Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_c/nb_kernel_ElecEw_VdwBham_GeomP1P1_c.c
Location:line 104, column 5
Description:Value stored to 'sh_ewald' is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS c kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49/*
50 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwBham_GeomP1P1_VF_c
51 * Electrostatics interaction: Ewald
52 * VdW interaction: Buckingham
53 * Geometry: Particle-Particle
54 * Calculate force/pot: PotentialAndForce
55 */
56void
57nb_kernel_ElecEw_VdwBham_GeomP1P1_VF_c
58 (t_nblist * gmx_restrict__restrict nlist,
59 rvec * gmx_restrict__restrict xx,
60 rvec * gmx_restrict__restrict ff,
61 t_forcerec * gmx_restrict__restrict fr,
62 t_mdatoms * gmx_restrict__restrict mdatoms,
63 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
64 t_nrnb * gmx_restrict__restrict nrnb)
65{
66 int i_shift_offset,i_coord_offset,j_coord_offset;
67 int j_index_start,j_index_end;
68 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
69 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
70 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
71 real *shiftvec,*fshift,*x,*f;
72 int vdwioffset0;
73 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
74 int vdwjidx0;
75 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
76 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
77 real velec,felec,velecsum,facel,crf,krf,krf2;
78 real *charge;
79 int nvdwtype;
80 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
81 int *vdwtype;
82 real *vdwparam;
83 int ewitab;
84 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
85 real *ewtab;
86
87 x = xx[0];
88 f = ff[0];
89
90 nri = nlist->nri;
91 iinr = nlist->iinr;
92 jindex = nlist->jindex;
93 jjnr = nlist->jjnr;
94 shiftidx = nlist->shift;
95 gid = nlist->gid;
96 shiftvec = fr->shift_vec[0];
97 fshift = fr->fshift[0];
98 facel = fr->epsfac;
99 charge = mdatoms->chargeA;
100 nvdwtype = fr->ntype;
101 vdwparam = fr->nbfp;
102 vdwtype = mdatoms->typeA;
103
104 sh_ewald = fr->ic->sh_ewald;
Value stored to 'sh_ewald' is never read
105 ewtab = fr->ic->tabq_coul_FDV0;
106 ewtabscale = fr->ic->tabq_scale;
107 ewtabhalfspace = 0.5/ewtabscale;
108
109 outeriter = 0;
110 inneriter = 0;
111
112 /* Start outer loop over neighborlists */
113 for(iidx=0; iidx<nri; iidx++)
114 {
115 /* Load shift vector for this list */
116 i_shift_offset = DIM3*shiftidx[iidx];
117 shX = shiftvec[i_shift_offset+XX0];
118 shY = shiftvec[i_shift_offset+YY1];
119 shZ = shiftvec[i_shift_offset+ZZ2];
120
121 /* Load limits for loop over neighbors */
122 j_index_start = jindex[iidx];
123 j_index_end = jindex[iidx+1];
124
125 /* Get outer coordinate index */
126 inr = iinr[iidx];
127 i_coord_offset = DIM3*inr;
128
129 /* Load i particle coords and add shift vector */
130 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
131 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
132 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
133
134 fix0 = 0.0;
135 fiy0 = 0.0;
136 fiz0 = 0.0;
137
138 /* Load parameters for i particles */
139 iq0 = facel*charge[inr+0];
140 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
141
142 /* Reset potential sums */
143 velecsum = 0.0;
144 vvdwsum = 0.0;
145
146 /* Start inner kernel loop */
147 for(jidx=j_index_start; jidx<j_index_end; jidx++)
148 {
149 /* Get j neighbor index, and coordinate index */
150 jnr = jjnr[jidx];
151 j_coord_offset = DIM3*jnr;
152
153 /* load j atom coordinates */
154 jx0 = x[j_coord_offset+DIM3*0+XX0];
155 jy0 = x[j_coord_offset+DIM3*0+YY1];
156 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
157
158 /* Calculate displacement vector */
159 dx00 = ix0 - jx0;
160 dy00 = iy0 - jy0;
161 dz00 = iz0 - jz0;
162
163 /* Calculate squared distance and things based on it */
164 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
165
166 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
167
168 rinvsq00 = rinv00*rinv00;
169
170 /* Load parameters for j particles */
171 jq0 = charge[jnr+0];
172 vdwjidx0 = 3*vdwtype[jnr+0];
173
174 /**************************
175 * CALCULATE INTERACTIONS *
176 **************************/
177
178 r00 = rsq00*rinv00;
179
180 qq00 = iq0*jq0;
181 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
182 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
183 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
184
185 /* EWALD ELECTROSTATICS */
186
187 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
188 ewrt = r00*ewtabscale;
189 ewitab = ewrt;
190 eweps = ewrt-ewitab;
191 ewitab = 4*ewitab;
192 felec = ewtab[ewitab]+eweps*ewtab[ewitab+1];
193 velec = qq00*(rinv00-(ewtab[ewitab+2]-ewtabhalfspace*eweps*(ewtab[ewitab]+felec)));
194 felec = qq00*rinv00*(rinvsq00-felec);
195
196 /* BUCKINGHAM DISPERSION/REPULSION */
197 rinvsix = rinvsq00*rinvsq00*rinvsq00;
198 vvdw6 = c6_00*rinvsix;
199 br = cexp2_00*r00;
200 vvdwexp = cexp1_00*exp(-br);
201 vvdw = vvdwexp - vvdw6*(1.0/6.0);
202 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
203
204 /* Update potential sums from outer loop */
205 velecsum += velec;
206 vvdwsum += vvdw;
207
208 fscal = felec+fvdw;
209
210 /* Calculate temporary vectorial force */
211 tx = fscal*dx00;
212 ty = fscal*dy00;
213 tz = fscal*dz00;
214
215 /* Update vectorial force */
216 fix0 += tx;
217 fiy0 += ty;
218 fiz0 += tz;
219 f[j_coord_offset+DIM3*0+XX0] -= tx;
220 f[j_coord_offset+DIM3*0+YY1] -= ty;
221 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
222
223 /* Inner loop uses 79 flops */
224 }
225 /* End of innermost loop */
226
227 tx = ty = tz = 0;
228 f[i_coord_offset+DIM3*0+XX0] += fix0;
229 f[i_coord_offset+DIM3*0+YY1] += fiy0;
230 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
231 tx += fix0;
232 ty += fiy0;
233 tz += fiz0;
234 fshift[i_shift_offset+XX0] += tx;
235 fshift[i_shift_offset+YY1] += ty;
236 fshift[i_shift_offset+ZZ2] += tz;
237
238 ggid = gid[iidx];
239 /* Update potential energies */
240 kernel_data->energygrp_elec[ggid] += velecsum;
241 kernel_data->energygrp_vdw[ggid] += vvdwsum;
242
243 /* Increment number of inner iterations */
244 inneriter += j_index_end - j_index_start;
245
246 /* Outer loop uses 15 flops */
247 }
248
249 /* Increment number of outer iterations */
250 outeriter += nri;
251
252 /* Update outer/inner flops */
253
254 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_VF,outeriter*15 + inneriter*79)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_VF] += outeriter*15 + inneriter
*79
;
255}
256/*
257 * Gromacs nonbonded kernel: nb_kernel_ElecEw_VdwBham_GeomP1P1_F_c
258 * Electrostatics interaction: Ewald
259 * VdW interaction: Buckingham
260 * Geometry: Particle-Particle
261 * Calculate force/pot: Force
262 */
263void
264nb_kernel_ElecEw_VdwBham_GeomP1P1_F_c
265 (t_nblist * gmx_restrict__restrict nlist,
266 rvec * gmx_restrict__restrict xx,
267 rvec * gmx_restrict__restrict ff,
268 t_forcerec * gmx_restrict__restrict fr,
269 t_mdatoms * gmx_restrict__restrict mdatoms,
270 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict__restrict kernel_data,
271 t_nrnb * gmx_restrict__restrict nrnb)
272{
273 int i_shift_offset,i_coord_offset,j_coord_offset;
274 int j_index_start,j_index_end;
275 int nri,inr,ggid,iidx,jidx,jnr,outeriter,inneriter;
276 real shX,shY,shZ,tx,ty,tz,fscal,rcutoff,rcutoff2;
277 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
278 real *shiftvec,*fshift,*x,*f;
279 int vdwioffset0;
280 real ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
281 int vdwjidx0;
282 real jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
283 real dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00,cexp1_00,cexp2_00;
284 real velec,felec,velecsum,facel,crf,krf,krf2;
285 real *charge;
286 int nvdwtype;
287 real rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,br,vvdwexp,sh_vdw_invrcut6;
288 int *vdwtype;
289 real *vdwparam;
290 int ewitab;
291 real ewtabscale,eweps,sh_ewald,ewrt,ewtabhalfspace;
292 real *ewtab;
293
294 x = xx[0];
295 f = ff[0];
296
297 nri = nlist->nri;
298 iinr = nlist->iinr;
299 jindex = nlist->jindex;
300 jjnr = nlist->jjnr;
301 shiftidx = nlist->shift;
302 gid = nlist->gid;
303 shiftvec = fr->shift_vec[0];
304 fshift = fr->fshift[0];
305 facel = fr->epsfac;
306 charge = mdatoms->chargeA;
307 nvdwtype = fr->ntype;
308 vdwparam = fr->nbfp;
309 vdwtype = mdatoms->typeA;
310
311 sh_ewald = fr->ic->sh_ewald;
312 ewtab = fr->ic->tabq_coul_F;
313 ewtabscale = fr->ic->tabq_scale;
314 ewtabhalfspace = 0.5/ewtabscale;
315
316 outeriter = 0;
317 inneriter = 0;
318
319 /* Start outer loop over neighborlists */
320 for(iidx=0; iidx<nri; iidx++)
321 {
322 /* Load shift vector for this list */
323 i_shift_offset = DIM3*shiftidx[iidx];
324 shX = shiftvec[i_shift_offset+XX0];
325 shY = shiftvec[i_shift_offset+YY1];
326 shZ = shiftvec[i_shift_offset+ZZ2];
327
328 /* Load limits for loop over neighbors */
329 j_index_start = jindex[iidx];
330 j_index_end = jindex[iidx+1];
331
332 /* Get outer coordinate index */
333 inr = iinr[iidx];
334 i_coord_offset = DIM3*inr;
335
336 /* Load i particle coords and add shift vector */
337 ix0 = shX + x[i_coord_offset+DIM3*0+XX0];
338 iy0 = shY + x[i_coord_offset+DIM3*0+YY1];
339 iz0 = shZ + x[i_coord_offset+DIM3*0+ZZ2];
340
341 fix0 = 0.0;
342 fiy0 = 0.0;
343 fiz0 = 0.0;
344
345 /* Load parameters for i particles */
346 iq0 = facel*charge[inr+0];
347 vdwioffset0 = 3*nvdwtype*vdwtype[inr+0];
348
349 /* Start inner kernel loop */
350 for(jidx=j_index_start; jidx<j_index_end; jidx++)
351 {
352 /* Get j neighbor index, and coordinate index */
353 jnr = jjnr[jidx];
354 j_coord_offset = DIM3*jnr;
355
356 /* load j atom coordinates */
357 jx0 = x[j_coord_offset+DIM3*0+XX0];
358 jy0 = x[j_coord_offset+DIM3*0+YY1];
359 jz0 = x[j_coord_offset+DIM3*0+ZZ2];
360
361 /* Calculate displacement vector */
362 dx00 = ix0 - jx0;
363 dy00 = iy0 - jy0;
364 dz00 = iz0 - jz0;
365
366 /* Calculate squared distance and things based on it */
367 rsq00 = dx00*dx00+dy00*dy00+dz00*dz00;
368
369 rinv00 = gmx_invsqrt(rsq00)gmx_software_invsqrt(rsq00);
370
371 rinvsq00 = rinv00*rinv00;
372
373 /* Load parameters for j particles */
374 jq0 = charge[jnr+0];
375 vdwjidx0 = 3*vdwtype[jnr+0];
376
377 /**************************
378 * CALCULATE INTERACTIONS *
379 **************************/
380
381 r00 = rsq00*rinv00;
382
383 qq00 = iq0*jq0;
384 c6_00 = vdwparam[vdwioffset0+vdwjidx0];
385 cexp1_00 = vdwparam[vdwioffset0+vdwjidx0+1];
386 cexp2_00 = vdwparam[vdwioffset0+vdwjidx0+2];
387
388 /* EWALD ELECTROSTATICS */
389
390 /* Calculate Ewald table index by multiplying r with scale and truncate to integer */
391 ewrt = r00*ewtabscale;
392 ewitab = ewrt;
393 eweps = ewrt-ewitab;
394 felec = (1.0-eweps)*ewtab[ewitab]+eweps*ewtab[ewitab+1];
395 felec = qq00*rinv00*(rinvsq00-felec);
396
397 /* BUCKINGHAM DISPERSION/REPULSION */
398 rinvsix = rinvsq00*rinvsq00*rinvsq00;
399 vvdw6 = c6_00*rinvsix;
400 br = cexp2_00*r00;
401 vvdwexp = cexp1_00*exp(-br);
402 fvdw = (br*vvdwexp-vvdw6)*rinvsq00;
403
404 fscal = felec+fvdw;
405
406 /* Calculate temporary vectorial force */
407 tx = fscal*dx00;
408 ty = fscal*dy00;
409 tz = fscal*dz00;
410
411 /* Update vectorial force */
412 fix0 += tx;
413 fiy0 += ty;
414 fiz0 += tz;
415 f[j_coord_offset+DIM3*0+XX0] -= tx;
416 f[j_coord_offset+DIM3*0+YY1] -= ty;
417 f[j_coord_offset+DIM3*0+ZZ2] -= tz;
418
419 /* Inner loop uses 69 flops */
420 }
421 /* End of innermost loop */
422
423 tx = ty = tz = 0;
424 f[i_coord_offset+DIM3*0+XX0] += fix0;
425 f[i_coord_offset+DIM3*0+YY1] += fiy0;
426 f[i_coord_offset+DIM3*0+ZZ2] += fiz0;
427 tx += fix0;
428 ty += fiy0;
429 tz += fiz0;
430 fshift[i_shift_offset+XX0] += tx;
431 fshift[i_shift_offset+YY1] += ty;
432 fshift[i_shift_offset+ZZ2] += tz;
433
434 /* Increment number of inner iterations */
435 inneriter += j_index_end - j_index_start;
436
437 /* Outer loop uses 13 flops */
438 }
439
440 /* Increment number of outer iterations */
441 outeriter += nri;
442
443 /* Update outer/inner flops */
444
445 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_F,outeriter*13 + inneriter*69)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_F] += outeriter*13 + inneriter
*69
;
446}