Remove support for implicit solvation
[alexxy/gromacs.git] / docs / manual / forcefield.tex
index f50da64e64a21cd5a34c936b76221430f4905fce..0445b73d7432efc9aa23e022e7511d4df4906190 100644 (file)
@@ -2891,7 +2891,7 @@ of the blocks. {\bf Note} that all {\gromacs} programs can read compressed
 \subsection{CHARMM\index{CHARMM force field}}
 \label{subsec:charmmff}
 
-{\gromacs} supports the CHARMM force field for proteins~\cite{mackerell04, mackerell98}, lipids~\cite{feller00} and nucleic acids~\cite{foloppe00,Mac2000}. The protein parameters (and to some extent the lipid and nucleic acid parameters) were thoroughly tested -- both by comparing potential energies between the port and the standard parameter set in the CHARMM molecular simulation package, as well by how the protein force field behaves together with {\gromacs}-specific techniques such as virtual sites (enabling long time steps) and a fast implicit solvent recently implemented~\cite{Larsson10} -- and the details and results are presented in the paper by Bjelkmar et al.~\cite{Bjelkmar10}. The nucleic acid parameters, as well as the ones for HEME, were converted and tested by Michel Cuendet.
+{\gromacs} supports the CHARMM force field for proteins~\cite{mackerell04, mackerell98}, lipids~\cite{feller00} and nucleic acids~\cite{foloppe00,Mac2000}. The protein parameters (and to some extent the lipid and nucleic acid parameters) were thoroughly tested -- both by comparing potential energies between the port and the standard parameter set in the CHARMM molecular simulation package, as well by how the protein force field behaves together with {\gromacs}-specific techniques such as virtual sites (enabling long time steps) recently implemented~\cite{Larsson10} -- and the details and results are presented in the paper by Bjelkmar et al.~\cite{Bjelkmar10}. The nucleic acid parameters, as well as the ones for HEME, were converted and tested by Michel Cuendet.
 
 When selecting the CHARMM force field in {\tt \normindex{pdb2gmx}} the default option is to use \normindex{CMAP} (for torsional correction map). To exclude CMAP, use {\tt -nocmap}. The basic form of the CMAP term implemented in {\gromacs} is a function of the $\phi$ and $\psi$ backbone torsion angles. This term is defined in the {\tt .rtp} file by a {\tt [ cmap ]} statement at the end of each residue supporting CMAP. The following five atom names define the two torsional angles. Atoms 1-4 define $\phi$, and atoms 2-5 define $\psi$. The corresponding atom types are then matched to the correct CMAP type in the {\tt cmap.itp} file that contains the correction maps.