Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_c.c
Location:line 325, column 5
Description:Value stored to 'ewtabhalfspace' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: LennardJones
53 * Geometry: Particle-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwjidx0;
75 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77 real velec,felec,velecsum,facel,crf,krf,krf2;
78 real *charge;
79 int nvdwtype;
80 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
81 int *vdwtype;
82 real *vdwparam;
83 int ewitab;
84 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
85 real *ewtab;
86
87 x = xx[0];
88 f = ff[0];
89
90 nri = nlist->nri;
91 iinr = nlist->iinr;
92 jindex = nlist->jindex;
93 jjnr = nlist->jjnr;
94 shiftidx = nlist->shift;
95 gid = nlist->gid;
96 shiftvec = fr->shift_vec[0];
97 fshift = fr->fshift[0];
98 facel = fr->epsfac;
99 charge = mdatoms->chargeA;
100 nvdwtype = fr->ntype;
101 vdwparam = fr->nbfp;
102 vdwtype = mdatoms->typeA;
103
104 sh_ewald = fr->ic->sh_ewald;
105 ewtab = fr->ic->tabq_coul_FDV0;
106 ewtabscale = fr->ic->tabq_scale;
107 ewtabhalfspace = 0.5/ewtabscale;
108
109 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
110 rcutoff = fr->rcoulomb;
111 rcutoff2 = rcutoff*rcutoff;
112
113 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
114 rvdw = fr->rvdw;
115
116 outeriter = 0;
117 inneriter = 0;
118
119 /* Start outer loop over neighborlists */
120 for(iidx=0; iidx<nri; iidx++)
121 {
122 /* Load shift vector for this list */
123 i_shift_offset = DIM3*shiftidx[iidx];
124 shX = shiftvec[i_shift_offset+XX0];
125 shY = shiftvec[i_shift_offset+YY1];
126 shZ = shiftvec[i_shift_offset+ZZ2];
127
128 /* Load limits for loop over neighbors */
129 j_index_start = jindex[iidx];
130 j_index_end = jindex[iidx+1];
131
132 /* Get outer coordinate index */
133 inr = iinr[iidx];
134 i_coord_offset = DIM3*inr;
135
136 /* Load i particle coords and add shift vector */
137 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
138 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
139 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
140
141 fix0 = 0.0;
142 fiy0 = 0.0;
143 fiz0 = 0.0;
144
145 /* Load parameters for i particles */
146 iq0 = facel*charge[inr+0];
147 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
148
149 /* Reset potential sums */
150 velecsum = 0.0;
151 vvdwsum = 0.0;
152
153 /* Start inner kernel loop */
154 for(jidx=j_index_start; jidx<j_index_end; jidx++)
155 {
156 /* Get j neighbor index, and coordinate index */
157 jnr = jjnr[jidx];
158 j_coord_offset = DIM3*jnr;
159
160 /* load j atom coordinates */
161 jx0 = x[j_coord_offset+DIM3*0+XX0];
162 jy0 = x[j_coord_offset+DIM3*0+YY1];
163 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
164
165 /* Calculate displacement vector */
166 dx00 = ix0 - jx0;
167 dy00 = iy0 - jy0;
168 dz00 = iz0 - jz0;
169
170 /* Calculate squared distance and things based on it */
171 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
172
173 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
174
175 rinvsq00 = rinv00*rinv00;
176
177 /* Load parameters for j particles */
178 jq0 = charge[jnr+0];
179 vdwjidx0 = 2*vdwtype[jnr+0];
180
181 /**************************
182 * CALCULATE INTERACTIONS *
183 **************************/
184
185 if (rsq00<rcutoff2)
186 {
187
188 r00 = rsq00*rinv00;
189
190 qq00 = iq0*jq0;
191 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
192 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
193
194 /* EWALD ELECTROSTATICS */
195
196 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
197 ewrt = r00*ewtabscale;
198 ewitab = ewrt;
199 eweps = ewrt-ewitab;
200 ewitab = 4*ewitab;
201 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
202 velec = qq00*((rinv00-sh_ewald)-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
203 felec = qq00*rinv00*(rinvsq00-felec);
204
205 /* LENNARD-JONES DISPERSION/REPULSION */
206
207 rinvsix = rinvsq00*rinvsq00*rinvsq00;
208 vvdw6 = c6_00*rinvsix;
209 vvdw12 = c12_00*rinvsix*rinvsix;
210 vvdw = (vvdw12 - c12_00*sh_vdw_invrcut6*sh_vdw_invrcut6)*(1.0/12.0) - (vvdw6 - c6_00*sh_vdw_invrcut6)*(1.0/6.0);
211 fvdw = (vvdw12-vvdw6)*rinvsq00;
212
213 /* Update potential sums from outer loop */
214 velecsum += velec;
215 vvdwsum += vvdw;
216
217 fscal = felec+fvdw;
218
219 /* Calculate temporary vectorial force */
220 tx = fscal*dx00;
221 ty = fscal*dy00;
222 tz = fscal*dz00;
223
224 /* Update vectorial force */
225 fix0 += tx;
226 fiy0 += ty;
227 fiz0 += tz;
228 f[j_coord_offset+DIM3*0+XX0] -= tx;
229 f[j_coord_offset+DIM3*0+YY1] -= ty;
230 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
231
232 }
233
234 /* Inner loop uses 59 flops */
235 }
236 /* End of innermost loop */
237
238 tx = ty = tz = 0;
239 f[i_coord_offset+DIM3*0+XX0] += fix0;
240 f[i_coord_offset+DIM3*0+YY1] += fiy0;
241 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
242 tx += fix0;
243 ty += fiy0;
244 tz += fiz0;
245 fshift[i_shift_offset+XX0] += tx;
246 fshift[i_shift_offset+YY1] += ty;
247 fshift[i_shift_offset+ZZ2] += tz;
248
249 ggid = gid[iidx];
250 /* Update potential energies */
251 kernel_data->energygrp_elec[ggid] += velecsum;
252 kernel_data->energygrp_vdw[ggid] += vvdwsum;
253
254 /* Increment number of inner iterations */
255 inneriter += j_index_end - j_index_start;
256
257 /* Outer loop uses 15 flops */
258 }
259
260 /* Increment number of outer iterations */
261 outeriter += nri;
262
263 /* Update outer/inner flops */
264
265 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*59)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_VF] += outeriter*15 + inneriter
*59
;
266}
267/*
268 * Gromacs nonbonded kernel: nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_c
269 * Electrostatics interaction: Ewald
270 * VdW interaction: LennardJones
271 * Geometry: Particle-Particle
272 * Calculate force/pot: Force
273 */
274void
275nb_kernel_ElecEwSh_VdwLJSh_GeomP1P1_F_c
276 (t_nblist * gmx_restrict__restrict nlist,
277 rvec * gmx_restrict__restrict xx,
278 rvec * gmx_restrict__restrict ff,
279 t_forcerec * gmx_restrict__restrict fr,
280 t_mdatoms * gmx_restrict__restrict mdatoms,
281 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
282 t_nrnb * gmx_restrict__restrict nrnb)
283{
284 int i_shift_offset,i_coord_offset,j_coord_offset;
285 int j_index_start,j_index_end;
286 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
287 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
288 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
289 real *shiftvec,*fshift,*x,*f;
290 int vdwioffset0;
291 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
292 int vdwjidx0;
293 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
294 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
295 real velec,felec,velecsum,facel,crf,krf,krf2;
296 real *charge;
297 int nvdwtype;
298 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
299 int *vdwtype;
300 real *vdwparam;
301 int ewitab;
302 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
303 real *ewtab;
304
305 x = xx[0];
306 f = ff[0];
307
308 nri = nlist->nri;
309 iinr = nlist->iinr;
310 jindex = nlist->jindex;
311 jjnr = nlist->jjnr;
312 shiftidx = nlist->shift;
313 gid = nlist->gid;
314 shiftvec = fr->shift_vec[0];
315 fshift = fr->fshift[0];
316 facel = fr->epsfac;
317 charge = mdatoms->chargeA;
318 nvdwtype = fr->ntype;
319 vdwparam = fr->nbfp;
320 vdwtype = mdatoms->typeA;
321
322 sh_ewald = fr->ic->sh_ewald;
323 ewtab = fr->ic->tabq_coul_F;
324 ewtabscale = fr->ic->tabq_scale;
325 ewtabhalfspace = 0.5/ewtabscale;
Value stored to 'ewtabhalfspace' is never read
326
327 /* When we use explicit cutoffs the value must be identical for elec and VdW, so use elec as an arbitrary choice */
328 rcutoff = fr->rcoulomb;
329 rcutoff2 = rcutoff*rcutoff;
330
331 sh_vdw_invrcut6 = fr->ic->sh_invrc6;
332 rvdw = fr->rvdw;
333
334 outeriter = 0;
335 inneriter = 0;
336
337 /* Start outer loop over neighborlists */
338 for(iidx=0; iidx<nri; iidx++)
339 {
340 /* Load shift vector for this list */
341 i_shift_offset = DIM3*shiftidx[iidx];
342 shX = shiftvec[i_shift_offset+XX0];
343 shY = shiftvec[i_shift_offset+YY1];
344 shZ = shiftvec[i_shift_offset+ZZ2];
345
346 /* Load limits for loop over neighbors */
347 j_index_start = jindex[iidx];
348 j_index_end = jindex[iidx+1];
349
350 /* Get outer coordinate index */
351 inr = iinr[iidx];
352 i_coord_offset = DIM3*inr;
353
354 /* Load i particle coords and add shift vector */
355 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
356 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
357 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
358
359 fix0 = 0.0;
360 fiy0 = 0.0;
361 fiz0 = 0.0;
362
363 /* Load parameters for i particles */
364 iq0 = facel*charge[inr+0];
365 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
366
367 /* Start inner kernel loop */
368 for(jidx=j_index_start; jidx<j_index_end; jidx++)
369 {
370 /* Get j neighbor index, and coordinate index */
371 jnr = jjnr[jidx];
372 j_coord_offset = DIM3*jnr;
373
374 /* load j atom coordinates */
375 jx0 = x[j_coord_offset+DIM3*0+XX0];
376 jy0 = x[j_coord_offset+DIM3*0+YY1];
377 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
378
379 /* Calculate displacement vector */
380 dx00 = ix0 - jx0;
381 dy00 = iy0 - jy0;
382 dz00 = iz0 - jz0;
383
384 /* Calculate squared distance and things based on it */
385 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
386
387 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
388
389 rinvsq00 = rinv00*rinv00;
390
391 /* Load parameters for j particles */
392 jq0 = charge[jnr+0];
393 vdwjidx0 = 2*vdwtype[jnr+0];
394
395 /**************************
396 * CALCULATE INTERACTIONS *
397 **************************/
398
399 if (rsq00<rcutoff2)
400 {
401
402 r00 = rsq00*rinv00;
403
404 qq00 = iq0*jq0;
405 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
406 c12_00 = vdwparam[vdwioffset0+vdwjidx0+1];
407
408 /* EWALD ELECTROSTATICS */
409
410 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
411 ewrt = r00*ewtabscale;
412 ewitab = ewrt;
413 eweps = ewrt-ewitab;
414 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
415 felec = qq00*rinv00*(rinvsq00-felec);
416
417 /* LENNARD-JONES DISPERSION/REPULSION */
418
419 rinvsix = rinvsq00*rinvsq00*rinvsq00;
420 fvdw = (c12_00*rinvsix-c6_00)*rinvsix*rinvsq00;
421
422 fscal = felec+fvdw;
423
424 /* Calculate temporary vectorial force */
425 tx = fscal*dx00;
426 ty = fscal*dy00;
427 tz = fscal*dz00;
428
429 /* Update vectorial force */
430 fix0 += tx;
431 fiy0 += ty;
432 fiz0 += tz;
433 f[j_coord_offset+DIM3*0+XX0] -= tx;
434 f[j_coord_offset+DIM3*0+YY1] -= ty;
435 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
436
437 }
438
439 /* Inner loop uses 41 flops */
440 }
441 /* End of innermost loop */
442
443 tx = ty = tz = 0;
444 f[i_coord_offset+DIM3*0+XX0] += fix0;
445 f[i_coord_offset+DIM3*0+YY1] += fiy0;
446 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
447 tx += fix0;
448 ty += fiy0;
449 tz += fiz0;
450 fshift[i_shift_offset+XX0] += tx;
451 fshift[i_shift_offset+YY1] += ty;
452 fshift[i_shift_offset+ZZ2] += tz;
453
454 /* Increment number of inner iterations */
455 inneriter += j_index_end - j_index_start;
456
457 /* Outer loop uses 13 flops */
458 }
459
460 /* Increment number of outer iterations */
461 outeriter += nri;
462
463 /* Update outer/inner flops */
464
465 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*41)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_F] += outeriter*13 + inneriter
*41
;
466}