZZ2] += tz;
724
725 ggid = gid[iidx];
726 /* Update potential energies */
727 kernel_data->energygrp_elec[ggid] += velecsum;
728 kernel_data->energygrp_vdw[ggid] += vvdwsum;
729
730 /* Increment number of inner iterations */
731 inneriter += j_index_end - j_index_start;
732
733 /* Outer loop uses 41 flops */
734 }
735
736 /* Increment number of outer iterations */
737 outeriter += nri;
738
739 /* Update outer/inner flops */
740
741 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_VF,outeriter*41 + inneriter*406)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4W4_VF] += outeriter*41 +
inneriter*406
;
742}
743/*
744 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJSh_GeomW4W4_F_c
745 * Electrostatics interaction: Ewald
746 * VdW interaction: LennardJones
747 * Geometry: Water4-Water4
748 * Calculate force/pot: Force
749 */
750void
751nb_kernel_ElecEwSh_VdwLJSh_GeomW4W4_F_c
752 (t_nblist * gmx_restrict__restrict nlist,
753 rvec * gmx_restrict__restrict xx,
754 rvec * gmx_restrict__restrict ff,
755 t_forcerec * gmx_restrict__restrict fr,
756 t_mdatoms * gmx_restrict__restrict mdatoms,
757 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
758 t_nrnb * gmx_restrict__restrict nrnb)
759{
760 int i_shift_offset,i_coord_offset,j_coord_offset;
761 int j_index_start,j_index_end;
762 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
763 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
764 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
765 real *shiftvec,*fshift,*x,*f;
766 int vdwioffset0;
767 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
768 int vdwioffset1;
769 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
770 int vdwioffset2;
771 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
772 int vdwioffset3;
773 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
774 int vdwjidx0;
775 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
776 int vdwjidx1;
777 real jx1,jy1,jz1,fjx1,fjy1,fjz1,jq1,isaj1;
778 int vdwjidx2;
779 real jx2,jy2,jz2,fjx2,fjy2,fjz2,jq2,isaj2;
780 int vdwjidx3;
781 real jx3,jy3,jz3,fjx3,fjy3,fjz3,jq3,isaj3;
782 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
783 real dx11,dy11,dz11,rsq11,rinv11,rinvsq11,r11,qq11,c6_11,c12_11,cexp1_11,cexp2_11;
784 real dx12,dy12,dz12,rsq12,rinv12,rinvsq12,r12,qq12,c6_12,c12_12,cexp1_12,cexp2_12;
785 real dx13,dy13,dz13,rsq13,rinv13,rinvsq13,r13,qq13,c6_13,c12_13,cexp1_13,cexp2_13;
786 real dx21,dy21,dz21,rsq21,rinv21,rinvsq21,r21,qq21,c6_21,c12_21,cexp1_21,cexp2_21;
787 real dx22,dy22,dz22,rsq22,rinv22,rinvsq22,r22,qq22,c6_22,c12_22,cexp1_22,cexp2_22;
788 real dx23,dy23,dz23,rsq23,rinv23,rinvsq23,r23,qq23,c6_23,c12_23,cexp1_23,cexp2_23;
789 real dx31,dy31,dz31,rsq31,rinv31,rinvsq31,r31,qq31,c6_31,c12_31,cexp1_31,cexp2_31;
790 real dx32,dy32,dz32,rsq32,rinv32,rinvsq32,r32,qq32,c6_32,c12_32,cexp1_32,cexp2_32;
791 real dx33,dy33,dz33,rsq33,rinv33,rinvsq33,r33,qq33,c6_33,c12_33,cexp1_33,cexp2_33;
792 real velec,felec,velecsum,facel,crf,krf,krf2;
793 real *charge;
794 int nvdwtype;
795 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
796 int *vdwtype;
797 real *vdwparam;
798 int ewitab;
799 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
800 real *ewtab;
801
802 x = xx[0];
803 f = ff[0];
804
805 nri = nlist->nri;
806 iinr = nlist->iinr;
807 jindex = nlist->jindex;
808 jjnr = nlist->jjnr;
809 shiftidx = nlist->shift;
810 gid = nlist->gid;
Value stored to 'gid' is never read
811 shiftvec = fr->shift_vec[0];
812 fshift = fr->fshift[0];
813 facel = fr->epsfac;
814 charge = mdatoms->chargeA;
815 nvdwtype = fr->ntype;
816 vdwparam = fr->nbfp;
817 vdwtype = mdatoms->typeA;
818
819 sh_ewald = fr->ic->sh_ewald;
820 ewtab = fr->ic->tabq_coul_F;
821 ewtabscale = fr->ic->tabq_scale;
822 ewtabhalfspace = 0.5/ewtabscale;
823
824 /* Setup water-specific parameters */
825 inr = nlist->iinr[0];
826 iq1 = facel*charge[inr+1];
827 iq2 = facel*charge[inr+2];
828 iq3 = facel*charge[inr+3];
829 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
830
831 jq1 = charge[inr+1];
832 jq2 = charge[inr+2];
833 jq3 = charge[inr+3];
834 vdwjidx0 = 2*vdwtype[inr+0];
835 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
836 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
837 qq11 = iq1*jq1;
838 qq12 = iq1*jq2;
839 qq13 = iq1*jq3;
840 qq21 = iq2*jq1;
841 qq22 = iq2*jq2;
842 qq23 = iq2*jq3;
843 qq31 = iq3*jq1;
844 qq32 = iq3*jq2;
845 qq33 = iq3*jq3;
846
847 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
848 rcutoff = fr->rcoulomb;
849 rcutoff2 = rcutoff*rcutoff;
850
851 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
852 rvdw = fr->rvdw;
853
854 outeriter = 0;
855 inneriter = 0;
856
857 /* Start outer loop over neighborlists */
858 for(iidx=0; iidx<nri; iidx++)
859 {
860 /* Load shift vector for this list */
861 i_shift_offset = DIM3*shiftidx[iidx];
862 shX = shiftvec[i_shift_offset+XX0];
863 shY = shiftvec[i_shift_offset+YY1];
864 shZ = shiftvec[i_shift_offset+ZZ2];
865
866 /* Load limits for loop over neighbors */
867 j_index_start = jindex[iidx];
868 j_index_end = jindex[iidx+1];
869
870 /* Get outer coordinate index */
871 inr = iinr[iidx];
872 i_coord_offset = DIM3*inr;
873
874 /* Load i particle coords and add shift vector */
875 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
876 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
877 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
878 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
879 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
880 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
881 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
882 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
883 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
884 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
885 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
886 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
887
888 fix0 = 0.0;
889 fiy0 = 0.0;
890 fiz0 = 0.0;
891 fix1 = 0.0;
892 fiy1 = 0.0;
893 fiz1 = 0.0;
894 fix2 = 0.0;
895 fiy2 = 0.0;
896 fiz2 = 0.0;
897 fix3 = 0.0;
898 fiy3 = 0.0;
899 fiz3 = 0.0;
900
901 /* Start inner kernel loop */
902 for(jidx=j_index_start; jidx<j_index_end; jidx++)
903 {
904 /* Get j neighbor index, and coordinate index */
905 jnr = jjnr[jidx];
906 j_coord_offset = DIM3*jnr;
907
908 /* load j atom coordinates */
909 jx0 = x[j_coord_offset+DIM3*0+XX0];
910 jy0 = x[j_coord_offset+DIM3*0+YY1];
911 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
912 jx1 = x[j_coord_offset+DIM3*1+XX0];
913 jy1 = x[j_coord_offset+DIM3*1+YY1];
914 jz1 = x[j_coord_offset+DIM3*1+ZZ2];
915 jx2 = x[j_coord_offset+DIM3*2+XX0];
916 jy2 = x[j_coord_offset+DIM3*2+YY1];
917 jz2 = x[j_coord_offset+DIM3*2+ZZ2];
918 jx3 = x[j_coord_offset+DIM3*3+XX0];
919 jy3 = x[j_coord_offset+DIM3*3+YY1];
920 jz3 = x[j_coord_offset+DIM3*3+ZZ2];
921
922 /* Calculate displacement vector */
923 dx00 = ix0 - jx0;
924 dy00 = iy0 - jy0;
925 dz00 = iz0 - jz0;
926 dx11 = ix1 - jx1;
927 dy11 = iy1 - jy1;
928 dz11 = iz1 - jz1;
929 dx12 = ix1 - jx2;
930 dy12 = iy1 - jy2;
931 dz12 = iz1 - jz2;
932 dx13 = ix1 - jx3;
933 dy13 = iy1 - jy3;
934 dz13 = iz1 - jz3;
935 dx21 = ix2 - jx1;
936 dy21 = iy2 - jy1;
937 dz21 = iz2 - jz1;
938 dx22 = ix2 - jx2;
939 dy22 = iy2 - jy2;
940 dz22 = iz2 - jz2;
941 dx23 = ix2 - jx3;
942 dy23 = iy2 - jy3;
943 dz23 = iz2 - jz3;
944 dx31 = ix3 - jx1;
945 dy31 = iy3 - jy1;
946 dz31 = iz3 - jz1;
947 dx32 = ix3 - jx2;
948 dy32 = iy3 - jy2;
949 dz32 = iz3 - jz2;
950 dx33 = ix3 - jx3;
951 dy33 = iy3 - jy3;
952 dz33 = iz3 - jz3;
953
954 /* Calculate squared distance and things based on it */
955 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
956 rsq11 = dx11*dx11+dy11*dy11+dz11*dz11;
957 rsq12 = dx12*dx12+dy12*dy12+dz12*dz12;
958 rsq13 = dx13*dx13+dy13*dy13+dz13*dz13;
959 rsq21 = dx21*dx21+dy21*dy21+dz21*dz21;
960 rsq22 = dx22*dx22+dy22*dy22+dz22*dz22;
961 rsq23 = dx23*dx23+dy23*dy23+dz23*dz23;
962 rsq31 = dx31*dx31+dy31*dy31+dz31*dz31;
963 rsq32 = dx32*dx32+dy32*dy32+dz32*dz32;
964 rsq33 = dx33*dx33+dy33*dy33+dz33*dz33;
965
966 rinv11 = gmx_invsqrt(rsq11)gmx_software_invsqrt(rsq11);
967 rinv12 = gmx_invsqrt(rsq12)gmx_software_invsqrt(rsq12);
968 rinv13 = gmx_invsqrt(rsq13)gmx_software_invsqrt(rsq13);
969 rinv21 = gmx_invsqrt(rsq21)gmx_software_invsqrt(rsq21);
970 rinv22 = gmx_invsqrt(rsq22)gmx_software_invsqrt(rsq22);
971 rinv23 = gmx_invsqrt(rsq23)gmx_software_invsqrt(rsq23);
972 rinv31 = gmx_invsqrt(rsq31)gmx_software_invsqrt(rsq31);
973 rinv32 = gmx_invsqrt(rsq32)gmx_software_invsqrt(rsq32);
974 rinv33 = gmx_invsqrt(rsq33)gmx_software_invsqrt(rsq33);
975
976 rinvsq00 = 1.0/rsq00;
977 rinvsq11 = rinv11*rinv11;
978 rinvsq12 = rinv12*rinv12;
979 rinvsq13 = rinv13*rinv13;
980 rinvsq21 = rinv21*rinv21;
981 rinvsq22 = rinv22*rinv22;
982 rinvsq23 = rinv23*rinv23;
983 rinvsq31 = rinv31*rinv31;
984 rinvsq32 = rinv32*rinv32;
985 rinvsq33 = rinv33*rinv33;
986
987 /**************************
988 * CALCULATE INTERACTIONS *
989 **************************/
990
991 if (rsq00<rcutoff2)
992 {
993
994 /* LENNARD-JONES DISPERSION/REPULSION */
995
996 rinvsix = rinvsq00*rinvsq00*rinvsq00;
997 fvdw = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
998
999 fscal = fvdw;
1000
1001 /* Calculate temporary vectorial force */
1002 tx = fscal*dx00;
1003 ty = fscal*dy00;
1004 tz = fscal*dz00;
1005
1006 /* Update vectorial force */
1007 fix0 += tx;
1008 fiy0 += ty;
1009 fiz0 += tz;
1010 f[j_coord_offset+DIM3*0+XX0] -= tx;
1011 f[j_coord_offset+DIM3*0+YY1] -= ty;
1012 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
1013
1014 }
1015
1016 /**************************
1017 * CALCULATE INTERACTIONS *
1018 **************************/
1019
1020 if (rsq11<rcutoff2)
1021 {
1022
1023 r11 = rsq11*rinv11;
1024
1025 /* EWALD ELECTROSTATICS */
1026
1027 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1028 ewrt = r11*ewtabscale;
1029 ewitab = ewrt;
1030 eweps = ewrt-ewitab;
1031 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1032 felec = qq11*rinv11*(rinvsq11-felec);
1033
1034 fscal = felec;
1035
1036 /* Calculate temporary vectorial force */
1037 tx = fscal*dx11;
1038 ty = fscal*dy11;
1039 tz = fscal*dz11;
1040
1041 /* Update vectorial force */
1042 fix1 += tx;
1043 fiy1 += ty;
1044 fiz1 += tz;
1045 f[j_coord_offset+DIM3*1+XX0] -= tx;
1046 f[j_coord_offset+DIM3*1+YY1] -= ty;
1047 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1048
1049 }
1050
1051 /**************************
1052 * CALCULATE INTERACTIONS *
1053 **************************/
1054
1055 if (rsq12<rcutoff2)
1056 {
1057
1058 r12 = rsq12*rinv12;
1059
1060 /* EWALD ELECTROSTATICS */
1061
1062 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1063 ewrt = r12*ewtabscale;
1064 ewitab = ewrt;
1065 eweps = ewrt-ewitab;
1066 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1067 felec = qq12*rinv12*(rinvsq12-felec);
1068
1069 fscal = felec;
1070
1071 /* Calculate temporary vectorial force */
1072 tx = fscal*dx12;
1073 ty = fscal*dy12;
1074 tz = fscal*dz12;
1075
1076 /* Update vectorial force */
1077 fix1 += tx;
1078 fiy1 += ty;
1079 fiz1 += tz;
1080 f[j_coord_offset+DIM3*2+XX0] -= tx;
1081 f[j_coord_offset+DIM3*2+YY1] -= ty;
1082 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1083
1084 }
1085
1086 /**************************
1087 * CALCULATE INTERACTIONS *
1088 **************************/
1089
1090 if (rsq13<rcutoff2)
1091 {
1092
1093 r13 = rsq13*rinv13;
1094
1095 /* EWALD ELECTROSTATICS */
1096
1097 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1098 ewrt = r13*ewtabscale;
1099 ewitab = ewrt;
1100 eweps = ewrt-ewitab;
1101 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1102 felec = qq13*rinv13*(rinvsq13-felec);
1103
1104 fscal = felec;
1105
1106 /* Calculate temporary vectorial force */
1107 tx = fscal*dx13;
1108 ty = fscal*dy13;
1109 tz = fscal*dz13;
1110
1111 /* Update vectorial force */
1112 fix1 += tx;
1113 fiy1 += ty;
1114 fiz1 += tz;
1115 f[j_coord_offset+DIM3*3+XX0] -= tx;
1116 f[j_coord_offset+DIM3*3+YY1] -= ty;
1117 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1118
1119 }
1120
1121 /**************************
1122 * CALCULATE INTERACTIONS *
1123 **************************/
1124
1125 if (rsq21<rcutoff2)
1126 {
1127
1128 r21 = rsq21*rinv21;
1129
1130 /* EWALD ELECTROSTATICS */
1131
1132 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1133 ewrt = r21*ewtabscale;
1134 ewitab = ewrt;
1135 eweps = ewrt-ewitab;
1136 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1137 felec = qq21*rinv21*(rinvsq21-felec);
1138
1139 fscal = felec;
1140
1141 /* Calculate temporary vectorial force */
1142 tx = fscal*dx21;
1143 ty = fscal*dy21;
1144 tz = fscal*dz21;
1145
1146 /* Update vectorial force */
1147 fix2 += tx;
1148 fiy2 += ty;
1149 fiz2 += tz;
1150 f[j_coord_offset+DIM3*1+XX0] -= tx;
1151 f[j_coord_offset+DIM3*1+YY1] -= ty;
1152 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1153
1154 }
1155
1156 /**************************
1157 * CALCULATE INTERACTIONS *
1158 **************************/
1159
1160 if (rsq22<rcutoff2)
1161 {
1162
1163 r22 = rsq22*rinv22;
1164
1165 /* EWALD ELECTROSTATICS */
1166
1167 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1168 ewrt = r22*ewtabscale;
1169 ewitab = ewrt;
1170 eweps = ewrt-ewitab;
1171 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1172 felec = qq22*rinv22*(rinvsq22-felec);
1173
1174 fscal = felec;
1175
1176 /* Calculate temporary vectorial force */
1177 tx = fscal*dx22;
1178 ty = fscal*dy22;
1179 tz = fscal*dz22;
1180
1181 /* Update vectorial force */
1182 fix2 += tx;
1183 fiy2 += ty;
1184 fiz2 += tz;
1185 f[j_coord_offset+DIM3*2+XX0] -= tx;
1186 f[j_coord_offset+DIM3*2+YY1] -= ty;
1187 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1188
1189 }
1190
1191 /**************************
1192 * CALCULATE INTERACTIONS *
1193 **************************/
1194
1195 if (rsq23<rcutoff2)
1196 {
1197
1198 r23 = rsq23*rinv23;
1199
1200 /* EWALD ELECTROSTATICS */
1201
1202 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1203 ewrt = r23*ewtabscale;
1204 ewitab = ewrt;
1205 eweps = ewrt-ewitab;
1206 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1207 felec = qq23*rinv23*(rinvsq23-felec);
1208
1209 fscal = felec;
1210
1211 /* Calculate temporary vectorial force */
1212 tx = fscal*dx23;
1213 ty = fscal*dy23;
1214 tz = fscal*dz23;
1215
1216 /* Update vectorial force */
1217 fix2 += tx;
1218 fiy2 += ty;
1219 fiz2 += tz;
1220 f[j_coord_offset+DIM3*3+XX0] -= tx;
1221 f[j_coord_offset+DIM3*3+YY1] -= ty;
1222 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1223
1224 }
1225
1226 /**************************
1227 * CALCULATE INTERACTIONS *
1228 **************************/
1229
1230 if (rsq31<rcutoff2)
1231 {
1232
1233 r31 = rsq31*rinv31;
1234
1235 /* EWALD ELECTROSTATICS */
1236
1237 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1238 ewrt = r31*ewtabscale;
1239 ewitab = ewrt;
1240 eweps = ewrt-ewitab;
1241 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1242 felec = qq31*rinv31*(rinvsq31-felec);
1243
1244 fscal = felec;
1245
1246 /* Calculate temporary vectorial force */
1247 tx = fscal*dx31;
1248 ty = fscal*dy31;
1249 tz = fscal*dz31;
1250
1251 /* Update vectorial force */
1252 fix3 += tx;
1253 fiy3 += ty;
1254 fiz3 += tz;
1255 f[j_coord_offset+DIM3*1+XX0] -= tx;
1256 f[j_coord_offset+DIM3*1+YY1] -= ty;
1257 f[j_coord_offset+DIM3*1+ZZ2] -= tz;
1258
1259 }
1260
1261 /**************************
1262 * CALCULATE INTERACTIONS *
1263 **************************/
1264
1265 if (rsq32<rcutoff2)
1266 {
1267
1268 r32 = rsq32*rinv32;
1269
1270 /* EWALD ELECTROSTATICS */
1271
1272 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1273 ewrt = r32*ewtabscale;
1274 ewitab = ewrt;
1275 eweps = ewrt-ewitab;
1276 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1277 felec = qq32*rinv32*(rinvsq32-felec);
1278
1279 fscal = felec;
1280
1281 /* Calculate temporary vectorial force */
1282 tx = fscal*dx32;
1283 ty = fscal*dy32;
1284 tz = fscal*dz32;
1285
1286 /* Update vectorial force */
1287 fix3 += tx;
1288 fiy3 += ty;
1289 fiz3 += tz;
1290 f[j_coord_offset+DIM3*2+XX0] -= tx;
1291 f[j_coord_offset+DIM3*2+YY1] -= ty;
1292 f[j_coord_offset+DIM3*2+ZZ2] -= tz;
1293
1294 }
1295
1296 /**************************
1297 * CALCULATE INTERACTIONS *
1298 **************************/
1299
1300 if (rsq33<rcutoff2)
1301 {
1302
1303 r33 = rsq33*rinv33;
1304
1305 /* EWALD ELECTROSTATICS */
1306
1307 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
1308 ewrt = r33*ewtabscale;
1309 ewitab = ewrt;
1310 eweps = ewrt-ewitab;
1311 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
1312 felec = qq33*rinv33*(rinvsq33-felec);
1313
1314 fscal = felec;
1315
1316 /* Calculate temporary vectorial force */
1317 tx = fscal*dx33;
1318 ty = fscal*dy33;
1319 tz = fscal*dz33;
1320
1321 /* Update vectorial force */
1322 fix3 += tx;
1323 fiy3 += ty;
1324 fiz3 += tz;
1325 f[j_coord_offset+DIM3*3+XX0] -= tx;
1326 f[j_coord_offset+DIM3*3+YY1] -= ty;
1327 f[j_coord_offset+DIM3*3+ZZ2] -= tz;
1328
1329 }
1330
1331 /* Inner loop uses 324 flops */
1332 }
1333 /* End of innermost loop */
1334
1335 tx = ty = tz = 0;
1336 f[i_coord_offset+DIM3*0+XX0] += fix0;
1337 f[i_coord_offset+DIM3*0+YY1] += fiy0;
1338 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
1339 tx += fix0;
1340 ty += fiy0;
1341 tz += fiz0;
1342 f[i_coord_offset+DIM3*1+XX0] += fix1;
1343 f[i_coord_offset+DIM3*1+YY1] += fiy1;
1344 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
1345 tx += fix1;
1346 ty += fiy1;
1347 tz += fiz1;
1348 f[i_coord_offset+DIM3*2+XX0] += fix2;
1349 f[i_coord_offset+DIM3*2+YY1] += fiy2;
1350 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
1351 tx += fix2;
1352 ty += fiy2;
1353 tz += fiz2;
1354 f[i_coord_offset+DIM3*3+XX0] += fix3;
1355 f[i_coord_offset+DIM3*3+YY1] += fiy3;
1356 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
1357 tx += fix3;
1358 ty += fiy3;
1359 tz += fiz3;
1360 fshift[i_shift_offset+XX0] += tx;
1361 fshift[i_shift_offset+YY1] += ty;
1362 fshift[i_shift_offset+ZZ2] += tz;
1363
1364 /* Increment number of inner iterations */
1365 inneriter += j_index_end - j_index_start;
1366
1367 /* Outer loop uses 39 flops */
1368 }
1369
1370 /* Increment number of outer iterations */
1371 outeriter += nri;
1372
1373 /* Update outer/inner flops */
1374
1375 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4W4_F,outeriter*39 + inneriter*324)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4W4_F] += outeriter*39 + inneriter
*324
;
1376}