Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEw_VdwBham_GeomW4P1_c.c
Location:line 487, column 5
Description:Value stored to 'ewtabhalfspace' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwBham_GeomW4P1_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: Buckingham
53 * Geometry: Water4-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEw_VdwBham_GeomW4P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwioffset1;
75 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
76 int vdwioffset2;
77 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
78 int vdwioffset3;
79 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
80 int vdwjidx0;
81 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
82 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
83 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
84 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
85 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
86 real velec,felec,velecsum,facel,crf,krf,krf2;
87 real *charge;
88 int nvdwtype;
89 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
90 int *vdwtype;
91 real *vdwparam;
92 int ewitab;
93 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
94 real *ewtab;
95
96 x = xx[0];
97 f = ff[0];
98
99 nri = nlist->nri;
100 iinr = nlist->iinr;
101 jindex = nlist->jindex;
102 jjnr = nlist->jjnr;
103 shiftidx = nlist->shift;
104 gid = nlist->gid;
105 shiftvec = fr->shift_vec[0];
106 fshift = fr->fshift[0];
107 facel = fr->epsfac;
108 charge = mdatoms->chargeA;
109 nvdwtype = fr->ntype;
110 vdwparam = fr->nbfp;
111 vdwtype = mdatoms->typeA;
112
113 sh_ewald = fr->ic->sh_ewald;
114 ewtab = fr->ic->tabq_coul_FDV0;
115 ewtabscale = fr->ic->tabq_scale;
116 ewtabhalfspace = 0.5/ewtabscale;
117
118 /* Setup water-specific parameters */
119 inr = nlist->iinr[0];
120 iq1 = facel*charge[inr+1];
121 iq2 = facel*charge[inr+2];
122 iq3 = facel*charge[inr+3];
123 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
124
125 outeriter = 0;
126 inneriter = 0;
127
128 /* Start outer loop over neighborlists */
129 for(iidx=0; iidx<nri; iidx++)
130 {
131 /* Load shift vector for this list */
132 i_shift_offset = DIM3*shiftidx[iidx];
133 shX = shiftvec[i_shift_offset+XX0];
134 shY = shiftvec[i_shift_offset+YY1];
135 shZ = shiftvec[i_shift_offset+ZZ2];
136
137 /* Load limits for loop over neighbors */
138 j_index_start = jindex[iidx];
139 j_index_end = jindex[iidx+1];
140
141 /* Get outer coordinate index */
142 inr = iinr[iidx];
143 i_coord_offset = DIM3*inr;
144
145 /* Load i particle coords and add shift vector */
146 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
147 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
148 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
149 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
150 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
151 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
152 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
153 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
154 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
155 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
156 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
157 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
158
159 fix0 = 0.0;
160 fiy0 = 0.0;
161 fiz0 = 0.0;
162 fix1 = 0.0;
163 fiy1 = 0.0;
164 fiz1 = 0.0;
165 fix2 = 0.0;
166 fiy2 = 0.0;
167 fiz2 = 0.0;
168 fix3 = 0.0;
169 fiy3 = 0.0;
170 fiz3 = 0.0;
171
172 /* Reset potential sums */
173 velecsum = 0.0;
174 vvdwsum = 0.0;
175
176 /* Start inner kernel loop */
177 for(jidx=j_index_start; jidx<j_index_end; jidx++)
178 {
179 /* Get j neighbor index, and coordinate index */
180 jnr = jjnr[jidx];
181 j_coord_offset = DIM3*jnr;
182
183 /* load j atom coordinates */
184 jx0 = x[j_coord_offset+DIM3*0+XX0];
185 jy0 = x[j_coord_offset+DIM3*0+YY1];
186 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
187
188 /* Calculate displacement vector */
189 dx00 = ix0 - jx0;
190 dy00 = iy0 - jy0;
191 dz00 = iz0 - jz0;
192 dx10 = ix1 - jx0;
193 dy10 = iy1 - jy0;
194 dz10 = iz1 - jz0;
195 dx20 = ix2 - jx0;
196 dy20 = iy2 - jy0;
197 dz20 = iz2 - jz0;
198 dx30 = ix3 - jx0;
199 dy30 = iy3 - jy0;
200 dz30 = iz3 - jz0;
201
202 /* Calculate squared distance and things based on it */
203 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
204 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
205 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
206 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
207
208 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
209 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
210 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
211 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
212
213 rinvsq00 = rinv00*rinv00;
214 rinvsq10 = rinv10*rinv10;
215 rinvsq20 = rinv20*rinv20;
216 rinvsq30 = rinv30*rinv30;
217
218 /* Load parameters for j particles */
219 jq0 = charge[jnr+0];
220 vdwjidx0 = 3*vdwtype[jnr+0];
221
222 /**************************
223 * CALCULATE INTERACTIONS *
224 **************************/
225
226 r00 = rsq00*rinv00;
227
228 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
229 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
230 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
231
232 /* BUCKINGHAM DISPERSION/REPULSION */
233 rinvsix = rinvsq00*rinvsq00*rinvsq00;
234 vvdw6 = c6_00*rinvsix;
235 br = cexp2_00*r00;
236 vvdwexp = cexp1_00*exp(-br);
237 vvdw = vvdwexp - vvdw6*(1.0/6.0);
238 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
239
240 /* Update potential sums from outer loop */
241 vvdwsum += vvdw;
242
243 fscal = fvdw;
244
245 /* Calculate temporary vectorial force */
246 tx = fscal*dx00;
247 ty = fscal*dy00;
248 tz = fscal*dz00;
249
250 /* Update vectorial force */
251 fix0 += tx;
252 fiy0 += ty;
253 fiz0 += tz;
254 f[j_coord_offset+DIM3*0+XX0] -= tx;
255 f[j_coord_offset+DIM3*0+YY1] -= ty;
256 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
257
258 /**************************
259 * CALCULATE INTERACTIONS *
260 **************************/
261
262 r10 = rsq10*rinv10;
263
264 qq10 = iq1*jq0;
265
266 /* EWALD ELECTROSTATICS */
267
268 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
269 ewrt = r10*ewtabscale;
270 ewitab = ewrt;
271 eweps = ewrt-ewitab;
272 ewitab = 4*ewitab;
273 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
274 velec = qq10*(rinv10-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
275 felec = qq10*rinv10*(rinvsq10-felec);
276
277 /* Update potential sums from outer loop */
278 velecsum += velec;
279
280 fscal = felec;
281
282 /* Calculate temporary vectorial force */
283 tx = fscal*dx10;
284 ty = fscal*dy10;
285 tz = fscal*dz10;
286
287 /* Update vectorial force */
288 fix1 += tx;
289 fiy1 += ty;
290 fiz1 += tz;
291 f[j_coord_offset+DIM3*0+XX0] -= tx;
292 f[j_coord_offset+DIM3*0+YY1] -= ty;
293 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
294
295 /**************************
296 * CALCULATE INTERACTIONS *
297 **************************/
298
299 r20 = rsq20*rinv20;
300
301 qq20 = iq2*jq0;
302
303 /* EWALD ELECTROSTATICS */
304
305 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
306 ewrt = r20*ewtabscale;
307 ewitab = ewrt;
308 eweps = ewrt-ewitab;
309 ewitab = 4*ewitab;
310 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
311 velec = qq20*(rinv20-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
312 felec = qq20*rinv20*(rinvsq20-felec);
313
314 /* Update potential sums from outer loop */
315 velecsum += velec;
316
317 fscal = felec;
318
319 /* Calculate temporary vectorial force */
320 tx = fscal*dx20;
321 ty = fscal*dy20;
322 tz = fscal*dz20;
323
324 /* Update vectorial force */
325 fix2 += tx;
326 fiy2 += ty;
327 fiz2 += tz;
328 f[j_coord_offset+DIM3*0+XX0] -= tx;
329 f[j_coord_offset+DIM3*0+YY1] -= ty;
330 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
331
332 /**************************
333 * CALCULATE INTERACTIONS *
334 **************************/
335
336 r30 = rsq30*rinv30;
337
338 qq30 = iq3*jq0;
339
340 /* EWALD ELECTROSTATICS */
341
342 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
343 ewrt = r30*ewtabscale;
344 ewitab = ewrt;
345 eweps = ewrt-ewitab;
346 ewitab = 4*ewitab;
347 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
348 velec = qq30*(rinv30-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
349 felec = qq30*rinv30*(rinvsq30-felec);
350
351 /* Update potential sums from outer loop */
352 velecsum += velec;
353
354 fscal = felec;
355
356 /* Calculate temporary vectorial force */
357 tx = fscal*dx30;
358 ty = fscal*dy30;
359 tz = fscal*dz30;
360
361 /* Update vectorial force */
362 fix3 += tx;
363 fiy3 += ty;
364 fiz3 += tz;
365 f[j_coord_offset+DIM3*0+XX0] -= tx;
366 f[j_coord_offset+DIM3*0+YY1] -= ty;
367 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
368
369 /* Inner loop uses 184 flops */
370 }
371 /* End of innermost loop */
372
373 tx = ty = tz = 0;
374 f[i_coord_offset+DIM3*0+XX0] += fix0;
375 f[i_coord_offset+DIM3*0+YY1] += fiy0;
376 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
377 tx += fix0;
378 ty += fiy0;
379 tz += fiz0;
380 f[i_coord_offset+DIM3*1+XX0] += fix1;
381 f[i_coord_offset+DIM3*1+YY1] += fiy1;
382 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
383 tx += fix1;
384 ty += fiy1;
385 tz += fiz1;
386 f[i_coord_offset+DIM3*2+XX0] += fix2;
387 f[i_coord_offset+DIM3*2+YY1] += fiy2;
388 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
389 tx += fix2;
390 ty += fiy2;
391 tz += fiz2;
392 f[i_coord_offset+DIM3*3+XX0] += fix3;
393 f[i_coord_offset+DIM3*3+YY1] += fiy3;
394 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
395 tx += fix3;
396 ty += fiy3;
397 tz += fiz3;
398 fshift[i_shift_offset+XX0] += tx;
399 fshift[i_shift_offset+YY1] += ty;
400 fshift[i_shift_offset+ZZ2] += tz;
401
402 ggid = gid[iidx];
403 /* Update potential energies */
404 kernel_data->energygrp_elec[ggid] += velecsum;
405 kernel_data->energygrp_vdw[ggid] += vvdwsum;
406
407 /* Increment number of inner iterations */
408 inneriter += j_index_end - j_index_start;
409
410 /* Outer loop uses 41 flops */
411 }
412
413 /* Increment number of outer iterations */
414 outeriter += nri;
415
416 /* Update outer/inner flops */
417
418 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*41 + inneriter*184)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_VF] += outeriter*41 + inneriter
*184
;
419}
420/*
421 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwBham_GeomW4P1_F_c
422 * Electrostatics interaction: Ewald
423 * VdW interaction: Buckingham
424 * Geometry: Water4-Particle
425 * Calculate force/pot: Force
426 */
427void
428nb_kernel_ElecEw_VdwBham_GeomW4P1_F_c
429 (t_nblist * gmx_restrict__restrict nlist,
430 rvec * gmx_restrict__restrict xx,
431 rvec * gmx_restrict__restrict ff,
432 t_forcerec * gmx_restrict__restrict fr,
433 t_mdatoms * gmx_restrict__restrict mdatoms,
434 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
435 t_nrnb * gmx_restrict__restrict nrnb)
436{
437 int i_shift_offset,i_coord_offset,j_coord_offset;
438 int j_index_start,j_index_end;
439 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
440 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
441 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
442 real *shiftvec,*fshift,*x,*f;
443 int vdwioffset0;
444 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
445 int vdwioffset1;
446 real ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
447 int vdwioffset2;
448 real ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
449 int vdwioffset3;
450 real ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
451 int vdwjidx0;
452 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
453 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
454 real dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10,cexp1_10,cexp2_10;
455 real dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20,cexp1_20,cexp2_20;
456 real dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30,cexp1_30,cexp2_30;
457 real velec,felec,velecsum,facel,crf,krf,krf2;
458 real *charge;
459 int nvdwtype;
460 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
461 int *vdwtype;
462 real *vdwparam;
463 int ewitab;
464 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
465 real *ewtab;
466
467 x = xx[0];
468 f = ff[0];
469
470 nri = nlist->nri;
471 iinr = nlist->iinr;
472 jindex = nlist->jindex;
473 jjnr = nlist->jjnr;
474 shiftidx = nlist->shift;
475 gid = nlist->gid;
476 shiftvec = fr->shift_vec[0];
477 fshift = fr->fshift[0];
478 facel = fr->epsfac;
479 charge = mdatoms->chargeA;
480 nvdwtype = fr->ntype;
481 vdwparam = fr->nbfp;
482 vdwtype = mdatoms->typeA;
483
484 sh_ewald = fr->ic->sh_ewald;
485 ewtab = fr->ic->tabq_coul_F;
486 ewtabscale = fr->ic->tabq_scale;
487 ewtabhalfspace = 0.5/ewtabscale;
Value stored to 'ewtabhalfspace' is never read
488
489 /* Setup water-specific parameters */
490 inr = nlist->iinr[0];
491 iq1 = facel*charge[inr+1];
492 iq2 = facel*charge[inr+2];
493 iq3 = facel*charge[inr+3];
494 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
495
496 outeriter = 0;
497 inneriter = 0;
498
499 /* Start outer loop over neighborlists */
500 for(iidx=0; iidx<nri; iidx++)
501 {
502 /* Load shift vector for this list */
503 i_shift_offset = DIM3*shiftidx[iidx];
504 shX = shiftvec[i_shift_offset+XX0];
505 shY = shiftvec[i_shift_offset+YY1];
506 shZ = shiftvec[i_shift_offset+ZZ2];
507
508 /* Load limits for loop over neighbors */
509 j_index_start = jindex[iidx];
510 j_index_end = jindex[iidx+1];
511
512 /* Get outer coordinate index */
513 inr = iinr[iidx];
514 i_coord_offset = DIM3*inr;
515
516 /* Load i particle coords and add shift vector */
517 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
518 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
519 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
520 ix1 = shX + x[i_coord_offset+DIM3*1+XX0];
521 iy1 = shY + x[i_coord_offset+DIM3*1+YY1];
522 iz1 = shZ + x[i_coord_offset+DIM3*1+ZZ2];
523 ix2 = shX + x[i_coord_offset+DIM3*2+XX0];
524 iy2 = shY + x[i_coord_offset+DIM3*2+YY1];
525 iz2 = shZ + x[i_coord_offset+DIM3*2+ZZ2];
526 ix3 = shX + x[i_coord_offset+DIM3*3+XX0];
527 iy3 = shY + x[i_coord_offset+DIM3*3+YY1];
528 iz3 = shZ + x[i_coord_offset+DIM3*3+ZZ2];
529
530 fix0 = 0.0;
531 fiy0 = 0.0;
532 fiz0 = 0.0;
533 fix1 = 0.0;
534 fiy1 = 0.0;
535 fiz1 = 0.0;
536 fix2 = 0.0;
537 fiy2 = 0.0;
538 fiz2 = 0.0;
539 fix3 = 0.0;
540 fiy3 = 0.0;
541 fiz3 = 0.0;
542
543 /* Start inner kernel loop */
544 for(jidx=j_index_start; jidx<j_index_end; jidx++)
545 {
546 /* Get j neighbor index, and coordinate index */
547 jnr = jjnr[jidx];
548 j_coord_offset = DIM3*jnr;
549
550 /* load j atom coordinates */
551 jx0 = x[j_coord_offset+DIM3*0+XX0];
552 jy0 = x[j_coord_offset+DIM3*0+YY1];
553 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
554
555 /* Calculate displacement vector */
556 dx00 = ix0 - jx0;
557 dy00 = iy0 - jy0;
558 dz00 = iz0 - jz0;
559 dx10 = ix1 - jx0;
560 dy10 = iy1 - jy0;
561 dz10 = iz1 - jz0;
562 dx20 = ix2 - jx0;
563 dy20 = iy2 - jy0;
564 dz20 = iz2 - jz0;
565 dx30 = ix3 - jx0;
566 dy30 = iy3 - jy0;
567 dz30 = iz3 - jz0;
568
569 /* Calculate squared distance and things based on it */
570 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
571 rsq10 = dx10*dx10+dy10*dy10+dz10*dz10;
572 rsq20 = dx20*dx20+dy20*dy20+dz20*dz20;
573 rsq30 = dx30*dx30+dy30*dy30+dz30*dz30;
574
575 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
576 rinv10 = gmx_invsqrt(rsq10)gmx_software_invsqrt(rsq10);
577 rinv20 = gmx_invsqrt(rsq20)gmx_software_invsqrt(rsq20);
578 rinv30 = gmx_invsqrt(rsq30)gmx_software_invsqrt(rsq30);
579
580 rinvsq00 = rinv00*rinv00;
581 rinvsq10 = rinv10*rinv10;
582 rinvsq20 = rinv20*rinv20;
583 rinvsq30 = rinv30*rinv30;
584
585 /* Load parameters for j particles */
586 jq0 = charge[jnr+0];
587 vdwjidx0 = 3*vdwtype[jnr+0];
588
589 /**************************
590 * CALCULATE INTERACTIONS *
591 **************************/
592
593 r00 = rsq00*rinv00;
594
595 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
596 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
597 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
598
599 /* BUCKINGHAM DISPERSION/REPULSION */
600 rinvsix = rinvsq00*rinvsq00*rinvsq00;
601 vvdw6 = c6_00*rinvsix;
602 br = cexp2_00*r00;
603 vvdwexp = cexp1_00*exp(-br);
604 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
605
606 fscal = fvdw;
607
608 /* Calculate temporary vectorial force */
609 tx = fscal*dx00;
610 ty = fscal*dy00;
611 tz = fscal*dz00;
612
613 /* Update vectorial force */
614 fix0 += tx;
615 fiy0 += ty;
616 fiz0 += tz;
617 f[j_coord_offset+DIM3*0+XX0] -= tx;
618 f[j_coord_offset+DIM3*0+YY1] -= ty;
619 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
620
621 /**************************
622 * CALCULATE INTERACTIONS *
623 **************************/
624
625 r10 = rsq10*rinv10;
626
627 qq10 = iq1*jq0;
628
629 /* EWALD ELECTROSTATICS */
630
631 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
632 ewrt = r10*ewtabscale;
633 ewitab = ewrt;
634 eweps = ewrt-ewitab;
635 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
636 felec = qq10*rinv10*(rinvsq10-felec);
637
638 fscal = felec;
639
640 /* Calculate temporary vectorial force */
641 tx = fscal*dx10;
642 ty = fscal*dy10;
643 tz = fscal*dz10;
644
645 /* Update vectorial force */
646 fix1 += tx;
647 fiy1 += ty;
648 fiz1 += tz;
649 f[j_coord_offset+DIM3*0+XX0] -= tx;
650 f[j_coord_offset+DIM3*0+YY1] -= ty;
651 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
652
653 /**************************
654 * CALCULATE INTERACTIONS *
655 **************************/
656
657 r20 = rsq20*rinv20;
658
659 qq20 = iq2*jq0;
660
661 /* EWALD ELECTROSTATICS */
662
663 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
664 ewrt = r20*ewtabscale;
665 ewitab = ewrt;
666 eweps = ewrt-ewitab;
667 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
668 felec = qq20*rinv20*(rinvsq20-felec);
669
670 fscal = felec;
671
672 /* Calculate temporary vectorial force */
673 tx = fscal*dx20;
674 ty = fscal*dy20;
675 tz = fscal*dz20;
676
677 /* Update vectorial force */
678 fix2 += tx;
679 fiy2 += ty;
680 fiz2 += tz;
681 f[j_coord_offset+DIM3*0+XX0] -= tx;
682 f[j_coord_offset+DIM3*0+YY1] -= ty;
683 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
684
685 /**************************
686 * CALCULATE INTERACTIONS *
687 **************************/
688
689 r30 = rsq30*rinv30;
690
691 qq30 = iq3*jq0;
692
693 /* EWALD ELECTROSTATICS */
694
695 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
696 ewrt = r30*ewtabscale;
697 ewitab = ewrt;
698 eweps = ewrt-ewitab;
699 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
700 felec = qq30*rinv30*(rinvsq30-felec);
701
702 fscal = felec;
703
704 /* Calculate temporary vectorial force */
705 tx = fscal*dx30;
706 ty = fscal*dy30;
707 tz = fscal*dz30;
708
709 /* Update vectorial force */
710 fix3 += tx;
711 fiy3 += ty;
712 fiz3 += tz;
713 f[j_coord_offset+DIM3*0+XX0] -= tx;
714 f[j_coord_offset+DIM3*0+YY1] -= ty;
715 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
716
717 /* Inner loop uses 160 flops */
718 }
719 /* End of innermost loop */
720
721 tx = ty = tz = 0;
722 f[i_coord_offset+DIM3*0+XX0] += fix0;
723 f[i_coord_offset+DIM3*0+YY1] += fiy0;
724 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
725 tx += fix0;
726 ty += fiy0;
727 tz += fiz0;
728 f[i_coord_offset+DIM3*1+XX0] += fix1;
729 f[i_coord_offset+DIM3*1+YY1] += fiy1;
730 f[i_coord_offset+DIM3*1+ZZ2] += fiz1;
731 tx += fix1;
732 ty += fiy1;
733 tz += fiz1;
734 f[i_coord_offset+DIM3*2+XX0] += fix2;
735 f[i_coord_offset+DIM3*2+YY1] += fiy2;
736 f[i_coord_offset+DIM3*2+ZZ2] += fiz2;
737 tx += fix2;
738 ty += fiy2;
739 tz += fiz2;
740 f[i_coord_offset+DIM3*3+XX0] += fix3;
741 f[i_coord_offset+DIM3*3+YY1] += fiy3;
742 f[i_coord_offset+DIM3*3+ZZ2] += fiz3;
743 tx += fix3;
744 ty += fiy3;
745 tz += fiz3;
746 fshift[i_shift_offset+XX0] += tx;
747 fshift[i_shift_offset+YY1] += ty;
748 fshift[i_shift_offset+ZZ2] += tz;
749
750 /* Increment number of inner iterations */
751 inneriter += j_index_end - j_index_start;
752
753 /* Outer loop uses 39 flops */
754 }
755
756 /* Increment number of outer iterations */
757 outeriter += nri;
758
759 /* Update outer/inner flops */
760
761 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*39 + inneriter*160)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_F] += outeriter*39 + inneriter
*160
;
762}