Clean up futil.*
[alexxy/gromacs.git] / src / programs / mdrun / pme_loadbal.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 #ifdef HAVE_CONFIG_H
36 #include <config.h>
37 #endif
38
39 #include "types/commrec.h"
40 #include "network.h"
41 #include "calcgrid.h"
42 #include "pme.h"
43 #include "vec.h"
44 #include "domdec.h"
45 #include "nbnxn_cuda_data_mgmt.h"
46 #include "force.h"
47 #include "macros.h"
48 #include "md_logging.h"
49 #include "pme_loadbal.h"
50
51 #include "gromacs/utility/cstringutil.h"
52 #include "gromacs/utility/smalloc.h"
53
54 /* Parameters and setting for one PP-PME setup */
55 typedef struct {
56     real      rcut_coulomb;    /* Coulomb cut-off                              */
57     real      rlist;           /* pair-list cut-off                            */
58     real      rlistlong;       /* LR pair-list cut-off                         */
59     int       nstcalclr;       /* frequency of evaluating long-range forces for group scheme */
60     real      spacing;         /* (largest) PME grid spacing                   */
61     ivec      grid;            /* the PME grid dimensions                      */
62     real      grid_efficiency; /* ineffiency factor for non-uniform grids <= 1 */
63     real      ewaldcoeff_q;    /* Electrostatic Ewald coefficient            */
64     real      ewaldcoeff_lj;   /* LJ Ewald coefficient, only for the call to send_switchgrid */
65     gmx_pme_t pmedata;         /* the data structure used in the PME code      */
66     int       count;           /* number of times this setup has been timed    */
67     double    cycles;          /* the fastest time for this setup in cycles    */
68 } pme_setup_t;
69
70 /* In the initial scan, step by grids that are at least a factor 0.8 coarser */
71 #define PME_LB_GRID_SCALE_FAC  0.8
72 /* In the initial scan, try to skip grids with uneven x/y/z spacing,
73  * checking if the "efficiency" is more than 5% worse than the previous grid.
74  */
75 #define PME_LB_GRID_EFFICIENCY_REL_FAC  1.05
76 /* Rerun up till 12% slower setups than the fastest up till now */
77 #define PME_LB_SLOW_FAC  1.12
78 /* If setups get more than 2% faster, do another round to avoid
79  * choosing a slower setup due to acceleration or fluctuations.
80  */
81 #define PME_LB_ACCEL_TOL 1.02
82
83 enum {
84     epmelblimNO, epmelblimBOX, epmelblimDD, epmelblimPMEGRID, epmelblimNR
85 };
86
87 const char *pmelblim_str[epmelblimNR] =
88 { "no", "box size", "domain decompostion", "PME grid restriction" };
89
90 struct pme_load_balancing {
91     int          nstage;             /* the current maximum number of stages */
92
93     real         cut_spacing;        /* the minimum cutoff / PME grid spacing ratio */
94     real         rcut_vdw;           /* Vdw cutoff (does not change) */
95     real         rcut_coulomb_start; /* Initial electrostatics cutoff */
96     int          nstcalclr_start;    /* Initial electrostatics cutoff */
97     real         rbuf_coulomb;       /* the pairlist buffer size */
98     real         rbuf_vdw;           /* the pairlist buffer size */
99     matrix       box_start;          /* the initial simulation box */
100     int          n;                  /* the count of setup as well as the allocation size */
101     pme_setup_t *setup;              /* the PME+cutoff setups */
102     int          cur;                /* the current setup */
103     int          fastest;            /* fastest setup up till now */
104     int          start;              /* start of setup range to consider in stage>0 */
105     int          end;                /* end   of setup range to consider in stage>0 */
106     int          elimited;           /* was the balancing limited, uses enum above */
107     int          cutoff_scheme;      /* Verlet or group cut-offs */
108
109     int          stage;              /* the current stage */
110 };
111
112 void pme_loadbal_init(pme_load_balancing_t *pme_lb_p,
113                       const t_inputrec *ir, matrix box,
114                       const interaction_const_t *ic,
115                       gmx_pme_t pmedata)
116 {
117     pme_load_balancing_t pme_lb;
118     real                 spm, sp;
119     int                  d;
120
121     snew(pme_lb, 1);
122
123     /* Any number of stages >= 2 is supported */
124     pme_lb->nstage   = 2;
125
126     pme_lb->cutoff_scheme = ir->cutoff_scheme;
127
128     if (pme_lb->cutoff_scheme == ecutsVERLET)
129     {
130         pme_lb->rbuf_coulomb = ic->rlist - ic->rcoulomb;
131         pme_lb->rbuf_vdw     = pme_lb->rbuf_coulomb;
132     }
133     else
134     {
135         if (ic->rcoulomb > ic->rlist)
136         {
137             pme_lb->rbuf_coulomb = ic->rlistlong - ic->rcoulomb;
138         }
139         else
140         {
141             pme_lb->rbuf_coulomb = ic->rlist - ic->rcoulomb;
142         }
143         if (ic->rvdw > ic->rlist)
144         {
145             pme_lb->rbuf_vdw = ic->rlistlong - ic->rvdw;
146         }
147         else
148         {
149             pme_lb->rbuf_vdw = ic->rlist - ic->rvdw;
150         }
151     }
152
153     copy_mat(box, pme_lb->box_start);
154     if (ir->ePBC == epbcXY && ir->nwall == 2)
155     {
156         svmul(ir->wall_ewald_zfac, pme_lb->box_start[ZZ], pme_lb->box_start[ZZ]);
157     }
158
159     pme_lb->n = 1;
160     snew(pme_lb->setup, pme_lb->n);
161
162     pme_lb->rcut_vdw                 = ic->rvdw;
163     pme_lb->rcut_coulomb_start       = ir->rcoulomb;
164     pme_lb->nstcalclr_start          = ir->nstcalclr;
165
166     pme_lb->cur                      = 0;
167     pme_lb->setup[0].rcut_coulomb    = ic->rcoulomb;
168     pme_lb->setup[0].rlist           = ic->rlist;
169     pme_lb->setup[0].rlistlong       = ic->rlistlong;
170     pme_lb->setup[0].nstcalclr       = ir->nstcalclr;
171     pme_lb->setup[0].grid[XX]        = ir->nkx;
172     pme_lb->setup[0].grid[YY]        = ir->nky;
173     pme_lb->setup[0].grid[ZZ]        = ir->nkz;
174     pme_lb->setup[0].ewaldcoeff_q    = ic->ewaldcoeff_q;
175     pme_lb->setup[0].ewaldcoeff_lj   = ic->ewaldcoeff_lj;
176
177     pme_lb->setup[0].pmedata  = pmedata;
178
179     spm = 0;
180     for (d = 0; d < DIM; d++)
181     {
182         sp = norm(pme_lb->box_start[d])/pme_lb->setup[0].grid[d];
183         if (sp > spm)
184         {
185             spm = sp;
186         }
187     }
188     pme_lb->setup[0].spacing = spm;
189
190     if (ir->fourier_spacing > 0)
191     {
192         pme_lb->cut_spacing = ir->rcoulomb/ir->fourier_spacing;
193     }
194     else
195     {
196         pme_lb->cut_spacing = ir->rcoulomb/pme_lb->setup[0].spacing;
197     }
198
199     pme_lb->stage = 0;
200
201     pme_lb->fastest  = 0;
202     pme_lb->start    = 0;
203     pme_lb->end      = 0;
204     pme_lb->elimited = epmelblimNO;
205
206     *pme_lb_p = pme_lb;
207 }
208
209 static gmx_bool pme_loadbal_increase_cutoff(pme_load_balancing_t  pme_lb,
210                                             int                   pme_order,
211                                             const gmx_domdec_t   *dd)
212 {
213     pme_setup_t *set;
214     int          npmenodes_x, npmenodes_y;
215     real         fac, sp;
216     real         tmpr_coulomb, tmpr_vdw;
217     int          d;
218     gmx_bool     grid_ok;
219
220     /* Try to add a new setup with next larger cut-off to the list */
221     pme_lb->n++;
222     srenew(pme_lb->setup, pme_lb->n);
223     set          = &pme_lb->setup[pme_lb->n-1];
224     set->pmedata = NULL;
225
226     get_pme_nnodes(dd, &npmenodes_x, &npmenodes_y);
227
228     fac = 1;
229     do
230     {
231         /* Avoid infinite while loop, which can occur at the minimum grid size.
232          * Note that in practice load balancing will stop before this point.
233          * The factor 2.1 allows for the extreme case in which only grids
234          * of powers of 2 are allowed (the current code supports more grids).
235          */
236         if (fac > 2.1)
237         {
238             pme_lb->n--;
239
240             return FALSE;
241         }
242
243         fac *= 1.01;
244         clear_ivec(set->grid);
245         sp = calc_grid(NULL, pme_lb->box_start,
246                        fac*pme_lb->setup[pme_lb->cur].spacing,
247                        &set->grid[XX],
248                        &set->grid[YY],
249                        &set->grid[ZZ]);
250
251         /* As here we can't easily check if one of the PME nodes
252          * uses threading, we do a conservative grid check.
253          * This means we can't use pme_order or less grid lines
254          * per PME node along x, which is not a strong restriction.
255          */
256         gmx_pme_check_restrictions(pme_order,
257                                    set->grid[XX], set->grid[YY], set->grid[ZZ],
258                                    npmenodes_x, npmenodes_y,
259                                    TRUE,
260                                    FALSE,
261                                    &grid_ok);
262     }
263     while (sp <= 1.001*pme_lb->setup[pme_lb->cur].spacing || !grid_ok);
264
265     set->rcut_coulomb = pme_lb->cut_spacing*sp;
266
267     if (pme_lb->cutoff_scheme == ecutsVERLET)
268     {
269         set->rlist        = set->rcut_coulomb + pme_lb->rbuf_coulomb;
270         /* We dont use LR lists with Verlet, but this avoids if-statements in further checks */
271         set->rlistlong    = set->rlist;
272     }
273     else
274     {
275         tmpr_coulomb          = set->rcut_coulomb + pme_lb->rbuf_coulomb;
276         tmpr_vdw              = pme_lb->rcut_vdw + pme_lb->rbuf_vdw;
277         set->rlist            = min(tmpr_coulomb, tmpr_vdw);
278         set->rlistlong        = max(tmpr_coulomb, tmpr_vdw);
279
280         /* Set the long-range update frequency */
281         if (set->rlist == set->rlistlong)
282         {
283             /* No long-range interactions if the short-/long-range cutoffs are identical */
284             set->nstcalclr = 0;
285         }
286         else if (pme_lb->nstcalclr_start == 0 || pme_lb->nstcalclr_start == 1)
287         {
288             /* We were not doing long-range before, but now we are since rlist!=rlistlong */
289             set->nstcalclr = 1;
290         }
291         else
292         {
293             /* We were already doing long-range interactions from the start */
294             if (pme_lb->rcut_vdw > pme_lb->rcut_coulomb_start)
295             {
296                 /* We were originally doing long-range VdW-only interactions.
297                  * If rvdw is still longer than rcoulomb we keep the original nstcalclr,
298                  * but if the coulomb cutoff has become longer we should update the long-range
299                  * part every step.
300                  */
301                 set->nstcalclr = (tmpr_vdw > tmpr_coulomb) ? pme_lb->nstcalclr_start : 1;
302             }
303             else
304             {
305                 /* We were not doing any long-range interaction from the start,
306                  * since it is not possible to do twin-range coulomb for the PME interaction.
307                  */
308                 set->nstcalclr = 1;
309             }
310         }
311     }
312
313     set->spacing      = sp;
314     /* The grid efficiency is the size wrt a grid with uniform x/y/z spacing */
315     set->grid_efficiency = 1;
316     for (d = 0; d < DIM; d++)
317     {
318         set->grid_efficiency *= (set->grid[d]*sp)/norm(pme_lb->box_start[d]);
319     }
320     /* The Ewald coefficient is inversly proportional to the cut-off */
321     set->ewaldcoeff_q =
322         pme_lb->setup[0].ewaldcoeff_q*pme_lb->setup[0].rcut_coulomb/set->rcut_coulomb;
323     /* We set ewaldcoeff_lj in set, even when LJ-PME is not used */
324     set->ewaldcoeff_lj =
325         pme_lb->setup[0].ewaldcoeff_lj*pme_lb->setup[0].rcut_coulomb/set->rcut_coulomb;
326
327     set->count   = 0;
328     set->cycles  = 0;
329
330     if (debug)
331     {
332         fprintf(debug, "PME loadbal: grid %d %d %d, coulomb cutoff %f\n",
333                 set->grid[XX], set->grid[YY], set->grid[ZZ], set->rcut_coulomb);
334     }
335     return TRUE;
336 }
337
338 static void print_grid(FILE *fp_err, FILE *fp_log,
339                        const char *pre,
340                        const char *desc,
341                        const pme_setup_t *set,
342                        double cycles)
343 {
344     char buf[STRLEN], buft[STRLEN];
345
346     if (cycles >= 0)
347     {
348         sprintf(buft, ": %.1f M-cycles", cycles*1e-6);
349     }
350     else
351     {
352         buft[0] = '\0';
353     }
354     sprintf(buf, "%-11s%10s pme grid %d %d %d, coulomb cutoff %.3f%s",
355             pre,
356             desc, set->grid[XX], set->grid[YY], set->grid[ZZ], set->rcut_coulomb,
357             buft);
358     if (fp_err != NULL)
359     {
360         fprintf(fp_err, "\r%s\n", buf);
361     }
362     if (fp_log != NULL)
363     {
364         fprintf(fp_log, "%s\n", buf);
365     }
366 }
367
368 static int pme_loadbal_end(pme_load_balancing_t pme_lb)
369 {
370     /* In the initial stage only n is set; end is not set yet */
371     if (pme_lb->end > 0)
372     {
373         return pme_lb->end;
374     }
375     else
376     {
377         return pme_lb->n;
378     }
379 }
380
381 static void print_loadbal_limited(FILE *fp_err, FILE *fp_log,
382                                   gmx_int64_t step,
383                                   pme_load_balancing_t pme_lb)
384 {
385     char buf[STRLEN], sbuf[22];
386
387     sprintf(buf, "step %4s: the %s limits the PME load balancing to a coulomb cut-off of %.3f",
388             gmx_step_str(step, sbuf),
389             pmelblim_str[pme_lb->elimited],
390             pme_lb->setup[pme_loadbal_end(pme_lb)-1].rcut_coulomb);
391     if (fp_err != NULL)
392     {
393         fprintf(fp_err, "\r%s\n", buf);
394     }
395     if (fp_log != NULL)
396     {
397         fprintf(fp_log, "%s\n", buf);
398     }
399 }
400
401 static void switch_to_stage1(pme_load_balancing_t pme_lb)
402 {
403     pme_lb->start = 0;
404     while (pme_lb->start+1 < pme_lb->n &&
405            (pme_lb->setup[pme_lb->start].count == 0 ||
406             pme_lb->setup[pme_lb->start].cycles >
407             pme_lb->setup[pme_lb->fastest].cycles*PME_LB_SLOW_FAC))
408     {
409         pme_lb->start++;
410     }
411     while (pme_lb->start > 0 && pme_lb->setup[pme_lb->start-1].cycles == 0)
412     {
413         pme_lb->start--;
414     }
415
416     pme_lb->end = pme_lb->n;
417     if (pme_lb->setup[pme_lb->end-1].count > 0 &&
418         pme_lb->setup[pme_lb->end-1].cycles >
419         pme_lb->setup[pme_lb->fastest].cycles*PME_LB_SLOW_FAC)
420     {
421         pme_lb->end--;
422     }
423
424     pme_lb->stage = 1;
425
426     /* Next we want to choose setup pme_lb->start, but as we will increase
427      * pme_ln->cur by one right after returning, we subtract 1 here.
428      */
429     pme_lb->cur = pme_lb->start - 1;
430 }
431
432 gmx_bool pme_load_balance(pme_load_balancing_t pme_lb,
433                           t_commrec           *cr,
434                           FILE                *fp_err,
435                           FILE                *fp_log,
436                           t_inputrec          *ir,
437                           t_state             *state,
438                           double               cycles,
439                           interaction_const_t *ic,
440                           nonbonded_verlet_t  *nbv,
441                           gmx_pme_t           *pmedata,
442                           gmx_int64_t          step)
443 {
444     gmx_bool     OK;
445     pme_setup_t *set;
446     double       cycles_fast;
447     char         buf[STRLEN], sbuf[22];
448     real         rtab;
449     gmx_bool     bUsesSimpleTables = TRUE;
450
451     if (pme_lb->stage == pme_lb->nstage)
452     {
453         return FALSE;
454     }
455
456     if (PAR(cr))
457     {
458         gmx_sumd(1, &cycles, cr);
459         cycles /= cr->nnodes;
460     }
461
462     set = &pme_lb->setup[pme_lb->cur];
463     set->count++;
464
465     rtab = ir->rlistlong + ir->tabext;
466
467     if (set->count % 2 == 1)
468     {
469         /* Skip the first cycle, because the first step after a switch
470          * is much slower due to allocation and/or caching effects.
471          */
472         return TRUE;
473     }
474
475     sprintf(buf, "step %4s: ", gmx_step_str(step, sbuf));
476     print_grid(fp_err, fp_log, buf, "timed with", set, cycles);
477
478     if (set->count <= 2)
479     {
480         set->cycles = cycles;
481     }
482     else
483     {
484         if (cycles*PME_LB_ACCEL_TOL < set->cycles &&
485             pme_lb->stage == pme_lb->nstage - 1)
486         {
487             /* The performance went up a lot (due to e.g. DD load balancing).
488              * Add a stage, keep the minima, but rescan all setups.
489              */
490             pme_lb->nstage++;
491
492             if (debug)
493             {
494                 fprintf(debug, "The performance for grid %d %d %d went from %.3f to %.1f M-cycles, this is more than %f\n"
495                         "Increased the number stages to %d"
496                         " and ignoring the previous performance\n",
497                         set->grid[XX], set->grid[YY], set->grid[ZZ],
498                         cycles*1e-6, set->cycles*1e-6, PME_LB_ACCEL_TOL,
499                         pme_lb->nstage);
500             }
501         }
502         set->cycles = min(set->cycles, cycles);
503     }
504
505     if (set->cycles < pme_lb->setup[pme_lb->fastest].cycles)
506     {
507         pme_lb->fastest = pme_lb->cur;
508
509         if (DOMAINDECOMP(cr))
510         {
511             /* We found a new fastest setting, ensure that with subsequent
512              * shorter cut-off's the dynamic load balancing does not make
513              * the use of the current cut-off impossible. This solution is
514              * a trade-off, as the PME load balancing and DD domain size
515              * load balancing can interact in complex ways.
516              * With the Verlet kernels, DD load imbalance will usually be
517              * mainly due to bonded interaction imbalance, which will often
518              * quickly push the domain boundaries beyond the limit for the
519              * optimal, PME load balanced, cut-off. But it could be that
520              * better overal performance can be obtained with a slightly
521              * shorter cut-off and better DD load balancing.
522              */
523             change_dd_dlb_cutoff_limit(cr);
524         }
525     }
526     cycles_fast = pme_lb->setup[pme_lb->fastest].cycles;
527
528     /* Check in stage 0 if we should stop scanning grids.
529      * Stop when the time is more than SLOW_FAC longer than the fastest.
530      */
531     if (pme_lb->stage == 0 && pme_lb->cur > 0 &&
532         cycles > pme_lb->setup[pme_lb->fastest].cycles*PME_LB_SLOW_FAC)
533     {
534         pme_lb->n = pme_lb->cur + 1;
535         /* Done with scanning, go to stage 1 */
536         switch_to_stage1(pme_lb);
537     }
538
539     if (pme_lb->stage == 0)
540     {
541         int gridsize_start;
542
543         gridsize_start = set->grid[XX]*set->grid[YY]*set->grid[ZZ];
544
545         do
546         {
547             if (pme_lb->cur+1 < pme_lb->n)
548             {
549                 /* We had already generated the next setup */
550                 OK = TRUE;
551             }
552             else
553             {
554                 /* Find the next setup */
555                 OK = pme_loadbal_increase_cutoff(pme_lb, ir->pme_order, cr->dd);
556
557                 if (!OK)
558                 {
559                     pme_lb->elimited = epmelblimPMEGRID;
560                 }
561             }
562
563             if (OK && ir->ePBC != epbcNONE)
564             {
565                 OK = (sqr(pme_lb->setup[pme_lb->cur+1].rlistlong)
566                       <= max_cutoff2(ir->ePBC, state->box));
567                 if (!OK)
568                 {
569                     pme_lb->elimited = epmelblimBOX;
570                 }
571             }
572
573             if (OK)
574             {
575                 pme_lb->cur++;
576
577                 if (DOMAINDECOMP(cr))
578                 {
579                     OK = change_dd_cutoff(cr, state, ir,
580                                           pme_lb->setup[pme_lb->cur].rlistlong);
581                     if (!OK)
582                     {
583                         /* Failed: do not use this setup */
584                         pme_lb->cur--;
585                         pme_lb->elimited = epmelblimDD;
586                     }
587                 }
588             }
589             if (!OK)
590             {
591                 /* We hit the upper limit for the cut-off,
592                  * the setup should not go further than cur.
593                  */
594                 pme_lb->n = pme_lb->cur + 1;
595                 print_loadbal_limited(fp_err, fp_log, step, pme_lb);
596                 /* Switch to the next stage */
597                 switch_to_stage1(pme_lb);
598             }
599         }
600         while (OK &&
601                !(pme_lb->setup[pme_lb->cur].grid[XX]*
602                  pme_lb->setup[pme_lb->cur].grid[YY]*
603                  pme_lb->setup[pme_lb->cur].grid[ZZ] <
604                  gridsize_start*PME_LB_GRID_SCALE_FAC
605                  &&
606                  pme_lb->setup[pme_lb->cur].grid_efficiency <
607                  pme_lb->setup[pme_lb->cur-1].grid_efficiency*PME_LB_GRID_EFFICIENCY_REL_FAC));
608     }
609
610     if (pme_lb->stage > 0 && pme_lb->end == 1)
611     {
612         pme_lb->cur   = 0;
613         pme_lb->stage = pme_lb->nstage;
614     }
615     else if (pme_lb->stage > 0 && pme_lb->end > 1)
616     {
617         /* If stage = nstage-1:
618          *   scan over all setups, rerunning only those setups
619          *   which are not much slower than the fastest
620          * else:
621          *   use the next setup
622          */
623         do
624         {
625             pme_lb->cur++;
626             if (pme_lb->cur == pme_lb->end)
627             {
628                 pme_lb->stage++;
629                 pme_lb->cur = pme_lb->start;
630             }
631         }
632         while (pme_lb->stage == pme_lb->nstage - 1 &&
633                pme_lb->setup[pme_lb->cur].count > 0 &&
634                pme_lb->setup[pme_lb->cur].cycles > cycles_fast*PME_LB_SLOW_FAC);
635
636         if (pme_lb->stage == pme_lb->nstage)
637         {
638             /* We are done optimizing, use the fastest setup we found */
639             pme_lb->cur = pme_lb->fastest;
640         }
641     }
642
643     if (DOMAINDECOMP(cr) && pme_lb->stage > 0)
644     {
645         OK = change_dd_cutoff(cr, state, ir, pme_lb->setup[pme_lb->cur].rlistlong);
646         if (!OK)
647         {
648             /* Failsafe solution */
649             if (pme_lb->cur > 1 && pme_lb->stage == pme_lb->nstage)
650             {
651                 pme_lb->stage--;
652             }
653             pme_lb->fastest  = 0;
654             pme_lb->start    = 0;
655             pme_lb->end      = pme_lb->cur;
656             pme_lb->cur      = pme_lb->start;
657             pme_lb->elimited = epmelblimDD;
658             print_loadbal_limited(fp_err, fp_log, step, pme_lb);
659         }
660     }
661
662     /* Change the Coulomb cut-off and the PME grid */
663
664     set = &pme_lb->setup[pme_lb->cur];
665
666     ic->rcoulomb     = set->rcut_coulomb;
667     ic->rlist        = set->rlist;
668     ic->rlistlong    = set->rlistlong;
669     ir->nstcalclr    = set->nstcalclr;
670     ic->ewaldcoeff_q = set->ewaldcoeff_q;
671     /* TODO: centralize the code that sets the potentials shifts */
672     if (ic->coulomb_modifier == eintmodPOTSHIFT)
673     {
674         ic->sh_ewald = gmx_erfc(ic->ewaldcoeff_q*ic->rcoulomb);
675     }
676     if (EVDW_PME(ic->vdwtype))
677     {
678         /* We have PME for both Coulomb and VdW, set rvdw equal to rcoulomb */
679         ic->rvdw            = set->rcut_coulomb;
680         ic->ewaldcoeff_lj   = set->ewaldcoeff_lj;
681         if (ic->vdw_modifier == eintmodPOTSHIFT)
682         {
683             real crc2;
684
685             ic->dispersion_shift.cpot = -pow(ic->rvdw, -6.0);
686             ic->repulsion_shift.cpot  = -pow(ic->rvdw, -12.0);
687             ic->sh_invrc6             = -ic->dispersion_shift.cpot;
688             crc2                      = sqr(ic->ewaldcoeff_lj*ic->rvdw);
689             ic->sh_lj_ewald           = (exp(-crc2)*(1 + crc2 + 0.5*crc2*crc2) - 1)*pow(ic->rvdw, -6.0);
690         }
691     }
692
693     bUsesSimpleTables = uses_simple_tables(ir->cutoff_scheme, nbv, 0);
694     if (pme_lb->cutoff_scheme == ecutsVERLET &&
695         nbv->grp[0].kernel_type == nbnxnk8x8x8_CUDA)
696     {
697         nbnxn_cuda_pme_loadbal_update_param(nbv->cu_nbv, ic);
698
699         /* With tMPI + GPUs some ranks may be sharing GPU(s) and therefore
700          * also sharing texture references. To keep the code simple, we don't
701          * treat texture references as shared resources, but this means that
702          * the coulomb_tab texture ref will get updated by multiple threads.
703          * Hence, to ensure that the non-bonded kernels don't start before all
704          * texture binding operations are finished, we need to wait for all ranks
705          * to arrive here before continuing.
706          *
707          * Note that we could omit this barrier if GPUs are not shared (or
708          * texture objects are used), but as this is initialization code, there
709          * is not point in complicating things.
710          */
711 #ifdef GMX_THREAD_MPI
712         if (PAR(cr))
713         {
714             gmx_barrier(cr);
715         }
716 #endif  /* GMX_THREAD_MPI */
717     }
718
719     /* Usually we won't need the simple tables with GPUs.
720      * But we do with hybrid acceleration and with free energy.
721      * To avoid bugs, we always re-initialize the simple tables here.
722      */
723     init_interaction_const_tables(NULL, ic, bUsesSimpleTables, rtab);
724
725     if (cr->duty & DUTY_PME)
726     {
727         if (pme_lb->setup[pme_lb->cur].pmedata == NULL)
728         {
729             /* Generate a new PME data structure,
730              * copying part of the old pointers.
731              */
732             gmx_pme_reinit(&set->pmedata,
733                            cr, pme_lb->setup[0].pmedata, ir,
734                            set->grid);
735         }
736         *pmedata = set->pmedata;
737     }
738     else
739     {
740         /* Tell our PME-only node to switch grid */
741         gmx_pme_send_switchgrid(cr, set->grid, set->ewaldcoeff_q, set->ewaldcoeff_lj);
742     }
743
744     if (debug)
745     {
746         print_grid(NULL, debug, "", "switched to", set, -1);
747     }
748
749     if (pme_lb->stage == pme_lb->nstage)
750     {
751         print_grid(fp_err, fp_log, "", "optimal", set, -1);
752     }
753
754     return TRUE;
755 }
756
757 void restart_pme_loadbal(pme_load_balancing_t pme_lb, int n)
758 {
759     pme_lb->nstage += n;
760 }
761
762 static int pme_grid_points(const pme_setup_t *setup)
763 {
764     return setup->grid[XX]*setup->grid[YY]*setup->grid[ZZ];
765 }
766
767 static real pme_loadbal_rlist(const pme_setup_t *setup)
768 {
769     /* With the group cut-off scheme we can have twin-range either
770      * for Coulomb or for VdW, so we need a check here.
771      * With the Verlet cut-off scheme rlist=rlistlong.
772      */
773     if (setup->rcut_coulomb > setup->rlist)
774     {
775         return setup->rlistlong;
776     }
777     else
778     {
779         return setup->rlist;
780     }
781 }
782
783 static void print_pme_loadbal_setting(FILE              *fplog,
784                                       char              *name,
785                                       const pme_setup_t *setup)
786 {
787     fprintf(fplog,
788             "   %-7s %6.3f nm %6.3f nm     %3d %3d %3d   %5.3f nm  %5.3f nm\n",
789             name,
790             setup->rcut_coulomb, pme_loadbal_rlist(setup),
791             setup->grid[XX], setup->grid[YY], setup->grid[ZZ],
792             setup->spacing, 1/setup->ewaldcoeff_q);
793 }
794
795 static void print_pme_loadbal_settings(pme_load_balancing_t pme_lb,
796                                        t_commrec           *cr,
797                                        FILE                *fplog,
798                                        gmx_bool             bNonBondedOnGPU)
799 {
800     double pp_ratio, grid_ratio;
801
802     pp_ratio   = pow(pme_loadbal_rlist(&pme_lb->setup[pme_lb->cur])/pme_loadbal_rlist(&pme_lb->setup[0]), 3.0);
803     grid_ratio = pme_grid_points(&pme_lb->setup[pme_lb->cur])/
804         (double)pme_grid_points(&pme_lb->setup[0]);
805
806     fprintf(fplog, "\n");
807     fprintf(fplog, "       P P   -   P M E   L O A D   B A L A N C I N G\n");
808     fprintf(fplog, "\n");
809     /* Here we only warn when the optimal setting is the last one */
810     if (pme_lb->elimited != epmelblimNO &&
811         pme_lb->cur == pme_loadbal_end(pme_lb)-1)
812     {
813         fprintf(fplog, " NOTE: The PP/PME load balancing was limited by the %s,\n",
814                 pmelblim_str[pme_lb->elimited]);
815         fprintf(fplog, "       you might not have reached a good load balance.\n");
816         if (pme_lb->elimited == epmelblimDD)
817         {
818             fprintf(fplog, "       Try different mdrun -dd settings or lower the -dds value.\n");
819         }
820         fprintf(fplog, "\n");
821     }
822     fprintf(fplog, " PP/PME load balancing changed the cut-off and PME settings:\n");
823     fprintf(fplog, "           particle-particle                    PME\n");
824     fprintf(fplog, "            rcoulomb  rlist            grid      spacing   1/beta\n");
825     print_pme_loadbal_setting(fplog, "initial", &pme_lb->setup[0]);
826     print_pme_loadbal_setting(fplog, "final", &pme_lb->setup[pme_lb->cur]);
827     fprintf(fplog, " cost-ratio           %4.2f             %4.2f\n",
828             pp_ratio, grid_ratio);
829     fprintf(fplog, " (note that these numbers concern only part of the total PP and PME load)\n");
830
831     if (pp_ratio > 1.5 && !bNonBondedOnGPU)
832     {
833         md_print_warn(cr, fplog,
834                       "NOTE: PME load balancing increased the non-bonded workload by more than 50%%.\n"
835                       "      For better performance use (more) PME nodes (mdrun -npme),\n"
836                       "      or in case you are beyond the scaling limit, use less nodes in total.\n");
837     }
838     else
839     {
840         fprintf(fplog, "\n");
841     }
842 }
843
844 void pme_loadbal_done(pme_load_balancing_t pme_lb,
845                       t_commrec *cr, FILE *fplog,
846                       gmx_bool bNonBondedOnGPU)
847 {
848     if (fplog != NULL && (pme_lb->cur > 0 || pme_lb->elimited != epmelblimNO))
849     {
850         print_pme_loadbal_settings(pme_lb, cr, fplog, bNonBondedOnGPU);
851     }
852
853     /* TODO: Here we should free all pointers in pme_lb,
854      * but as it contains pme data structures,
855      * we need to first make pme.c free all data.
856      */
857 }