Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_sse4_1_single.c
Location:line 156, column 5
Description:Value stored to 'j_coord_offsetA' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_sse4_1_single
54 * Electrostatics interaction: ReactionField
55 * VdW interaction: LennardJones
56 * Geometry: Water3-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwioffset1;
88 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89 int vdwioffset2;
90 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
92 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
93 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
94 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
95 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
96 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
97 real *charge;
98 int nvdwtype;
99 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
100 int *vdwtype;
101 real *vdwparam;
102 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
103 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
104 __m128 rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
105 real rswitch_scalar,d_scalar;
106 __m128 dummy_mask,cutoff_mask;
107 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
108 __m128 one = _mm_set1_ps(1.0);
109 __m128 two = _mm_set1_ps(2.0);
110 x = xx[0];
111 f = ff[0];
112
113 nri = nlist->nri;
114 iinr = nlist->iinr;
115 jindex = nlist->jindex;
116 jjnr = nlist->jjnr;
117 shiftidx = nlist->shift;
118 gid = nlist->gid;
119 shiftvec = fr->shift_vec[0];
120 fshift = fr->fshift[0];
121 facel = _mm_set1_ps(fr->epsfac);
122 charge = mdatoms->chargeA;
123 krf = _mm_set1_ps(fr->ic->k_rf);
124 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
125 crf = _mm_set1_ps(fr->ic->c_rf);
126 nvdwtype = fr->ntype;
127 vdwparam = fr->nbfp;
128 vdwtype = mdatoms->typeA;
129
130 /* Setup water-specific parameters */
131 inr = nlist->iinr[0];
132 iq0 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
133 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
134 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
135 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
136
137 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
138 rcutoff_scalar = fr->rcoulomb;
139 rcutoff = _mm_set1_ps(rcutoff_scalar);
140 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
141
142 rswitch_scalar = fr->rvdw_switch;
143 rswitch = _mm_set1_ps(rswitch_scalar);
144 /* Setup switch parameters */
145 d_scalar = rcutoff_scalar-rswitch_scalar;
146 d = _mm_set1_ps(d_scalar);
147 swV3 = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
148 swV4 = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
149 swV5 = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
150 swF2 = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
151 swF3 = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
152 swF4 = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
153
154 /* Avoid stupid compiler warnings */
155 jnrA = jnrB = jnrC = jnrD = 0;
156 j_coord_offsetA = 0;
Value stored to 'j_coord_offsetA' is never read
157 j_coord_offsetB = 0;
158 j_coord_offsetC = 0;
159 j_coord_offsetD = 0;
160
161 outeriter = 0;
162 inneriter = 0;
163
164 for(iidx=0;iidx<4*DIM3;iidx++)
165 {
166 scratch[iidx] = 0.0;
167 }
168
169 /* Start outer loop over neighborlists */
170 for(iidx=0; iidx<nri; iidx++)
171 {
172 /* Load shift vector for this list */
173 i_shift_offset = DIM3*shiftidx[iidx];
174
175 /* Load limits for loop over neighbors */
176 j_index_start = jindex[iidx];
177 j_index_end = jindex[iidx+1];
178
179 /* Get outer coordinate index */
180 inr = iinr[iidx];
181 i_coord_offset = DIM3*inr;
182
183 /* Load i particle coords and add shift vector */
184 gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
185 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
186
187 fix0 = _mm_setzero_ps();
188 fiy0 = _mm_setzero_ps();
189 fiz0 = _mm_setzero_ps();
190 fix1 = _mm_setzero_ps();
191 fiy1 = _mm_setzero_ps();
192 fiz1 = _mm_setzero_ps();
193 fix2 = _mm_setzero_ps();
194 fiy2 = _mm_setzero_ps();
195 fiz2 = _mm_setzero_ps();
196
197 /* Reset potential sums */
198 velecsum = _mm_setzero_ps();
199 vvdwsum = _mm_setzero_ps();
200
201 /* Start inner kernel loop */
202 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
203 {
204
205 /* Get j neighbor index, and coordinate index */
206 jnrA = jjnr[jidx];
207 jnrB = jjnr[jidx+1];
208 jnrC = jjnr[jidx+2];
209 jnrD = jjnr[jidx+3];
210 j_coord_offsetA = DIM3*jnrA;
211 j_coord_offsetB = DIM3*jnrB;
212 j_coord_offsetC = DIM3*jnrC;
213 j_coord_offsetD = DIM3*jnrD;
214
215 /* load j atom coordinates */
216 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
217 x+j_coord_offsetC,x+j_coord_offsetD,
218 &jx0,&jy0,&jz0);
219
220 /* Calculate displacement vector */
221 dx00 = _mm_sub_ps(ix0,jx0);
222 dy00 = _mm_sub_ps(iy0,jy0);
223 dz00 = _mm_sub_ps(iz0,jz0);
224 dx10 = _mm_sub_ps(ix1,jx0);
225 dy10 = _mm_sub_ps(iy1,jy0);
226 dz10 = _mm_sub_ps(iz1,jz0);
227 dx20 = _mm_sub_ps(ix2,jx0);
228 dy20 = _mm_sub_ps(iy2,jy0);
229 dz20 = _mm_sub_ps(iz2,jz0);
230
231 /* Calculate squared distance and things based on it */
232 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
233 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
234 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
235
236 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
237 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
238 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
239
240 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
241 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
242 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
243
244 /* Load parameters for j particles */
245 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
246 charge+jnrC+0,charge+jnrD+0);
247 vdwjidx0A = 2*vdwtype[jnrA+0];
248 vdwjidx0B = 2*vdwtype[jnrB+0];
249 vdwjidx0C = 2*vdwtype[jnrC+0];
250 vdwjidx0D = 2*vdwtype[jnrD+0];
251
252 fjx0 = _mm_setzero_ps();
253 fjy0 = _mm_setzero_ps();
254 fjz0 = _mm_setzero_ps();
255
256 /**************************
257 * CALCULATE INTERACTIONS *
258 **************************/
259
260 if (gmx_mm_any_lt(rsq00,rcutoff2))
261 {
262
263 r00 = _mm_mul_ps(rsq00,rinv00);
264
265 /* Compute parameters for interactions between i and j atoms */
266 qq00 = _mm_mul_ps(iq0,jq0);
267 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
268 vdwparam+vdwioffset0+vdwjidx0B,
269 vdwparam+vdwioffset0+vdwjidx0C,
270 vdwparam+vdwioffset0+vdwjidx0D,
271 &c6_00,&c12_00);
272
273 /* REACTION-FIELD ELECTROSTATICS */
274 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
275 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
276
277 /* LENNARD-JONES DISPERSION/REPULSION */
278
279 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
280 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
281 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
282 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
283 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
284
285 d = _mm_sub_ps(r00,rswitch);
286 d = _mm_max_ps(d,_mm_setzero_ps());
287 d2 = _mm_mul_ps(d,d);
288 sw = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
289
290 dsw = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
291
292 /* Evaluate switch function */
293 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
294 fvdw = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
295 vvdw = _mm_mul_ps(vvdw,sw);
296 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
297
298 /* Update potential sum for this i atom from the interaction with this j atom. */
299 velec = _mm_and_ps(velec,cutoff_mask);
300 velecsum = _mm_add_ps(velecsum,velec);
301 vvdw = _mm_and_ps(vvdw,cutoff_mask);
302 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
303
304 fscal = _mm_add_ps(felec,fvdw);
305
306 fscal = _mm_and_ps(fscal,cutoff_mask);
307
308 /* Calculate temporary vectorial force */
309 tx = _mm_mul_ps(fscal,dx00);
310 ty = _mm_mul_ps(fscal,dy00);
311 tz = _mm_mul_ps(fscal,dz00);
312
313 /* Update vectorial force */
314 fix0 = _mm_add_ps(fix0,tx);
315 fiy0 = _mm_add_ps(fiy0,ty);
316 fiz0 = _mm_add_ps(fiz0,tz);
317
318 fjx0 = _mm_add_ps(fjx0,tx);
319 fjy0 = _mm_add_ps(fjy0,ty);
320 fjz0 = _mm_add_ps(fjz0,tz);
321
322 }
323
324 /**************************
325 * CALCULATE INTERACTIONS *
326 **************************/
327
328 if (gmx_mm_any_lt(rsq10,rcutoff2))
329 {
330
331 /* Compute parameters for interactions between i and j atoms */
332 qq10 = _mm_mul_ps(iq1,jq0);
333
334 /* REACTION-FIELD ELECTROSTATICS */
335 velec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
336 felec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
337
338 cutoff_mask = _mm_cmplt_ps(rsq10,rcutoff2);
339
340 /* Update potential sum for this i atom from the interaction with this j atom. */
341 velec = _mm_and_ps(velec,cutoff_mask);
342 velecsum = _mm_add_ps(velecsum,velec);
343
344 fscal = felec;
345
346 fscal = _mm_and_ps(fscal,cutoff_mask);
347
348 /* Calculate temporary vectorial force */
349 tx = _mm_mul_ps(fscal,dx10);
350 ty = _mm_mul_ps(fscal,dy10);
351 tz = _mm_mul_ps(fscal,dz10);
352
353 /* Update vectorial force */
354 fix1 = _mm_add_ps(fix1,tx);
355 fiy1 = _mm_add_ps(fiy1,ty);
356 fiz1 = _mm_add_ps(fiz1,tz);
357
358 fjx0 = _mm_add_ps(fjx0,tx);
359 fjy0 = _mm_add_ps(fjy0,ty);
360 fjz0 = _mm_add_ps(fjz0,tz);
361
362 }
363
364 /**************************
365 * CALCULATE INTERACTIONS *
366 **************************/
367
368 if (gmx_mm_any_lt(rsq20,rcutoff2))
369 {
370
371 /* Compute parameters for interactions between i and j atoms */
372 qq20 = _mm_mul_ps(iq2,jq0);
373
374 /* REACTION-FIELD ELECTROSTATICS */
375 velec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
376 felec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
377
378 cutoff_mask = _mm_cmplt_ps(rsq20,rcutoff2);
379
380 /* Update potential sum for this i atom from the interaction with this j atom. */
381 velec = _mm_and_ps(velec,cutoff_mask);
382 velecsum = _mm_add_ps(velecsum,velec);
383
384 fscal = felec;
385
386 fscal = _mm_and_ps(fscal,cutoff_mask);
387
388 /* Calculate temporary vectorial force */
389 tx = _mm_mul_ps(fscal,dx20);
390 ty = _mm_mul_ps(fscal,dy20);
391 tz = _mm_mul_ps(fscal,dz20);
392
393 /* Update vectorial force */
394 fix2 = _mm_add_ps(fix2,tx);
395 fiy2 = _mm_add_ps(fiy2,ty);
396 fiz2 = _mm_add_ps(fiz2,tz);
397
398 fjx0 = _mm_add_ps(fjx0,tx);
399 fjy0 = _mm_add_ps(fjy0,ty);
400 fjz0 = _mm_add_ps(fjz0,tz);
401
402 }
403
404 fjptrA = f+j_coord_offsetA;
405 fjptrB = f+j_coord_offsetB;
406 fjptrC = f+j_coord_offsetC;
407 fjptrD = f+j_coord_offsetD;
408
409 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
410
411 /* Inner loop uses 142 flops */
412 }
413
414 if(jidx<j_index_end)
415 {
416
417 /* Get j neighbor index, and coordinate index */
418 jnrlistA = jjnr[jidx];
419 jnrlistB = jjnr[jidx+1];
420 jnrlistC = jjnr[jidx+2];
421 jnrlistD = jjnr[jidx+3];
422 /* Sign of each element will be negative for non-real atoms.
423 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
424 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
425 */
426 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
427 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
428 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
429 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
430 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
431 j_coord_offsetA = DIM3*jnrA;
432 j_coord_offsetB = DIM3*jnrB;
433 j_coord_offsetC = DIM3*jnrC;
434 j_coord_offsetD = DIM3*jnrD;
435
436 /* load j atom coordinates */
437 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
438 x+j_coord_offsetC,x+j_coord_offsetD,
439 &jx0,&jy0,&jz0);
440
441 /* Calculate displacement vector */
442 dx00 = _mm_sub_ps(ix0,jx0);
443 dy00 = _mm_sub_ps(iy0,jy0);
444 dz00 = _mm_sub_ps(iz0,jz0);
445 dx10 = _mm_sub_ps(ix1,jx0);
446 dy10 = _mm_sub_ps(iy1,jy0);
447 dz10 = _mm_sub_ps(iz1,jz0);
448 dx20 = _mm_sub_ps(ix2,jx0);
449 dy20 = _mm_sub_ps(iy2,jy0);
450 dz20 = _mm_sub_ps(iz2,jz0);
451
452 /* Calculate squared distance and things based on it */
453 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
454 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
455 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
456
457 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
458 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
459 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
460
461 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
462 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
463 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
464
465 /* Load parameters for j particles */
466 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
467 charge+jnrC+0,charge+jnrD+0);
468 vdwjidx0A = 2*vdwtype[jnrA+0];
469 vdwjidx0B = 2*vdwtype[jnrB+0];
470 vdwjidx0C = 2*vdwtype[jnrC+0];
471 vdwjidx0D = 2*vdwtype[jnrD+0];
472
473 fjx0 = _mm_setzero_ps();
474 fjy0 = _mm_setzero_ps();
475 fjz0 = _mm_setzero_ps();
476
477 /**************************
478 * CALCULATE INTERACTIONS *
479 **************************/
480
481 if (gmx_mm_any_lt(rsq00,rcutoff2))
482 {
483
484 r00 = _mm_mul_ps(rsq00,rinv00);
485 r00 = _mm_andnot_ps(dummy_mask,r00);
486
487 /* Compute parameters for interactions between i and j atoms */
488 qq00 = _mm_mul_ps(iq0,jq0);
489 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
490 vdwparam+vdwioffset0+vdwjidx0B,
491 vdwparam+vdwioffset0+vdwjidx0C,
492 vdwparam+vdwioffset0+vdwjidx0D,
493 &c6_00,&c12_00);
494
495 /* REACTION-FIELD ELECTROSTATICS */
496 velec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_add_ps(rinv00,_mm_mul_ps(krf,rsq00)),crf));
497 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
498
499 /* LENNARD-JONES DISPERSION/REPULSION */
500
501 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
502 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
503 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
504 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
505 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
506
507 d = _mm_sub_ps(r00,rswitch);
508 d = _mm_max_ps(d,_mm_setzero_ps());
509 d2 = _mm_mul_ps(d,d);
510 sw = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
511
512 dsw = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
513
514 /* Evaluate switch function */
515 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
516 fvdw = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
517 vvdw = _mm_mul_ps(vvdw,sw);
518 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
519
520 /* Update potential sum for this i atom from the interaction with this j atom. */
521 velec = _mm_and_ps(velec,cutoff_mask);
522 velec = _mm_andnot_ps(dummy_mask,velec);
523 velecsum = _mm_add_ps(velecsum,velec);
524 vvdw = _mm_and_ps(vvdw,cutoff_mask);
525 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
526 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
527
528 fscal = _mm_add_ps(felec,fvdw);
529
530 fscal = _mm_and_ps(fscal,cutoff_mask);
531
532 fscal = _mm_andnot_ps(dummy_mask,fscal);
533
534 /* Calculate temporary vectorial force */
535 tx = _mm_mul_ps(fscal,dx00);
536 ty = _mm_mul_ps(fscal,dy00);
537 tz = _mm_mul_ps(fscal,dz00);
538
539 /* Update vectorial force */
540 fix0 = _mm_add_ps(fix0,tx);
541 fiy0 = _mm_add_ps(fiy0,ty);
542 fiz0 = _mm_add_ps(fiz0,tz);
543
544 fjx0 = _mm_add_ps(fjx0,tx);
545 fjy0 = _mm_add_ps(fjy0,ty);
546 fjz0 = _mm_add_ps(fjz0,tz);
547
548 }
549
550 /**************************
551 * CALCULATE INTERACTIONS *
552 **************************/
553
554 if (gmx_mm_any_lt(rsq10,rcutoff2))
555 {
556
557 /* Compute parameters for interactions between i and j atoms */
558 qq10 = _mm_mul_ps(iq1,jq0);
559
560 /* REACTION-FIELD ELECTROSTATICS */
561 velec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
562 felec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
563
564 cutoff_mask = _mm_cmplt_ps(rsq10,rcutoff2);
565
566 /* Update potential sum for this i atom from the interaction with this j atom. */
567 velec = _mm_and_ps(velec,cutoff_mask);
568 velec = _mm_andnot_ps(dummy_mask,velec);
569 velecsum = _mm_add_ps(velecsum,velec);
570
571 fscal = felec;
572
573 fscal = _mm_and_ps(fscal,cutoff_mask);
574
575 fscal = _mm_andnot_ps(dummy_mask,fscal);
576
577 /* Calculate temporary vectorial force */
578 tx = _mm_mul_ps(fscal,dx10);
579 ty = _mm_mul_ps(fscal,dy10);
580 tz = _mm_mul_ps(fscal,dz10);
581
582 /* Update vectorial force */
583 fix1 = _mm_add_ps(fix1,tx);
584 fiy1 = _mm_add_ps(fiy1,ty);
585 fiz1 = _mm_add_ps(fiz1,tz);
586
587 fjx0 = _mm_add_ps(fjx0,tx);
588 fjy0 = _mm_add_ps(fjy0,ty);
589 fjz0 = _mm_add_ps(fjz0,tz);
590
591 }
592
593 /**************************
594 * CALCULATE INTERACTIONS *
595 **************************/
596
597 if (gmx_mm_any_lt(rsq20,rcutoff2))
598 {
599
600 /* Compute parameters for interactions between i and j atoms */
601 qq20 = _mm_mul_ps(iq2,jq0);
602
603 /* REACTION-FIELD ELECTROSTATICS */
604 velec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
605 felec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
606
607 cutoff_mask = _mm_cmplt_ps(rsq20,rcutoff2);
608
609 /* Update potential sum for this i atom from the interaction with this j atom. */
610 velec = _mm_and_ps(velec,cutoff_mask);
611 velec = _mm_andnot_ps(dummy_mask,velec);
612 velecsum = _mm_add_ps(velecsum,velec);
613
614 fscal = felec;
615
616 fscal = _mm_and_ps(fscal,cutoff_mask);
617
618 fscal = _mm_andnot_ps(dummy_mask,fscal);
619
620 /* Calculate temporary vectorial force */
621 tx = _mm_mul_ps(fscal,dx20);
622 ty = _mm_mul_ps(fscal,dy20);
623 tz = _mm_mul_ps(fscal,dz20);
624
625 /* Update vectorial force */
626 fix2 = _mm_add_ps(fix2,tx);
627 fiy2 = _mm_add_ps(fiy2,ty);
628 fiz2 = _mm_add_ps(fiz2,tz);
629
630 fjx0 = _mm_add_ps(fjx0,tx);
631 fjy0 = _mm_add_ps(fjy0,ty);
632 fjz0 = _mm_add_ps(fjz0,tz);
633
634 }
635
636 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
637 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
638 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
639 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
640
641 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
642
643 /* Inner loop uses 143 flops */
644 }
645
646 /* End of innermost loop */
647
648 gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
649 f+i_coord_offset,fshift+i_shift_offset);
650
651 ggid = gid[iidx];
652 /* Update potential energies */
653 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
654 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
655
656 /* Increment number of inner iterations */
657 inneriter += j_index_end - j_index_start;
658
659 /* Outer loop uses 20 flops */
660 }
661
662 /* Increment number of outer iterations */
663 outeriter += nri;
664
665 /* Update outer/inner flops */
666
667 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_VF,outeriter*20 + inneriter*143)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_VF] += outeriter*20 + inneriter
*143
;
668}
669/*
670 * Gromacs nonbonded kernel: nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_sse4_1_single
671 * Electrostatics interaction: ReactionField
672 * VdW interaction: LennardJones
673 * Geometry: Water3-Particle
674 * Calculate force/pot: Force
675 */
676void
677nb_kernel_ElecRFCut_VdwLJSw_GeomW3P1_F_sse4_1_single
678 (t_nblist * gmx_restrict nlist,
679 rvec * gmx_restrict xx,
680 rvec * gmx_restrict ff,
681 t_forcerec * gmx_restrict fr,
682 t_mdatoms * gmx_restrict mdatoms,
683 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
684 t_nrnb * gmx_restrict nrnb)
685{
686 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
687 * just 0 for non-waters.
688 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
689 * jnr indices corresponding to data put in the four positions in the SIMD register.
690 */
691 int i_shift_offset,i_coord_offset,outeriter,inneriter;
692 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
693 int jnrA,jnrB,jnrC,jnrD;
694 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
695 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
696 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
697 real rcutoff_scalar;
698 real *shiftvec,*fshift,*x,*f;
699 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
700 real scratch[4*DIM3];
701 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
702 int vdwioffset0;
703 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
704 int vdwioffset1;
705 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
706 int vdwioffset2;
707 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
708 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
709 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
710 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
711 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
712 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
713 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
714 real *charge;
715 int nvdwtype;
716 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
717 int *vdwtype;
718 real *vdwparam;
719 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
720 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
721 __m128 rswitch,swV3,swV4,swV5,swF2,swF3,swF4,d,d2,sw,dsw;
722 real rswitch_scalar,d_scalar;
723 __m128 dummy_mask,cutoff_mask;
724 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
725 __m128 one = _mm_set1_ps(1.0);
726 __m128 two = _mm_set1_ps(2.0);
727 x = xx[0];
728 f = ff[0];
729
730 nri = nlist->nri;
731 iinr = nlist->iinr;
732 jindex = nlist->jindex;
733 jjnr = nlist->jjnr;
734 shiftidx = nlist->shift;
735 gid = nlist->gid;
736 shiftvec = fr->shift_vec[0];
737 fshift = fr->fshift[0];
738 facel = _mm_set1_ps(fr->epsfac);
739 charge = mdatoms->chargeA;
740 krf = _mm_set1_ps(fr->ic->k_rf);
741 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
742 crf = _mm_set1_ps(fr->ic->c_rf);
743 nvdwtype = fr->ntype;
744 vdwparam = fr->nbfp;
745 vdwtype = mdatoms->typeA;
746
747 /* Setup water-specific parameters */
748 inr = nlist->iinr[0];
749 iq0 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+0]));
750 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
751 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
752 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
753
754 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
755 rcutoff_scalar = fr->rcoulomb;
756 rcutoff = _mm_set1_ps(rcutoff_scalar);
757 rcutoff2 = _mm_mul_ps(rcutoff,rcutoff);
758
759 rswitch_scalar = fr->rvdw_switch;
760 rswitch = _mm_set1_ps(rswitch_scalar);
761 /* Setup switch parameters */
762 d_scalar = rcutoff_scalar-rswitch_scalar;
763 d = _mm_set1_ps(d_scalar);
764 swV3 = _mm_set1_ps(-10.0/(d_scalar*d_scalar*d_scalar));
765 swV4 = _mm_set1_ps( 15.0/(d_scalar*d_scalar*d_scalar*d_scalar));
766 swV5 = _mm_set1_ps( -6.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
767 swF2 = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar));
768 swF3 = _mm_set1_ps( 60.0/(d_scalar*d_scalar*d_scalar*d_scalar));
769 swF4 = _mm_set1_ps(-30.0/(d_scalar*d_scalar*d_scalar*d_scalar*d_scalar));
770
771 /* Avoid stupid compiler warnings */
772 jnrA = jnrB = jnrC = jnrD = 0;
773 j_coord_offsetA = 0;
774 j_coord_offsetB = 0;
775 j_coord_offsetC = 0;
776 j_coord_offsetD = 0;
777
778 outeriter = 0;
779 inneriter = 0;
780
781 for(iidx=0;iidx<4*DIM3;iidx++)
782 {
783 scratch[iidx] = 0.0;
784 }
785
786 /* Start outer loop over neighborlists */
787 for(iidx=0; iidx<nri; iidx++)
788 {
789 /* Load shift vector for this list */
790 i_shift_offset = DIM3*shiftidx[iidx];
791
792 /* Load limits for loop over neighbors */
793 j_index_start = jindex[iidx];
794 j_index_end = jindex[iidx+1];
795
796 /* Get outer coordinate index */
797 inr = iinr[iidx];
798 i_coord_offset = DIM3*inr;
799
800 /* Load i particle coords and add shift vector */
801 gmx_mm_load_shift_and_3rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
802 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2);
803
804 fix0 = _mm_setzero_ps();
805 fiy0 = _mm_setzero_ps();
806 fiz0 = _mm_setzero_ps();
807 fix1 = _mm_setzero_ps();
808 fiy1 = _mm_setzero_ps();
809 fiz1 = _mm_setzero_ps();
810 fix2 = _mm_setzero_ps();
811 fiy2 = _mm_setzero_ps();
812 fiz2 = _mm_setzero_ps();
813
814 /* Start inner kernel loop */
815 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
816 {
817
818 /* Get j neighbor index, and coordinate index */
819 jnrA = jjnr[jidx];
820 jnrB = jjnr[jidx+1];
821 jnrC = jjnr[jidx+2];
822 jnrD = jjnr[jidx+3];
823 j_coord_offsetA = DIM3*jnrA;
824 j_coord_offsetB = DIM3*jnrB;
825 j_coord_offsetC = DIM3*jnrC;
826 j_coord_offsetD = DIM3*jnrD;
827
828 /* load j atom coordinates */
829 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
830 x+j_coord_offsetC,x+j_coord_offsetD,
831 &jx0,&jy0,&jz0);
832
833 /* Calculate displacement vector */
834 dx00 = _mm_sub_ps(ix0,jx0);
835 dy00 = _mm_sub_ps(iy0,jy0);
836 dz00 = _mm_sub_ps(iz0,jz0);
837 dx10 = _mm_sub_ps(ix1,jx0);
838 dy10 = _mm_sub_ps(iy1,jy0);
839 dz10 = _mm_sub_ps(iz1,jz0);
840 dx20 = _mm_sub_ps(ix2,jx0);
841 dy20 = _mm_sub_ps(iy2,jy0);
842 dz20 = _mm_sub_ps(iz2,jz0);
843
844 /* Calculate squared distance and things based on it */
845 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
846 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
847 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
848
849 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
850 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
851 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
852
853 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
854 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
855 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
856
857 /* Load parameters for j particles */
858 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
859 charge+jnrC+0,charge+jnrD+0);
860 vdwjidx0A = 2*vdwtype[jnrA+0];
861 vdwjidx0B = 2*vdwtype[jnrB+0];
862 vdwjidx0C = 2*vdwtype[jnrC+0];
863 vdwjidx0D = 2*vdwtype[jnrD+0];
864
865 fjx0 = _mm_setzero_ps();
866 fjy0 = _mm_setzero_ps();
867 fjz0 = _mm_setzero_ps();
868
869 /**************************
870 * CALCULATE INTERACTIONS *
871 **************************/
872
873 if (gmx_mm_any_lt(rsq00,rcutoff2))
874 {
875
876 r00 = _mm_mul_ps(rsq00,rinv00);
877
878 /* Compute parameters for interactions between i and j atoms */
879 qq00 = _mm_mul_ps(iq0,jq0);
880 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
881 vdwparam+vdwioffset0+vdwjidx0B,
882 vdwparam+vdwioffset0+vdwjidx0C,
883 vdwparam+vdwioffset0+vdwjidx0D,
884 &c6_00,&c12_00);
885
886 /* REACTION-FIELD ELECTROSTATICS */
887 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
888
889 /* LENNARD-JONES DISPERSION/REPULSION */
890
891 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
892 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
893 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
894 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
895 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
896
897 d = _mm_sub_ps(r00,rswitch);
898 d = _mm_max_ps(d,_mm_setzero_ps());
899 d2 = _mm_mul_ps(d,d);
900 sw = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
901
902 dsw = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
903
904 /* Evaluate switch function */
905 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
906 fvdw = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
907 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
908
909 fscal = _mm_add_ps(felec,fvdw);
910
911 fscal = _mm_and_ps(fscal,cutoff_mask);
912
913 /* Calculate temporary vectorial force */
914 tx = _mm_mul_ps(fscal,dx00);
915 ty = _mm_mul_ps(fscal,dy00);
916 tz = _mm_mul_ps(fscal,dz00);
917
918 /* Update vectorial force */
919 fix0 = _mm_add_ps(fix0,tx);
920 fiy0 = _mm_add_ps(fiy0,ty);
921 fiz0 = _mm_add_ps(fiz0,tz);
922
923 fjx0 = _mm_add_ps(fjx0,tx);
924 fjy0 = _mm_add_ps(fjy0,ty);
925 fjz0 = _mm_add_ps(fjz0,tz);
926
927 }
928
929 /**************************
930 * CALCULATE INTERACTIONS *
931 **************************/
932
933 if (gmx_mm_any_lt(rsq10,rcutoff2))
934 {
935
936 /* Compute parameters for interactions between i and j atoms */
937 qq10 = _mm_mul_ps(iq1,jq0);
938
939 /* REACTION-FIELD ELECTROSTATICS */
940 felec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
941
942 cutoff_mask = _mm_cmplt_ps(rsq10,rcutoff2);
943
944 fscal = felec;
945
946 fscal = _mm_and_ps(fscal,cutoff_mask);
947
948 /* Calculate temporary vectorial force */
949 tx = _mm_mul_ps(fscal,dx10);
950 ty = _mm_mul_ps(fscal,dy10);
951 tz = _mm_mul_ps(fscal,dz10);
952
953 /* Update vectorial force */
954 fix1 = _mm_add_ps(fix1,tx);
955 fiy1 = _mm_add_ps(fiy1,ty);
956 fiz1 = _mm_add_ps(fiz1,tz);
957
958 fjx0 = _mm_add_ps(fjx0,tx);
959 fjy0 = _mm_add_ps(fjy0,ty);
960 fjz0 = _mm_add_ps(fjz0,tz);
961
962 }
963
964 /**************************
965 * CALCULATE INTERACTIONS *
966 **************************/
967
968 if (gmx_mm_any_lt(rsq20,rcutoff2))
969 {
970
971 /* Compute parameters for interactions between i and j atoms */
972 qq20 = _mm_mul_ps(iq2,jq0);
973
974 /* REACTION-FIELD ELECTROSTATICS */
975 felec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
976
977 cutoff_mask = _mm_cmplt_ps(rsq20,rcutoff2);
978
979 fscal = felec;
980
981 fscal = _mm_and_ps(fscal,cutoff_mask);
982
983 /* Calculate temporary vectorial force */
984 tx = _mm_mul_ps(fscal,dx20);
985 ty = _mm_mul_ps(fscal,dy20);
986 tz = _mm_mul_ps(fscal,dz20);
987
988 /* Update vectorial force */
989 fix2 = _mm_add_ps(fix2,tx);
990 fiy2 = _mm_add_ps(fiy2,ty);
991 fiz2 = _mm_add_ps(fiz2,tz);
992
993 fjx0 = _mm_add_ps(fjx0,tx);
994 fjy0 = _mm_add_ps(fjy0,ty);
995 fjz0 = _mm_add_ps(fjz0,tz);
996
997 }
998
999 fjptrA = f+j_coord_offsetA;
1000 fjptrB = f+j_coord_offsetB;
1001 fjptrC = f+j_coord_offsetC;
1002 fjptrD = f+j_coord_offsetD;
1003
1004 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1005
1006 /* Inner loop uses 121 flops */
1007 }
1008
1009 if(jidx<j_index_end)
1010 {
1011
1012 /* Get j neighbor index, and coordinate index */
1013 jnrlistA = jjnr[jidx];
1014 jnrlistB = jjnr[jidx+1];
1015 jnrlistC = jjnr[jidx+2];
1016 jnrlistD = jjnr[jidx+3];
1017 /* Sign of each element will be negative for non-real atoms.
1018 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
1019 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
1020 */
1021 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
1022 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
1023 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
1024 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
1025 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
1026 j_coord_offsetA = DIM3*jnrA;
1027 j_coord_offsetB = DIM3*jnrB;
1028 j_coord_offsetC = DIM3*jnrC;
1029 j_coord_offsetD = DIM3*jnrD;
1030
1031 /* load j atom coordinates */
1032 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
1033 x+j_coord_offsetC,x+j_coord_offsetD,
1034 &jx0,&jy0,&jz0);
1035
1036 /* Calculate displacement vector */
1037 dx00 = _mm_sub_ps(ix0,jx0);
1038 dy00 = _mm_sub_ps(iy0,jy0);
1039 dz00 = _mm_sub_ps(iz0,jz0);
1040 dx10 = _mm_sub_ps(ix1,jx0);
1041 dy10 = _mm_sub_ps(iy1,jy0);
1042 dz10 = _mm_sub_ps(iz1,jz0);
1043 dx20 = _mm_sub_ps(ix2,jx0);
1044 dy20 = _mm_sub_ps(iy2,jy0);
1045 dz20 = _mm_sub_ps(iz2,jz0);
1046
1047 /* Calculate squared distance and things based on it */
1048 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
1049 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
1050 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
1051
1052 rinv00 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq00);
1053 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
1054 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
1055
1056 rinvsq00 = _mm_mul_ps(rinv00,rinv00);
1057 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
1058 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
1059
1060 /* Load parameters for j particles */
1061 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
1062 charge+jnrC+0,charge+jnrD+0);
1063 vdwjidx0A = 2*vdwtype[jnrA+0];
1064 vdwjidx0B = 2*vdwtype[jnrB+0];
1065 vdwjidx0C = 2*vdwtype[jnrC+0];
1066 vdwjidx0D = 2*vdwtype[jnrD+0];
1067
1068 fjx0 = _mm_setzero_ps();
1069 fjy0 = _mm_setzero_ps();
1070 fjz0 = _mm_setzero_ps();
1071
1072 /**************************
1073 * CALCULATE INTERACTIONS *
1074 **************************/
1075
1076 if (gmx_mm_any_lt(rsq00,rcutoff2))
1077 {
1078
1079 r00 = _mm_mul_ps(rsq00,rinv00);
1080 r00 = _mm_andnot_ps(dummy_mask,r00);
1081
1082 /* Compute parameters for interactions between i and j atoms */
1083 qq00 = _mm_mul_ps(iq0,jq0);
1084 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1085 vdwparam+vdwioffset0+vdwjidx0B,
1086 vdwparam+vdwioffset0+vdwjidx0C,
1087 vdwparam+vdwioffset0+vdwjidx0D,
1088 &c6_00,&c12_00);
1089
1090 /* REACTION-FIELD ELECTROSTATICS */
1091 felec = _mm_mul_ps(qq00,_mm_sub_ps(_mm_mul_ps(rinv00,rinvsq00),krf2));
1092
1093 /* LENNARD-JONES DISPERSION/REPULSION */
1094
1095 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1096 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
1097 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
1098 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
1099 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
1100
1101 d = _mm_sub_ps(r00,rswitch);
1102 d = _mm_max_ps(d,_mm_setzero_ps());
1103 d2 = _mm_mul_ps(d,d);
1104 sw = _mm_add_ps(one,_mm_mul_ps(d2,_mm_mul_ps(d,_mm_add_ps(swV3,_mm_mul_ps(d,_mm_add_ps(swV4,_mm_mul_ps(d,swV5)))))));
1105
1106 dsw = _mm_mul_ps(d2,_mm_add_ps(swF2,_mm_mul_ps(d,_mm_add_ps(swF3,_mm_mul_ps(d,swF4)))));
1107
1108 /* Evaluate switch function */
1109 /* fscal'=f'/r=-(v*sw)'/r=-(v'*sw+v*dsw)/r=-v'*sw/r-v*dsw/r=fscal*sw-v*dsw/r */
1110 fvdw = _mm_sub_ps( _mm_mul_ps(fvdw,sw) , _mm_mul_ps(rinv00,_mm_mul_ps(vvdw,dsw)) );
1111 cutoff_mask = _mm_cmplt_ps(rsq00,rcutoff2);
1112
1113 fscal = _mm_add_ps(felec,fvdw);
1114
1115 fscal = _mm_and_ps(fscal,cutoff_mask);
1116
1117 fscal = _mm_andnot_ps(dummy_mask,fscal);
1118
1119 /* Calculate temporary vectorial force */
1120 tx = _mm_mul_ps(fscal,dx00);
1121 ty = _mm_mul_ps(fscal,dy00);
1122 tz = _mm_mul_ps(fscal,dz00);
1123
1124 /* Update vectorial force */
1125 fix0 = _mm_add_ps(fix0,tx);
1126 fiy0 = _mm_add_ps(fiy0,ty);
1127 fiz0 = _mm_add_ps(fiz0,tz);
1128
1129 fjx0 = _mm_add_ps(fjx0,tx);
1130 fjy0 = _mm_add_ps(fjy0,ty);
1131 fjz0 = _mm_add_ps(fjz0,tz);
1132
1133 }
1134
1135 /**************************
1136 * CALCULATE INTERACTIONS *
1137 **************************/
1138
1139 if (gmx_mm_any_lt(rsq10,rcutoff2))
1140 {
1141
1142 /* Compute parameters for interactions between i and j atoms */
1143 qq10 = _mm_mul_ps(iq1,jq0);
1144
1145 /* REACTION-FIELD ELECTROSTATICS */
1146 felec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1147
1148 cutoff_mask = _mm_cmplt_ps(rsq10,rcutoff2);
1149
1150 fscal = felec;
1151
1152 fscal = _mm_and_ps(fscal,cutoff_mask);
1153
1154 fscal = _mm_andnot_ps(dummy_mask,fscal);
1155
1156 /* Calculate temporary vectorial force */
1157 tx = _mm_mul_ps(fscal,dx10);
1158 ty = _mm_mul_ps(fscal,dy10);
1159 tz = _mm_mul_ps(fscal,dz10);
1160
1161 /* Update vectorial force */
1162 fix1 = _mm_add_ps(fix1,tx);
1163 fiy1 = _mm_add_ps(fiy1,ty);
1164 fiz1 = _mm_add_ps(fiz1,tz);
1165
1166 fjx0 = _mm_add_ps(fjx0,tx);
1167 fjy0 = _mm_add_ps(fjy0,ty);
1168 fjz0 = _mm_add_ps(fjz0,tz);
1169
1170 }
1171
1172 /**************************
1173 * CALCULATE INTERACTIONS *
1174 **************************/
1175
1176 if (gmx_mm_any_lt(rsq20,rcutoff2))
1177 {
1178
1179 /* Compute parameters for interactions between i and j atoms */
1180 qq20 = _mm_mul_ps(iq2,jq0);
1181
1182 /* REACTION-FIELD ELECTROSTATICS */
1183 felec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1184
1185 cutoff_mask = _mm_cmplt_ps(rsq20,rcutoff2);
1186
1187 fscal = felec;
1188
1189 fscal = _mm_and_ps(fscal,cutoff_mask);
1190
1191 fscal = _mm_andnot_ps(dummy_mask,fscal);
1192
1193 /* Calculate temporary vectorial force */
1194 tx = _mm_mul_ps(fscal,dx20);
1195 ty = _mm_mul_ps(fscal,dy20);
1196 tz = _mm_mul_ps(fscal,dz20);
1197
1198 /* Update vectorial force */
1199 fix2 = _mm_add_ps(fix2,tx);
1200 fiy2 = _mm_add_ps(fiy2,ty);
1201 fiz2 = _mm_add_ps(fiz2,tz);
1202
1203 fjx0 = _mm_add_ps(fjx0,tx);
1204 fjy0 = _mm_add_ps(fjy0,ty);
1205 fjz0 = _mm_add_ps(fjz0,tz);
1206
1207 }
1208
1209 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1210 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1211 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1212 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1213
1214 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1215
1216 /* Inner loop uses 122 flops */
1217 }
1218
1219 /* End of innermost loop */
1220
1221 gmx_mm_update_iforce_3atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,
1222 f+i_coord_offset,fshift+i_shift_offset);
1223
1224 /* Increment number of inner iterations */
1225 inneriter += j_index_end - j_index_start;
1226
1227 /* Outer loop uses 18 flops */
1228 }
1229
1230 /* Increment number of outer iterations */
1231 outeriter += nri;
1232
1233 /* Update outer/inner flops */
1234
1235 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W3_F,outeriter*18 + inneriter*122)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W3_F] += outeriter*18 + inneriter
*122
;
1236}