Bug Summary

File:gromacs/gmxlib/nonbonded/nb_kernel_sse4_1_single/nb_kernel_ElecRF_VdwLJ_GeomW4P1_sse4_1_single.c
Location:line 681, column 22
Description:Value stored to 'one_twelfth' during its initialization is never read

Annotated Source Code

1/*
2 * This file is part of the GROMACS molecular simulation package.
3 *
4 * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5 * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6 * and including many others, as listed in the AUTHORS file in the
7 * top-level source directory and at http://www.gromacs.org.
8 *
9 * GROMACS is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public License
11 * as published by the Free Software Foundation; either version 2.1
12 * of the License, or (at your option) any later version.
13 *
14 * GROMACS is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with GROMACS; if not, see
21 * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
23 *
24 * If you want to redistribute modifications to GROMACS, please
25 * consider that scientific software is very special. Version
26 * control is crucial - bugs must be traceable. We will be happy to
27 * consider code for inclusion in the official distribution, but
28 * derived work must not be called official GROMACS. Details are found
29 * in the README & COPYING files - if they are missing, get the
30 * official version at http://www.gromacs.org.
31 *
32 * To help us fund GROMACS development, we humbly ask that you cite
33 * the research papers on the package. Check out http://www.gromacs.org.
34 */
35/*
36 * Note: this file was generated by the GROMACS sse4_1_single kernel generator.
37 */
38#ifdef HAVE_CONFIG_H1
39#include <config.h>
40#endif
41
42#include <math.h>
43
44#include "../nb_kernel.h"
45#include "types/simple.h"
46#include "gromacs/math/vec.h"
47#include "nrnb.h"
48
49#include "gromacs/simd/math_x86_sse4_1_single.h"
50#include "kernelutil_x86_sse4_1_single.h"
51
52/*
53 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwLJ_GeomW4P1_VF_sse4_1_single
54 * Electrostatics interaction: ReactionField
55 * VdW interaction: LennardJones
56 * Geometry: Water4-Particle
57 * Calculate force/pot: PotentialAndForce
58 */
59void
60nb_kernel_ElecRF_VdwLJ_GeomW4P1_VF_sse4_1_single
61 (t_nblist * gmx_restrict nlist,
62 rvec * gmx_restrict xx,
63 rvec * gmx_restrict ff,
64 t_forcerec * gmx_restrict fr,
65 t_mdatoms * gmx_restrict mdatoms,
66 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
67 t_nrnb * gmx_restrict nrnb)
68{
69 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
70 * just 0 for non-waters.
71 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
72 * jnr indices corresponding to data put in the four positions in the SIMD register.
73 */
74 int i_shift_offset,i_coord_offset,outeriter,inneriter;
75 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
76 int jnrA,jnrB,jnrC,jnrD;
77 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
78 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
79 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
80 real rcutoff_scalar;
81 real *shiftvec,*fshift,*x,*f;
82 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
83 real scratch[4*DIM3];
84 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
85 int vdwioffset0;
86 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
87 int vdwioffset1;
88 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
89 int vdwioffset2;
90 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
91 int vdwioffset3;
92 __m128 ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
93 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
94 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
95 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
96 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
97 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
98 __m128 dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
99 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
100 real *charge;
101 int nvdwtype;
102 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
103 int *vdwtype;
104 real *vdwparam;
105 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
106 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
107 __m128 dummy_mask,cutoff_mask;
108 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
109 __m128 one = _mm_set1_ps(1.0);
110 __m128 two = _mm_set1_ps(2.0);
111 x = xx[0];
112 f = ff[0];
113
114 nri = nlist->nri;
115 iinr = nlist->iinr;
116 jindex = nlist->jindex;
117 jjnr = nlist->jjnr;
118 shiftidx = nlist->shift;
119 gid = nlist->gid;
120 shiftvec = fr->shift_vec[0];
121 fshift = fr->fshift[0];
122 facel = _mm_set1_ps(fr->epsfac);
123 charge = mdatoms->chargeA;
124 krf = _mm_set1_ps(fr->ic->k_rf);
125 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
126 crf = _mm_set1_ps(fr->ic->c_rf);
127 nvdwtype = fr->ntype;
128 vdwparam = fr->nbfp;
129 vdwtype = mdatoms->typeA;
130
131 /* Setup water-specific parameters */
132 inr = nlist->iinr[0];
133 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
134 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
135 iq3 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
136 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
137
138 /* Avoid stupid compiler warnings */
139 jnrA = jnrB = jnrC = jnrD = 0;
140 j_coord_offsetA = 0;
141 j_coord_offsetB = 0;
142 j_coord_offsetC = 0;
143 j_coord_offsetD = 0;
144
145 outeriter = 0;
146 inneriter = 0;
147
148 for(iidx=0;iidx<4*DIM3;iidx++)
149 {
150 scratch[iidx] = 0.0;
151 }
152
153 /* Start outer loop over neighborlists */
154 for(iidx=0; iidx<nri; iidx++)
155 {
156 /* Load shift vector for this list */
157 i_shift_offset = DIM3*shiftidx[iidx];
158
159 /* Load limits for loop over neighbors */
160 j_index_start = jindex[iidx];
161 j_index_end = jindex[iidx+1];
162
163 /* Get outer coordinate index */
164 inr = iinr[iidx];
165 i_coord_offset = DIM3*inr;
166
167 /* Load i particle coords and add shift vector */
168 gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
169 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
170
171 fix0 = _mm_setzero_ps();
172 fiy0 = _mm_setzero_ps();
173 fiz0 = _mm_setzero_ps();
174 fix1 = _mm_setzero_ps();
175 fiy1 = _mm_setzero_ps();
176 fiz1 = _mm_setzero_ps();
177 fix2 = _mm_setzero_ps();
178 fiy2 = _mm_setzero_ps();
179 fiz2 = _mm_setzero_ps();
180 fix3 = _mm_setzero_ps();
181 fiy3 = _mm_setzero_ps();
182 fiz3 = _mm_setzero_ps();
183
184 /* Reset potential sums */
185 velecsum = _mm_setzero_ps();
186 vvdwsum = _mm_setzero_ps();
187
188 /* Start inner kernel loop */
189 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
190 {
191
192 /* Get j neighbor index, and coordinate index */
193 jnrA = jjnr[jidx];
194 jnrB = jjnr[jidx+1];
195 jnrC = jjnr[jidx+2];
196 jnrD = jjnr[jidx+3];
197 j_coord_offsetA = DIM3*jnrA;
198 j_coord_offsetB = DIM3*jnrB;
199 j_coord_offsetC = DIM3*jnrC;
200 j_coord_offsetD = DIM3*jnrD;
201
202 /* load j atom coordinates */
203 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
204 x+j_coord_offsetC,x+j_coord_offsetD,
205 &jx0,&jy0,&jz0);
206
207 /* Calculate displacement vector */
208 dx00 = _mm_sub_ps(ix0,jx0);
209 dy00 = _mm_sub_ps(iy0,jy0);
210 dz00 = _mm_sub_ps(iz0,jz0);
211 dx10 = _mm_sub_ps(ix1,jx0);
212 dy10 = _mm_sub_ps(iy1,jy0);
213 dz10 = _mm_sub_ps(iz1,jz0);
214 dx20 = _mm_sub_ps(ix2,jx0);
215 dy20 = _mm_sub_ps(iy2,jy0);
216 dz20 = _mm_sub_ps(iz2,jz0);
217 dx30 = _mm_sub_ps(ix3,jx0);
218 dy30 = _mm_sub_ps(iy3,jy0);
219 dz30 = _mm_sub_ps(iz3,jz0);
220
221 /* Calculate squared distance and things based on it */
222 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
223 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
224 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
225 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
226
227 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
228 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
229 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
230
231 rinvsq00 = gmx_mm_inv_psgmx_simd_inv_f(rsq00);
232 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
233 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
234 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
235
236 /* Load parameters for j particles */
237 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
238 charge+jnrC+0,charge+jnrD+0);
239 vdwjidx0A = 2*vdwtype[jnrA+0];
240 vdwjidx0B = 2*vdwtype[jnrB+0];
241 vdwjidx0C = 2*vdwtype[jnrC+0];
242 vdwjidx0D = 2*vdwtype[jnrD+0];
243
244 fjx0 = _mm_setzero_ps();
245 fjy0 = _mm_setzero_ps();
246 fjz0 = _mm_setzero_ps();
247
248 /**************************
249 * CALCULATE INTERACTIONS *
250 **************************/
251
252 /* Compute parameters for interactions between i and j atoms */
253 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
254 vdwparam+vdwioffset0+vdwjidx0B,
255 vdwparam+vdwioffset0+vdwjidx0C,
256 vdwparam+vdwioffset0+vdwjidx0D,
257 &c6_00,&c12_00);
258
259 /* LENNARD-JONES DISPERSION/REPULSION */
260
261 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
262 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
263 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
264 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
265 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
266
267 /* Update potential sum for this i atom from the interaction with this j atom. */
268 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
269
270 fscal = fvdw;
271
272 /* Calculate temporary vectorial force */
273 tx = _mm_mul_ps(fscal,dx00);
274 ty = _mm_mul_ps(fscal,dy00);
275 tz = _mm_mul_ps(fscal,dz00);
276
277 /* Update vectorial force */
278 fix0 = _mm_add_ps(fix0,tx);
279 fiy0 = _mm_add_ps(fiy0,ty);
280 fiz0 = _mm_add_ps(fiz0,tz);
281
282 fjx0 = _mm_add_ps(fjx0,tx);
283 fjy0 = _mm_add_ps(fjy0,ty);
284 fjz0 = _mm_add_ps(fjz0,tz);
285
286 /**************************
287 * CALCULATE INTERACTIONS *
288 **************************/
289
290 /* Compute parameters for interactions between i and j atoms */
291 qq10 = _mm_mul_ps(iq1,jq0);
292
293 /* REACTION-FIELD ELECTROSTATICS */
294 velec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
295 felec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
296
297 /* Update potential sum for this i atom from the interaction with this j atom. */
298 velecsum = _mm_add_ps(velecsum,velec);
299
300 fscal = felec;
301
302 /* Calculate temporary vectorial force */
303 tx = _mm_mul_ps(fscal,dx10);
304 ty = _mm_mul_ps(fscal,dy10);
305 tz = _mm_mul_ps(fscal,dz10);
306
307 /* Update vectorial force */
308 fix1 = _mm_add_ps(fix1,tx);
309 fiy1 = _mm_add_ps(fiy1,ty);
310 fiz1 = _mm_add_ps(fiz1,tz);
311
312 fjx0 = _mm_add_ps(fjx0,tx);
313 fjy0 = _mm_add_ps(fjy0,ty);
314 fjz0 = _mm_add_ps(fjz0,tz);
315
316 /**************************
317 * CALCULATE INTERACTIONS *
318 **************************/
319
320 /* Compute parameters for interactions between i and j atoms */
321 qq20 = _mm_mul_ps(iq2,jq0);
322
323 /* REACTION-FIELD ELECTROSTATICS */
324 velec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
325 felec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
326
327 /* Update potential sum for this i atom from the interaction with this j atom. */
328 velecsum = _mm_add_ps(velecsum,velec);
329
330 fscal = felec;
331
332 /* Calculate temporary vectorial force */
333 tx = _mm_mul_ps(fscal,dx20);
334 ty = _mm_mul_ps(fscal,dy20);
335 tz = _mm_mul_ps(fscal,dz20);
336
337 /* Update vectorial force */
338 fix2 = _mm_add_ps(fix2,tx);
339 fiy2 = _mm_add_ps(fiy2,ty);
340 fiz2 = _mm_add_ps(fiz2,tz);
341
342 fjx0 = _mm_add_ps(fjx0,tx);
343 fjy0 = _mm_add_ps(fjy0,ty);
344 fjz0 = _mm_add_ps(fjz0,tz);
345
346 /**************************
347 * CALCULATE INTERACTIONS *
348 **************************/
349
350 /* Compute parameters for interactions between i and j atoms */
351 qq30 = _mm_mul_ps(iq3,jq0);
352
353 /* REACTION-FIELD ELECTROSTATICS */
354 velec = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
355 felec = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
356
357 /* Update potential sum for this i atom from the interaction with this j atom. */
358 velecsum = _mm_add_ps(velecsum,velec);
359
360 fscal = felec;
361
362 /* Calculate temporary vectorial force */
363 tx = _mm_mul_ps(fscal,dx30);
364 ty = _mm_mul_ps(fscal,dy30);
365 tz = _mm_mul_ps(fscal,dz30);
366
367 /* Update vectorial force */
368 fix3 = _mm_add_ps(fix3,tx);
369 fiy3 = _mm_add_ps(fiy3,ty);
370 fiz3 = _mm_add_ps(fiz3,tz);
371
372 fjx0 = _mm_add_ps(fjx0,tx);
373 fjy0 = _mm_add_ps(fjy0,ty);
374 fjz0 = _mm_add_ps(fjz0,tz);
375
376 fjptrA = f+j_coord_offsetA;
377 fjptrB = f+j_coord_offsetB;
378 fjptrC = f+j_coord_offsetC;
379 fjptrD = f+j_coord_offsetD;
380
381 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
382
383 /* Inner loop uses 128 flops */
384 }
385
386 if(jidx<j_index_end)
387 {
388
389 /* Get j neighbor index, and coordinate index */
390 jnrlistA = jjnr[jidx];
391 jnrlistB = jjnr[jidx+1];
392 jnrlistC = jjnr[jidx+2];
393 jnrlistD = jjnr[jidx+3];
394 /* Sign of each element will be negative for non-real atoms.
395 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
396 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
397 */
398 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
399 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
400 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
401 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
402 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
403 j_coord_offsetA = DIM3*jnrA;
404 j_coord_offsetB = DIM3*jnrB;
405 j_coord_offsetC = DIM3*jnrC;
406 j_coord_offsetD = DIM3*jnrD;
407
408 /* load j atom coordinates */
409 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
410 x+j_coord_offsetC,x+j_coord_offsetD,
411 &jx0,&jy0,&jz0);
412
413 /* Calculate displacement vector */
414 dx00 = _mm_sub_ps(ix0,jx0);
415 dy00 = _mm_sub_ps(iy0,jy0);
416 dz00 = _mm_sub_ps(iz0,jz0);
417 dx10 = _mm_sub_ps(ix1,jx0);
418 dy10 = _mm_sub_ps(iy1,jy0);
419 dz10 = _mm_sub_ps(iz1,jz0);
420 dx20 = _mm_sub_ps(ix2,jx0);
421 dy20 = _mm_sub_ps(iy2,jy0);
422 dz20 = _mm_sub_ps(iz2,jz0);
423 dx30 = _mm_sub_ps(ix3,jx0);
424 dy30 = _mm_sub_ps(iy3,jy0);
425 dz30 = _mm_sub_ps(iz3,jz0);
426
427 /* Calculate squared distance and things based on it */
428 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
429 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
430 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
431 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
432
433 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
434 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
435 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
436
437 rinvsq00 = gmx_mm_inv_psgmx_simd_inv_f(rsq00);
438 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
439 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
440 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
441
442 /* Load parameters for j particles */
443 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
444 charge+jnrC+0,charge+jnrD+0);
445 vdwjidx0A = 2*vdwtype[jnrA+0];
446 vdwjidx0B = 2*vdwtype[jnrB+0];
447 vdwjidx0C = 2*vdwtype[jnrC+0];
448 vdwjidx0D = 2*vdwtype[jnrD+0];
449
450 fjx0 = _mm_setzero_ps();
451 fjy0 = _mm_setzero_ps();
452 fjz0 = _mm_setzero_ps();
453
454 /**************************
455 * CALCULATE INTERACTIONS *
456 **************************/
457
458 /* Compute parameters for interactions between i and j atoms */
459 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
460 vdwparam+vdwioffset0+vdwjidx0B,
461 vdwparam+vdwioffset0+vdwjidx0C,
462 vdwparam+vdwioffset0+vdwjidx0D,
463 &c6_00,&c12_00);
464
465 /* LENNARD-JONES DISPERSION/REPULSION */
466
467 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
468 vvdw6 = _mm_mul_ps(c6_00,rinvsix);
469 vvdw12 = _mm_mul_ps(c12_00,_mm_mul_ps(rinvsix,rinvsix));
470 vvdw = _mm_sub_ps( _mm_mul_ps(vvdw12,one_twelfth) , _mm_mul_ps(vvdw6,one_sixth) );
471 fvdw = _mm_mul_ps(_mm_sub_ps(vvdw12,vvdw6),rinvsq00);
472
473 /* Update potential sum for this i atom from the interaction with this j atom. */
474 vvdw = _mm_andnot_ps(dummy_mask,vvdw);
475 vvdwsum = _mm_add_ps(vvdwsum,vvdw);
476
477 fscal = fvdw;
478
479 fscal = _mm_andnot_ps(dummy_mask,fscal);
480
481 /* Calculate temporary vectorial force */
482 tx = _mm_mul_ps(fscal,dx00);
483 ty = _mm_mul_ps(fscal,dy00);
484 tz = _mm_mul_ps(fscal,dz00);
485
486 /* Update vectorial force */
487 fix0 = _mm_add_ps(fix0,tx);
488 fiy0 = _mm_add_ps(fiy0,ty);
489 fiz0 = _mm_add_ps(fiz0,tz);
490
491 fjx0 = _mm_add_ps(fjx0,tx);
492 fjy0 = _mm_add_ps(fjy0,ty);
493 fjz0 = _mm_add_ps(fjz0,tz);
494
495 /**************************
496 * CALCULATE INTERACTIONS *
497 **************************/
498
499 /* Compute parameters for interactions between i and j atoms */
500 qq10 = _mm_mul_ps(iq1,jq0);
501
502 /* REACTION-FIELD ELECTROSTATICS */
503 velec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_add_ps(rinv10,_mm_mul_ps(krf,rsq10)),crf));
504 felec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
505
506 /* Update potential sum for this i atom from the interaction with this j atom. */
507 velec = _mm_andnot_ps(dummy_mask,velec);
508 velecsum = _mm_add_ps(velecsum,velec);
509
510 fscal = felec;
511
512 fscal = _mm_andnot_ps(dummy_mask,fscal);
513
514 /* Calculate temporary vectorial force */
515 tx = _mm_mul_ps(fscal,dx10);
516 ty = _mm_mul_ps(fscal,dy10);
517 tz = _mm_mul_ps(fscal,dz10);
518
519 /* Update vectorial force */
520 fix1 = _mm_add_ps(fix1,tx);
521 fiy1 = _mm_add_ps(fiy1,ty);
522 fiz1 = _mm_add_ps(fiz1,tz);
523
524 fjx0 = _mm_add_ps(fjx0,tx);
525 fjy0 = _mm_add_ps(fjy0,ty);
526 fjz0 = _mm_add_ps(fjz0,tz);
527
528 /**************************
529 * CALCULATE INTERACTIONS *
530 **************************/
531
532 /* Compute parameters for interactions between i and j atoms */
533 qq20 = _mm_mul_ps(iq2,jq0);
534
535 /* REACTION-FIELD ELECTROSTATICS */
536 velec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_add_ps(rinv20,_mm_mul_ps(krf,rsq20)),crf));
537 felec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
538
539 /* Update potential sum for this i atom from the interaction with this j atom. */
540 velec = _mm_andnot_ps(dummy_mask,velec);
541 velecsum = _mm_add_ps(velecsum,velec);
542
543 fscal = felec;
544
545 fscal = _mm_andnot_ps(dummy_mask,fscal);
546
547 /* Calculate temporary vectorial force */
548 tx = _mm_mul_ps(fscal,dx20);
549 ty = _mm_mul_ps(fscal,dy20);
550 tz = _mm_mul_ps(fscal,dz20);
551
552 /* Update vectorial force */
553 fix2 = _mm_add_ps(fix2,tx);
554 fiy2 = _mm_add_ps(fiy2,ty);
555 fiz2 = _mm_add_ps(fiz2,tz);
556
557 fjx0 = _mm_add_ps(fjx0,tx);
558 fjy0 = _mm_add_ps(fjy0,ty);
559 fjz0 = _mm_add_ps(fjz0,tz);
560
561 /**************************
562 * CALCULATE INTERACTIONS *
563 **************************/
564
565 /* Compute parameters for interactions between i and j atoms */
566 qq30 = _mm_mul_ps(iq3,jq0);
567
568 /* REACTION-FIELD ELECTROSTATICS */
569 velec = _mm_mul_ps(qq30,_mm_sub_ps(_mm_add_ps(rinv30,_mm_mul_ps(krf,rsq30)),crf));
570 felec = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
571
572 /* Update potential sum for this i atom from the interaction with this j atom. */
573 velec = _mm_andnot_ps(dummy_mask,velec);
574 velecsum = _mm_add_ps(velecsum,velec);
575
576 fscal = felec;
577
578 fscal = _mm_andnot_ps(dummy_mask,fscal);
579
580 /* Calculate temporary vectorial force */
581 tx = _mm_mul_ps(fscal,dx30);
582 ty = _mm_mul_ps(fscal,dy30);
583 tz = _mm_mul_ps(fscal,dz30);
584
585 /* Update vectorial force */
586 fix3 = _mm_add_ps(fix3,tx);
587 fiy3 = _mm_add_ps(fiy3,ty);
588 fiz3 = _mm_add_ps(fiz3,tz);
589
590 fjx0 = _mm_add_ps(fjx0,tx);
591 fjy0 = _mm_add_ps(fjy0,ty);
592 fjz0 = _mm_add_ps(fjz0,tz);
593
594 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
595 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
596 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
597 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
598
599 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
600
601 /* Inner loop uses 128 flops */
602 }
603
604 /* End of innermost loop */
605
606 gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
607 f+i_coord_offset,fshift+i_shift_offset);
608
609 ggid = gid[iidx];
610 /* Update potential energies */
611 gmx_mm_update_1pot_ps(velecsum,kernel_data->energygrp_elec+ggid);
612 gmx_mm_update_1pot_ps(vvdwsum,kernel_data->energygrp_vdw+ggid);
613
614 /* Increment number of inner iterations */
615 inneriter += j_index_end - j_index_start;
616
617 /* Outer loop uses 26 flops */
618 }
619
620 /* Increment number of outer iterations */
621 outeriter += nri;
622
623 /* Update outer/inner flops */
624
625 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_VF,outeriter*26 + inneriter*128)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_VF] += outeriter*26 + inneriter
*128
;
626}
627/*
628 * Gromacs nonbonded kernel: nb_kernel_ElecRF_VdwLJ_GeomW4P1_F_sse4_1_single
629 * Electrostatics interaction: ReactionField
630 * VdW interaction: LennardJones
631 * Geometry: Water4-Particle
632 * Calculate force/pot: Force
633 */
634void
635nb_kernel_ElecRF_VdwLJ_GeomW4P1_F_sse4_1_single
636 (t_nblist * gmx_restrict nlist,
637 rvec * gmx_restrict xx,
638 rvec * gmx_restrict ff,
639 t_forcerec * gmx_restrict fr,
640 t_mdatoms * gmx_restrict mdatoms,
641 nb_kernel_data_t gmx_unused__attribute__ ((unused)) * gmx_restrict kernel_data,
642 t_nrnb * gmx_restrict nrnb)
643{
644 /* Suffixes 0,1,2,3 refer to particle indices for waters in the inner or outer loop, or
645 * just 0 for non-waters.
646 * Suffixes A,B,C,D refer to j loop unrolling done with SSE, e.g. for the four different
647 * jnr indices corresponding to data put in the four positions in the SIMD register.
648 */
649 int i_shift_offset,i_coord_offset,outeriter,inneriter;
650 int j_index_start,j_index_end,jidx,nri,inr,ggid,iidx;
651 int jnrA,jnrB,jnrC,jnrD;
652 int jnrlistA,jnrlistB,jnrlistC,jnrlistD;
653 int j_coord_offsetA,j_coord_offsetB,j_coord_offsetC,j_coord_offsetD;
654 int *iinr,*jindex,*jjnr,*shiftidx,*gid;
655 real rcutoff_scalar;
656 real *shiftvec,*fshift,*x,*f;
657 real *fjptrA,*fjptrB,*fjptrC,*fjptrD;
658 real scratch[4*DIM3];
659 __m128 tx,ty,tz,fscal,rcutoff,rcutoff2,jidxall;
660 int vdwioffset0;
661 __m128 ix0,iy0,iz0,fix0,fiy0,fiz0,iq0,isai0;
662 int vdwioffset1;
663 __m128 ix1,iy1,iz1,fix1,fiy1,fiz1,iq1,isai1;
664 int vdwioffset2;
665 __m128 ix2,iy2,iz2,fix2,fiy2,fiz2,iq2,isai2;
666 int vdwioffset3;
667 __m128 ix3,iy3,iz3,fix3,fiy3,fiz3,iq3,isai3;
668 int vdwjidx0A,vdwjidx0B,vdwjidx0C,vdwjidx0D;
669 __m128 jx0,jy0,jz0,fjx0,fjy0,fjz0,jq0,isaj0;
670 __m128 dx00,dy00,dz00,rsq00,rinv00,rinvsq00,r00,qq00,c6_00,c12_00;
671 __m128 dx10,dy10,dz10,rsq10,rinv10,rinvsq10,r10,qq10,c6_10,c12_10;
672 __m128 dx20,dy20,dz20,rsq20,rinv20,rinvsq20,r20,qq20,c6_20,c12_20;
673 __m128 dx30,dy30,dz30,rsq30,rinv30,rinvsq30,r30,qq30,c6_30,c12_30;
674 __m128 velec,felec,velecsum,facel,crf,krf,krf2;
675 real *charge;
676 int nvdwtype;
677 __m128 rinvsix,rvdw,vvdw,vvdw6,vvdw12,fvdw,fvdw6,fvdw12,vvdwsum,sh_vdw_invrcut6;
678 int *vdwtype;
679 real *vdwparam;
680 __m128 one_sixth = _mm_set1_ps(1.0/6.0);
681 __m128 one_twelfth = _mm_set1_ps(1.0/12.0);
Value stored to 'one_twelfth' during its initialization is never read
682 __m128 dummy_mask,cutoff_mask;
683 __m128 signbit = _mm_castsi128_ps( _mm_set1_epi32(0x80000000) );
684 __m128 one = _mm_set1_ps(1.0);
685 __m128 two = _mm_set1_ps(2.0);
686 x = xx[0];
687 f = ff[0];
688
689 nri = nlist->nri;
690 iinr = nlist->iinr;
691 jindex = nlist->jindex;
692 jjnr = nlist->jjnr;
693 shiftidx = nlist->shift;
694 gid = nlist->gid;
695 shiftvec = fr->shift_vec[0];
696 fshift = fr->fshift[0];
697 facel = _mm_set1_ps(fr->epsfac);
698 charge = mdatoms->chargeA;
699 krf = _mm_set1_ps(fr->ic->k_rf);
700 krf2 = _mm_set1_ps(fr->ic->k_rf*2.0);
701 crf = _mm_set1_ps(fr->ic->c_rf);
702 nvdwtype = fr->ntype;
703 vdwparam = fr->nbfp;
704 vdwtype = mdatoms->typeA;
705
706 /* Setup water-specific parameters */
707 inr = nlist->iinr[0];
708 iq1 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+1]));
709 iq2 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+2]));
710 iq3 = _mm_mul_ps(facel,_mm_set1_ps(charge[inr+3]));
711 vdwioffset0 = 2*nvdwtype*vdwtype[inr+0];
712
713 /* Avoid stupid compiler warnings */
714 jnrA = jnrB = jnrC = jnrD = 0;
715 j_coord_offsetA = 0;
716 j_coord_offsetB = 0;
717 j_coord_offsetC = 0;
718 j_coord_offsetD = 0;
719
720 outeriter = 0;
721 inneriter = 0;
722
723 for(iidx=0;iidx<4*DIM3;iidx++)
724 {
725 scratch[iidx] = 0.0;
726 }
727
728 /* Start outer loop over neighborlists */
729 for(iidx=0; iidx<nri; iidx++)
730 {
731 /* Load shift vector for this list */
732 i_shift_offset = DIM3*shiftidx[iidx];
733
734 /* Load limits for loop over neighbors */
735 j_index_start = jindex[iidx];
736 j_index_end = jindex[iidx+1];
737
738 /* Get outer coordinate index */
739 inr = iinr[iidx];
740 i_coord_offset = DIM3*inr;
741
742 /* Load i particle coords and add shift vector */
743 gmx_mm_load_shift_and_4rvec_broadcast_ps(shiftvec+i_shift_offset,x+i_coord_offset,
744 &ix0,&iy0,&iz0,&ix1,&iy1,&iz1,&ix2,&iy2,&iz2,&ix3,&iy3,&iz3);
745
746 fix0 = _mm_setzero_ps();
747 fiy0 = _mm_setzero_ps();
748 fiz0 = _mm_setzero_ps();
749 fix1 = _mm_setzero_ps();
750 fiy1 = _mm_setzero_ps();
751 fiz1 = _mm_setzero_ps();
752 fix2 = _mm_setzero_ps();
753 fiy2 = _mm_setzero_ps();
754 fiz2 = _mm_setzero_ps();
755 fix3 = _mm_setzero_ps();
756 fiy3 = _mm_setzero_ps();
757 fiz3 = _mm_setzero_ps();
758
759 /* Start inner kernel loop */
760 for(jidx=j_index_start; jidx<j_index_end && jjnr[jidx+3]>=0; jidx+=4)
761 {
762
763 /* Get j neighbor index, and coordinate index */
764 jnrA = jjnr[jidx];
765 jnrB = jjnr[jidx+1];
766 jnrC = jjnr[jidx+2];
767 jnrD = jjnr[jidx+3];
768 j_coord_offsetA = DIM3*jnrA;
769 j_coord_offsetB = DIM3*jnrB;
770 j_coord_offsetC = DIM3*jnrC;
771 j_coord_offsetD = DIM3*jnrD;
772
773 /* load j atom coordinates */
774 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
775 x+j_coord_offsetC,x+j_coord_offsetD,
776 &jx0,&jy0,&jz0);
777
778 /* Calculate displacement vector */
779 dx00 = _mm_sub_ps(ix0,jx0);
780 dy00 = _mm_sub_ps(iy0,jy0);
781 dz00 = _mm_sub_ps(iz0,jz0);
782 dx10 = _mm_sub_ps(ix1,jx0);
783 dy10 = _mm_sub_ps(iy1,jy0);
784 dz10 = _mm_sub_ps(iz1,jz0);
785 dx20 = _mm_sub_ps(ix2,jx0);
786 dy20 = _mm_sub_ps(iy2,jy0);
787 dz20 = _mm_sub_ps(iz2,jz0);
788 dx30 = _mm_sub_ps(ix3,jx0);
789 dy30 = _mm_sub_ps(iy3,jy0);
790 dz30 = _mm_sub_ps(iz3,jz0);
791
792 /* Calculate squared distance and things based on it */
793 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
794 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
795 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
796 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
797
798 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
799 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
800 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
801
802 rinvsq00 = gmx_mm_inv_psgmx_simd_inv_f(rsq00);
803 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
804 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
805 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
806
807 /* Load parameters for j particles */
808 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
809 charge+jnrC+0,charge+jnrD+0);
810 vdwjidx0A = 2*vdwtype[jnrA+0];
811 vdwjidx0B = 2*vdwtype[jnrB+0];
812 vdwjidx0C = 2*vdwtype[jnrC+0];
813 vdwjidx0D = 2*vdwtype[jnrD+0];
814
815 fjx0 = _mm_setzero_ps();
816 fjy0 = _mm_setzero_ps();
817 fjz0 = _mm_setzero_ps();
818
819 /**************************
820 * CALCULATE INTERACTIONS *
821 **************************/
822
823 /* Compute parameters for interactions between i and j atoms */
824 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
825 vdwparam+vdwioffset0+vdwjidx0B,
826 vdwparam+vdwioffset0+vdwjidx0C,
827 vdwparam+vdwioffset0+vdwjidx0D,
828 &c6_00,&c12_00);
829
830 /* LENNARD-JONES DISPERSION/REPULSION */
831
832 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
833 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
834
835 fscal = fvdw;
836
837 /* Calculate temporary vectorial force */
838 tx = _mm_mul_ps(fscal,dx00);
839 ty = _mm_mul_ps(fscal,dy00);
840 tz = _mm_mul_ps(fscal,dz00);
841
842 /* Update vectorial force */
843 fix0 = _mm_add_ps(fix0,tx);
844 fiy0 = _mm_add_ps(fiy0,ty);
845 fiz0 = _mm_add_ps(fiz0,tz);
846
847 fjx0 = _mm_add_ps(fjx0,tx);
848 fjy0 = _mm_add_ps(fjy0,ty);
849 fjz0 = _mm_add_ps(fjz0,tz);
850
851 /**************************
852 * CALCULATE INTERACTIONS *
853 **************************/
854
855 /* Compute parameters for interactions between i and j atoms */
856 qq10 = _mm_mul_ps(iq1,jq0);
857
858 /* REACTION-FIELD ELECTROSTATICS */
859 felec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
860
861 fscal = felec;
862
863 /* Calculate temporary vectorial force */
864 tx = _mm_mul_ps(fscal,dx10);
865 ty = _mm_mul_ps(fscal,dy10);
866 tz = _mm_mul_ps(fscal,dz10);
867
868 /* Update vectorial force */
869 fix1 = _mm_add_ps(fix1,tx);
870 fiy1 = _mm_add_ps(fiy1,ty);
871 fiz1 = _mm_add_ps(fiz1,tz);
872
873 fjx0 = _mm_add_ps(fjx0,tx);
874 fjy0 = _mm_add_ps(fjy0,ty);
875 fjz0 = _mm_add_ps(fjz0,tz);
876
877 /**************************
878 * CALCULATE INTERACTIONS *
879 **************************/
880
881 /* Compute parameters for interactions between i and j atoms */
882 qq20 = _mm_mul_ps(iq2,jq0);
883
884 /* REACTION-FIELD ELECTROSTATICS */
885 felec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
886
887 fscal = felec;
888
889 /* Calculate temporary vectorial force */
890 tx = _mm_mul_ps(fscal,dx20);
891 ty = _mm_mul_ps(fscal,dy20);
892 tz = _mm_mul_ps(fscal,dz20);
893
894 /* Update vectorial force */
895 fix2 = _mm_add_ps(fix2,tx);
896 fiy2 = _mm_add_ps(fiy2,ty);
897 fiz2 = _mm_add_ps(fiz2,tz);
898
899 fjx0 = _mm_add_ps(fjx0,tx);
900 fjy0 = _mm_add_ps(fjy0,ty);
901 fjz0 = _mm_add_ps(fjz0,tz);
902
903 /**************************
904 * CALCULATE INTERACTIONS *
905 **************************/
906
907 /* Compute parameters for interactions between i and j atoms */
908 qq30 = _mm_mul_ps(iq3,jq0);
909
910 /* REACTION-FIELD ELECTROSTATICS */
911 felec = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
912
913 fscal = felec;
914
915 /* Calculate temporary vectorial force */
916 tx = _mm_mul_ps(fscal,dx30);
917 ty = _mm_mul_ps(fscal,dy30);
918 tz = _mm_mul_ps(fscal,dz30);
919
920 /* Update vectorial force */
921 fix3 = _mm_add_ps(fix3,tx);
922 fiy3 = _mm_add_ps(fiy3,ty);
923 fiz3 = _mm_add_ps(fiz3,tz);
924
925 fjx0 = _mm_add_ps(fjx0,tx);
926 fjy0 = _mm_add_ps(fjy0,ty);
927 fjz0 = _mm_add_ps(fjz0,tz);
928
929 fjptrA = f+j_coord_offsetA;
930 fjptrB = f+j_coord_offsetB;
931 fjptrC = f+j_coord_offsetC;
932 fjptrD = f+j_coord_offsetD;
933
934 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
935
936 /* Inner loop uses 108 flops */
937 }
938
939 if(jidx<j_index_end)
940 {
941
942 /* Get j neighbor index, and coordinate index */
943 jnrlistA = jjnr[jidx];
944 jnrlistB = jjnr[jidx+1];
945 jnrlistC = jjnr[jidx+2];
946 jnrlistD = jjnr[jidx+3];
947 /* Sign of each element will be negative for non-real atoms.
948 * This mask will be 0xFFFFFFFF for dummy entries and 0x0 for real ones,
949 * so use it as val = _mm_andnot_ps(mask,val) to clear dummy entries.
950 */
951 dummy_mask = gmx_mm_castsi128_ps_mm_castsi128_ps(_mm_cmplt_epi32(_mm_loadu_si128((const __m128i *)(jjnr+jidx)),_mm_setzero_si128()));
952 jnrA = (jnrlistA>=0) ? jnrlistA : 0;
953 jnrB = (jnrlistB>=0) ? jnrlistB : 0;
954 jnrC = (jnrlistC>=0) ? jnrlistC : 0;
955 jnrD = (jnrlistD>=0) ? jnrlistD : 0;
956 j_coord_offsetA = DIM3*jnrA;
957 j_coord_offsetB = DIM3*jnrB;
958 j_coord_offsetC = DIM3*jnrC;
959 j_coord_offsetD = DIM3*jnrD;
960
961 /* load j atom coordinates */
962 gmx_mm_load_1rvec_4ptr_swizzle_ps(x+j_coord_offsetA,x+j_coord_offsetB,
963 x+j_coord_offsetC,x+j_coord_offsetD,
964 &jx0,&jy0,&jz0);
965
966 /* Calculate displacement vector */
967 dx00 = _mm_sub_ps(ix0,jx0);
968 dy00 = _mm_sub_ps(iy0,jy0);
969 dz00 = _mm_sub_ps(iz0,jz0);
970 dx10 = _mm_sub_ps(ix1,jx0);
971 dy10 = _mm_sub_ps(iy1,jy0);
972 dz10 = _mm_sub_ps(iz1,jz0);
973 dx20 = _mm_sub_ps(ix2,jx0);
974 dy20 = _mm_sub_ps(iy2,jy0);
975 dz20 = _mm_sub_ps(iz2,jz0);
976 dx30 = _mm_sub_ps(ix3,jx0);
977 dy30 = _mm_sub_ps(iy3,jy0);
978 dz30 = _mm_sub_ps(iz3,jz0);
979
980 /* Calculate squared distance and things based on it */
981 rsq00 = gmx_mm_calc_rsq_ps(dx00,dy00,dz00);
982 rsq10 = gmx_mm_calc_rsq_ps(dx10,dy10,dz10);
983 rsq20 = gmx_mm_calc_rsq_ps(dx20,dy20,dz20);
984 rsq30 = gmx_mm_calc_rsq_ps(dx30,dy30,dz30);
985
986 rinv10 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq10);
987 rinv20 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq20);
988 rinv30 = gmx_mm_invsqrt_psgmx_simd_invsqrt_f(rsq30);
989
990 rinvsq00 = gmx_mm_inv_psgmx_simd_inv_f(rsq00);
991 rinvsq10 = _mm_mul_ps(rinv10,rinv10);
992 rinvsq20 = _mm_mul_ps(rinv20,rinv20);
993 rinvsq30 = _mm_mul_ps(rinv30,rinv30);
994
995 /* Load parameters for j particles */
996 jq0 = gmx_mm_load_4real_swizzle_ps(charge+jnrA+0,charge+jnrB+0,
997 charge+jnrC+0,charge+jnrD+0);
998 vdwjidx0A = 2*vdwtype[jnrA+0];
999 vdwjidx0B = 2*vdwtype[jnrB+0];
1000 vdwjidx0C = 2*vdwtype[jnrC+0];
1001 vdwjidx0D = 2*vdwtype[jnrD+0];
1002
1003 fjx0 = _mm_setzero_ps();
1004 fjy0 = _mm_setzero_ps();
1005 fjz0 = _mm_setzero_ps();
1006
1007 /**************************
1008 * CALCULATE INTERACTIONS *
1009 **************************/
1010
1011 /* Compute parameters for interactions between i and j atoms */
1012 gmx_mm_load_4pair_swizzle_ps(vdwparam+vdwioffset0+vdwjidx0A,
1013 vdwparam+vdwioffset0+vdwjidx0B,
1014 vdwparam+vdwioffset0+vdwjidx0C,
1015 vdwparam+vdwioffset0+vdwjidx0D,
1016 &c6_00,&c12_00);
1017
1018 /* LENNARD-JONES DISPERSION/REPULSION */
1019
1020 rinvsix = _mm_mul_ps(_mm_mul_ps(rinvsq00,rinvsq00),rinvsq00);
1021 fvdw = _mm_mul_ps(_mm_sub_ps(_mm_mul_ps(c12_00,rinvsix),c6_00),_mm_mul_ps(rinvsix,rinvsq00));
1022
1023 fscal = fvdw;
1024
1025 fscal = _mm_andnot_ps(dummy_mask,fscal);
1026
1027 /* Calculate temporary vectorial force */
1028 tx = _mm_mul_ps(fscal,dx00);
1029 ty = _mm_mul_ps(fscal,dy00);
1030 tz = _mm_mul_ps(fscal,dz00);
1031
1032 /* Update vectorial force */
1033 fix0 = _mm_add_ps(fix0,tx);
1034 fiy0 = _mm_add_ps(fiy0,ty);
1035 fiz0 = _mm_add_ps(fiz0,tz);
1036
1037 fjx0 = _mm_add_ps(fjx0,tx);
1038 fjy0 = _mm_add_ps(fjy0,ty);
1039 fjz0 = _mm_add_ps(fjz0,tz);
1040
1041 /**************************
1042 * CALCULATE INTERACTIONS *
1043 **************************/
1044
1045 /* Compute parameters for interactions between i and j atoms */
1046 qq10 = _mm_mul_ps(iq1,jq0);
1047
1048 /* REACTION-FIELD ELECTROSTATICS */
1049 felec = _mm_mul_ps(qq10,_mm_sub_ps(_mm_mul_ps(rinv10,rinvsq10),krf2));
1050
1051 fscal = felec;
1052
1053 fscal = _mm_andnot_ps(dummy_mask,fscal);
1054
1055 /* Calculate temporary vectorial force */
1056 tx = _mm_mul_ps(fscal,dx10);
1057 ty = _mm_mul_ps(fscal,dy10);
1058 tz = _mm_mul_ps(fscal,dz10);
1059
1060 /* Update vectorial force */
1061 fix1 = _mm_add_ps(fix1,tx);
1062 fiy1 = _mm_add_ps(fiy1,ty);
1063 fiz1 = _mm_add_ps(fiz1,tz);
1064
1065 fjx0 = _mm_add_ps(fjx0,tx);
1066 fjy0 = _mm_add_ps(fjy0,ty);
1067 fjz0 = _mm_add_ps(fjz0,tz);
1068
1069 /**************************
1070 * CALCULATE INTERACTIONS *
1071 **************************/
1072
1073 /* Compute parameters for interactions between i and j atoms */
1074 qq20 = _mm_mul_ps(iq2,jq0);
1075
1076 /* REACTION-FIELD ELECTROSTATICS */
1077 felec = _mm_mul_ps(qq20,_mm_sub_ps(_mm_mul_ps(rinv20,rinvsq20),krf2));
1078
1079 fscal = felec;
1080
1081 fscal = _mm_andnot_ps(dummy_mask,fscal);
1082
1083 /* Calculate temporary vectorial force */
1084 tx = _mm_mul_ps(fscal,dx20);
1085 ty = _mm_mul_ps(fscal,dy20);
1086 tz = _mm_mul_ps(fscal,dz20);
1087
1088 /* Update vectorial force */
1089 fix2 = _mm_add_ps(fix2,tx);
1090 fiy2 = _mm_add_ps(fiy2,ty);
1091 fiz2 = _mm_add_ps(fiz2,tz);
1092
1093 fjx0 = _mm_add_ps(fjx0,tx);
1094 fjy0 = _mm_add_ps(fjy0,ty);
1095 fjz0 = _mm_add_ps(fjz0,tz);
1096
1097 /**************************
1098 * CALCULATE INTERACTIONS *
1099 **************************/
1100
1101 /* Compute parameters for interactions between i and j atoms */
1102 qq30 = _mm_mul_ps(iq3,jq0);
1103
1104 /* REACTION-FIELD ELECTROSTATICS */
1105 felec = _mm_mul_ps(qq30,_mm_sub_ps(_mm_mul_ps(rinv30,rinvsq30),krf2));
1106
1107 fscal = felec;
1108
1109 fscal = _mm_andnot_ps(dummy_mask,fscal);
1110
1111 /* Calculate temporary vectorial force */
1112 tx = _mm_mul_ps(fscal,dx30);
1113 ty = _mm_mul_ps(fscal,dy30);
1114 tz = _mm_mul_ps(fscal,dz30);
1115
1116 /* Update vectorial force */
1117 fix3 = _mm_add_ps(fix3,tx);
1118 fiy3 = _mm_add_ps(fiy3,ty);
1119 fiz3 = _mm_add_ps(fiz3,tz);
1120
1121 fjx0 = _mm_add_ps(fjx0,tx);
1122 fjy0 = _mm_add_ps(fjy0,ty);
1123 fjz0 = _mm_add_ps(fjz0,tz);
1124
1125 fjptrA = (jnrlistA>=0) ? f+j_coord_offsetA : scratch;
1126 fjptrB = (jnrlistB>=0) ? f+j_coord_offsetB : scratch;
1127 fjptrC = (jnrlistC>=0) ? f+j_coord_offsetC : scratch;
1128 fjptrD = (jnrlistD>=0) ? f+j_coord_offsetD : scratch;
1129
1130 gmx_mm_decrement_1rvec_4ptr_swizzle_ps(fjptrA,fjptrB,fjptrC,fjptrD,fjx0,fjy0,fjz0);
1131
1132 /* Inner loop uses 108 flops */
1133 }
1134
1135 /* End of innermost loop */
1136
1137 gmx_mm_update_iforce_4atom_swizzle_ps(fix0,fiy0,fiz0,fix1,fiy1,fiz1,fix2,fiy2,fiz2,fix3,fiy3,fiz3,
1138 f+i_coord_offset,fshift+i_shift_offset);
1139
1140 /* Increment number of inner iterations */
1141 inneriter += j_index_end - j_index_start;
1142
1143 /* Outer loop uses 24 flops */
1144 }
1145
1146 /* Increment number of outer iterations */
1147 outeriter += nri;
1148
1149 /* Update outer/inner flops */
1150
1151 inc_nrnb(nrnb,eNR_NBKERNEL_ELEC_VDW_W4_F,outeriter*24 + inneriter*108)(nrnb)->n[eNR_NBKERNEL_ELEC_VDW_W4_F] += outeriter*24 + inneriter
*108
;
1152}