removed group non-boneded call with verlet scheme
[alexxy/gromacs.git] / src / mdlib / force.c
1 /* -*- mode: c; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4; c-file-style: "stroustrup"; -*-
2  *
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  *          GROningen MAchine for Chemical Simulations
9  *
10  *                        VERSION 3.2.0
11  * Written by David van der Spoel, Erik Lindahl, Berk Hess, and others.
12  * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
13  * Copyright (c) 2001-2004, The GROMACS development team,
14  * check out http://www.gromacs.org for more information.
15
16  * This program is free software; you can redistribute it and/or
17  * modify it under the terms of the GNU General Public License
18  * as published by the Free Software Foundation; either version 2
19  * of the License, or (at your option) any later version.
20  *
21  * If you want to redistribute modifications, please consider that
22  * scientific software is very special. Version control is crucial -
23  * bugs must be traceable. We will be happy to consider code for
24  * inclusion in the official distribution, but derived work must not
25  * be called official GROMACS. Details are found in the README & COPYING
26  * files - if they are missing, get the official version at www.gromacs.org.
27  *
28  * To help us fund GROMACS development, we humbly ask that you cite
29  * the papers on the package - you can find them in the top README file.
30  *
31  * For more info, check our website at http://www.gromacs.org
32  *
33  * And Hey:
34  * GROwing Monsters And Cloning Shrimps
35  */
36 #ifdef HAVE_CONFIG_H
37 #include <config.h>
38 #endif
39
40 #include <math.h>
41 #include <string.h>
42 #include <assert.h>
43 #include "sysstuff.h"
44 #include "typedefs.h"
45 #include "macros.h"
46 #include "smalloc.h"
47 #include "macros.h"
48 #include "physics.h"
49 #include "force.h"
50 #include "nonbonded.h"
51 #include "names.h"
52 #include "network.h"
53 #include "pbc.h"
54 #include "ns.h"
55 #include "nrnb.h"
56 #include "bondf.h"
57 #include "mshift.h"
58 #include "txtdump.h"
59 #include "coulomb.h"
60 #include "pme.h"
61 #include "mdrun.h"
62 #include "domdec.h"
63 #include "partdec.h"
64 #include "qmmm.h"
65 #include "mpelogging.h"
66 #include "gmx_omp_nthreads.h"
67
68 void ns(FILE *fp,
69         t_forcerec *fr,
70         rvec       x[],
71         matrix     box,
72         gmx_groups_t *groups,
73         t_grpopts  *opts,
74         gmx_localtop_t *top,
75         t_mdatoms  *md,
76         t_commrec  *cr,
77         t_nrnb     *nrnb,
78         real       *lambda,
79         real       *dvdlambda,
80         gmx_grppairener_t *grppener,
81         gmx_bool       bFillGrid,
82         gmx_bool       bDoLongRangeNS)
83 {
84   char   *ptr;
85   int    nsearch;
86
87   GMX_MPE_LOG(ev_ns_start);
88   if (!fr->ns.nblist_initialized)
89   {
90       init_neighbor_list(fp, fr, md->homenr);
91   }
92
93   if (fr->bTwinRange)
94     fr->nlr=0;
95
96     nsearch = search_neighbours(fp,fr,x,box,top,groups,cr,nrnb,md,
97                                 lambda,dvdlambda,grppener,
98                                 bFillGrid,bDoLongRangeNS,TRUE);
99   if (debug)
100     fprintf(debug,"nsearch = %d\n",nsearch);
101
102   /* Check whether we have to do dynamic load balancing */
103   /*if ((nsb->nstDlb > 0) && (mod(step,nsb->nstDlb) == 0))
104     count_nb(cr,nsb,&(top->blocks[ebCGS]),nns,fr->nlr,
105     &(top->idef),opts->ngener);
106   */
107   if (fr->ns.dump_nl > 0)
108     dump_nblist(fp,cr,fr,fr->ns.dump_nl);
109
110   GMX_MPE_LOG(ev_ns_finish);
111 }
112
113 static void reduce_thread_forces(int n,rvec *f,
114                                  tensor vir,
115                                  real *Vcorr,
116                                  int efpt_ind,real *dvdl,
117                                  int nthreads,f_thread_t *f_t)
118 {
119     int t,i;
120
121     /* This reduction can run over any number of threads */
122 #pragma omp parallel for num_threads(gmx_omp_nthreads_get(emntBonded)) private(t) schedule(static)
123     for(i=0; i<n; i++)
124     {
125         for(t=1; t<nthreads; t++)
126         {
127             rvec_inc(f[i],f_t[t].f[i]);
128         }
129     }
130     for(t=1; t<nthreads; t++)
131     {
132         *Vcorr += f_t[t].Vcorr;
133         *dvdl  += f_t[t].dvdl[efpt_ind];
134         m_add(vir,f_t[t].vir,vir);
135     }
136 }
137
138 void do_force_lowlevel(FILE       *fplog,   gmx_large_int_t step,
139                        t_forcerec *fr,      t_inputrec *ir,
140                        t_idef     *idef,    t_commrec  *cr,
141                        t_nrnb     *nrnb,    gmx_wallcycle_t wcycle,
142                        t_mdatoms  *md,
143                        t_grpopts  *opts,
144                        rvec       x[],      history_t  *hist,
145                        rvec       f[],
146                        rvec       f_longrange[],
147                        gmx_enerdata_t *enerd,
148                        t_fcdata   *fcd,
149                        gmx_mtop_t     *mtop,
150                        gmx_localtop_t *top,
151                        gmx_genborn_t *born,
152                        t_atomtypes *atype,
153                        gmx_bool       bBornRadii,
154                        matrix     box,
155                        t_lambda   *fepvals,
156                        real       *lambda,
157                        t_graph    *graph,
158                        t_blocka   *excl,
159                        rvec       mu_tot[],
160                        int        flags,
161                        float      *cycles_pme)
162 {
163     int     i,j,status;
164     int     donb_flags;
165     gmx_bool    bDoEpot,bSepDVDL,bSB;
166     int     pme_flags;
167     matrix  boxs;
168     rvec    box_size;
169     real    Vsr,Vlr,Vcorr=0;
170     t_pbc   pbc;
171     real    dvdgb;
172     char    buf[22];
173     gmx_enerdata_t ed_lam;
174     double  clam_i,vlam_i;
175     real    dvdl_dum[efptNR], dvdl, dvdl_nb[efptNR], lam_i[efptNR];
176     real    dvdlsum;
177
178 #ifdef GMX_MPI
179     double  t0=0.0,t1,t2,t3; /* time measurement for coarse load balancing */
180 #endif
181
182 #define PRINT_SEPDVDL(s,v,dvdlambda) if (bSepDVDL) fprintf(fplog,sepdvdlformat,s,v,dvdlambda);
183
184     GMX_MPE_LOG(ev_force_start);
185     set_pbc(&pbc,fr->ePBC,box);
186
187     /* reset free energy components */
188     for (i=0;i<efptNR;i++)
189     {
190         dvdl_nb[i]  = 0;
191         dvdl_dum[i] = 0;
192     }
193
194     /* Reset box */
195     for(i=0; (i<DIM); i++)
196     {
197         box_size[i]=box[i][i];
198     }
199
200     bSepDVDL=(fr->bSepDVDL && do_per_step(step,ir->nstlog));
201     debug_gmx();
202
203     /* do QMMM first if requested */
204     if(fr->bQMMM)
205     {
206         enerd->term[F_EQM] = calculate_QMMM(cr,x,f,fr,md);
207     }
208
209     if (bSepDVDL)
210     {
211         fprintf(fplog,"Step %s: non-bonded V and dVdl for node %d:\n",
212                 gmx_step_str(step,buf),cr->nodeid);
213     }
214
215     /* Call the short range functions all in one go. */
216     GMX_MPE_LOG(ev_do_fnbf_start);
217
218 #ifdef GMX_MPI
219     /*#define TAKETIME ((cr->npmenodes) && (fr->timesteps < 12))*/
220 #define TAKETIME FALSE
221     if (TAKETIME)
222     {
223         MPI_Barrier(cr->mpi_comm_mygroup);
224         t0=MPI_Wtime();
225     }
226 #endif
227
228     if (ir->nwall)
229     {
230         /* foreign lambda component for walls */
231         dvdl = do_walls(ir,fr,box,md,x,f,lambda[efptVDW],
232                         enerd->grpp.ener[egLJSR],nrnb);
233         PRINT_SEPDVDL("Walls",0.0,dvdl);
234         enerd->dvdl_lin[efptVDW] += dvdl;
235     }
236
237         /* If doing GB, reset dvda and calculate the Born radii */
238         if (ir->implicit_solvent)
239         {
240         wallcycle_sub_start(wcycle, ewcsNONBONDED);
241
242                 for(i=0;i<born->nr;i++)
243                 {
244                         fr->dvda[i]=0;
245                 }
246
247                 if(bBornRadii)
248                 {
249                         calc_gb_rad(cr,fr,ir,top,atype,x,&(fr->gblist),born,md,nrnb);
250                 }
251
252         wallcycle_sub_stop(wcycle, ewcsNONBONDED);
253         }
254
255     where();
256     /* We only do non-bonded calculation with group scheme here, the verlet
257      * calls are done from do_force_cutsVERLET(). */
258     if (fr->cutoff_scheme == ecutsGROUP && (flags & GMX_FORCE_NONBONDED))
259     {
260         donb_flags = 0;
261         /* Add short-range interactions */
262         donb_flags |= GMX_NONBONDED_DO_SR;
263
264         if (flags & GMX_FORCE_FORCES)
265         {
266             donb_flags |= GMX_NONBONDED_DO_FORCE;
267         }
268         if (flags & GMX_FORCE_ENERGY)
269         {
270             donb_flags |= GMX_NONBONDED_DO_POTENTIAL;
271         }
272         if (flags & GMX_FORCE_DO_LR)
273         {
274             donb_flags |= GMX_NONBONDED_DO_LR;
275         }
276
277         wallcycle_sub_start(wcycle, ewcsNONBONDED);
278         do_nonbonded(cr,fr,x,f,f_longrange,md,excl,
279                     &enerd->grpp,box_size,nrnb,
280                     lambda,dvdl_nb,-1,-1,donb_flags);
281         wallcycle_sub_stop(wcycle, ewcsNONBONDED);
282     }
283
284     /* If we do foreign lambda and we have soft-core interactions
285      * we have to recalculate the (non-linear) energies contributions.
286      */
287     if (fepvals->n_lambda > 0 && (flags & GMX_FORCE_DHDL) && fepvals->sc_alpha != 0)
288     {
289         wallcycle_sub_start(wcycle, ewcsNONBONDED);
290         init_enerdata(mtop->groups.grps[egcENER].nr,fepvals->n_lambda,&ed_lam);
291
292         for(i=0; i<enerd->n_lambda; i++)
293         {
294             for (j=0;j<efptNR;j++)
295             {
296                 lam_i[j] = (i==0 ? lambda[j] : fepvals->all_lambda[j][i-1]);
297             }
298             reset_enerdata(&ir->opts,fr,TRUE,&ed_lam,FALSE);
299             do_nonbonded(cr,fr,x,f,f_longrange,md,excl,
300                          &(ed_lam.grpp), box_size,nrnb,
301                          lam_i,dvdl_dum,-1,-1,
302                          GMX_NONBONDED_DO_FOREIGNLAMBDA | GMX_NONBONDED_DO_SR);
303             sum_epot(&ir->opts,&ed_lam);
304             enerd->enerpart_lambda[i] += ed_lam.term[F_EPOT];
305         }
306         destroy_enerdata(&ed_lam);
307         wallcycle_sub_stop(wcycle, ewcsNONBONDED);
308     }
309     where();
310
311         /* If we are doing GB, calculate bonded forces and apply corrections
312          * to the solvation forces */
313     /* MRS: Eventually, many need to include free energy contribution here! */
314         if (ir->implicit_solvent)
315     {
316         wallcycle_sub_start(wcycle, ewcsBONDED);
317                 calc_gb_forces(cr,md,born,top,atype,x,f,fr,idef,
318                        ir->gb_algorithm,ir->sa_algorithm,nrnb,bBornRadii,&pbc,graph,enerd);
319         wallcycle_sub_stop(wcycle, ewcsBONDED);
320     }
321
322 #ifdef GMX_MPI
323     if (TAKETIME)
324     {
325         t1=MPI_Wtime();
326         fr->t_fnbf += t1-t0;
327     }
328 #endif
329
330     if (fepvals->sc_alpha!=0)
331     {
332         enerd->dvdl_nonlin[efptVDW] += dvdl_nb[efptVDW];
333     }
334     else
335     {
336         enerd->dvdl_lin[efptVDW] += dvdl_nb[efptVDW];
337     }
338
339     if (fepvals->sc_alpha!=0)
340
341         /* even though coulomb part is linear, we already added it, beacuse we
342            need to go through the vdw calculation anyway */
343     {
344         enerd->dvdl_nonlin[efptCOUL] += dvdl_nb[efptCOUL];
345     }
346     else
347     {
348         enerd->dvdl_lin[efptCOUL] += dvdl_nb[efptCOUL];
349     }
350
351     Vsr = 0;
352     if (bSepDVDL)
353     {
354         for(i=0; i<enerd->grpp.nener; i++)
355         {
356             Vsr +=
357                 (fr->bBHAM ?
358                  enerd->grpp.ener[egBHAMSR][i] :
359                  enerd->grpp.ener[egLJSR][i])
360                 + enerd->grpp.ener[egCOULSR][i] + enerd->grpp.ener[egGB][i];
361         }
362         dvdlsum = dvdl_nb[efptVDW] + dvdl_nb[efptCOUL];
363         PRINT_SEPDVDL("VdW and Coulomb SR particle-p.",Vsr,dvdlsum);
364     }
365     debug_gmx();
366
367     GMX_MPE_LOG(ev_do_fnbf_finish);
368
369     if (debug)
370     {
371         pr_rvecs(debug,0,"fshift after SR",fr->fshift,SHIFTS);
372     }
373
374     /* Shift the coordinates. Must be done before bonded forces and PPPM,
375      * but is also necessary for SHAKE and update, therefore it can NOT
376      * go when no bonded forces have to be evaluated.
377      */
378
379     /* Here sometimes we would not need to shift with NBFonly,
380      * but we do so anyhow for consistency of the returned coordinates.
381      */
382     if (graph)
383     {
384         shift_self(graph,box,x);
385         if (TRICLINIC(box))
386         {
387             inc_nrnb(nrnb,eNR_SHIFTX,2*graph->nnodes);
388         }
389         else
390         {
391             inc_nrnb(nrnb,eNR_SHIFTX,graph->nnodes);
392         }
393     }
394     /* Check whether we need to do bondeds or correct for exclusions */
395     if (fr->bMolPBC &&
396         ((flags & GMX_FORCE_BONDED)
397          || EEL_RF(fr->eeltype) || EEL_FULL(fr->eeltype)))
398     {
399         /* Since all atoms are in the rectangular or triclinic unit-cell,
400          * only single box vector shifts (2 in x) are required.
401          */
402         set_pbc_dd(&pbc,fr->ePBC,cr->dd,TRUE,box);
403     }
404     debug_gmx();
405
406     if (flags & GMX_FORCE_BONDED)
407     {
408         GMX_MPE_LOG(ev_calc_bonds_start);
409
410         wallcycle_sub_start(wcycle, ewcsBONDED);
411         calc_bonds(fplog,cr->ms,
412                    idef,x,hist,f,fr,&pbc,graph,enerd,nrnb,lambda,md,fcd,
413                    DOMAINDECOMP(cr) ? cr->dd->gatindex : NULL, atype, born,
414                    flags,
415                    fr->bSepDVDL && do_per_step(step,ir->nstlog),step);
416
417         /* Check if we have to determine energy differences
418          * at foreign lambda's.
419          */
420         if (fepvals->n_lambda > 0 && (flags & GMX_FORCE_DHDL) &&
421             idef->ilsort != ilsortNO_FE)
422         {
423             if (idef->ilsort != ilsortFE_SORTED)
424             {
425                 gmx_incons("The bonded interactions are not sorted for free energy");
426             }
427             init_enerdata(mtop->groups.grps[egcENER].nr,fepvals->n_lambda,&ed_lam);
428
429             for(i=0; i<enerd->n_lambda; i++)
430             {
431                 reset_enerdata(&ir->opts,fr,TRUE,&ed_lam,FALSE);
432                 for (j=0;j<efptNR;j++)
433                 {
434                     lam_i[j] = (i==0 ? lambda[j] : fepvals->all_lambda[j][i-1]);
435                 }
436                 calc_bonds_lambda(fplog,idef,x,fr,&pbc,graph,&ed_lam,nrnb,lam_i,md,
437                                   fcd,DOMAINDECOMP(cr) ? cr->dd->gatindex : NULL);
438                 sum_epot(&ir->opts,&ed_lam);
439                 enerd->enerpart_lambda[i] += ed_lam.term[F_EPOT];
440             }
441             destroy_enerdata(&ed_lam);
442         }
443         debug_gmx();
444         GMX_MPE_LOG(ev_calc_bonds_finish);
445         wallcycle_sub_stop(wcycle, ewcsBONDED);
446     }
447
448     where();
449
450     *cycles_pme = 0;
451     if (EEL_FULL(fr->eeltype))
452     {
453         bSB = (ir->nwall == 2);
454         if (bSB)
455         {
456             copy_mat(box,boxs);
457             svmul(ir->wall_ewald_zfac,boxs[ZZ],boxs[ZZ]);
458             box_size[ZZ] *= ir->wall_ewald_zfac;
459         }
460
461         clear_mat(fr->vir_el_recip);
462
463         if (fr->bEwald)
464         {
465             Vcorr = 0;
466             dvdl  = 0;
467
468             /* With the Verlet scheme exclusion forces are calculated
469              * in the non-bonded kernel.
470              */
471             /* The TPI molecule does not have exclusions with the rest
472              * of the system and no intra-molecular PME grid contributions
473              * will be calculated in gmx_pme_calc_energy.
474              */
475             if ((ir->cutoff_scheme == ecutsGROUP && fr->n_tpi == 0) ||
476                 ir->ewald_geometry != eewg3D ||
477                 ir->epsilon_surface != 0)
478             {
479                 int nthreads,t;
480
481                 wallcycle_sub_start(wcycle, ewcsEWALD_CORRECTION);
482
483                 if (fr->n_tpi > 0)
484                 {
485                     gmx_fatal(FARGS,"TPI with PME currently only works in a 3D geometry with tin-foil boundary conditions");
486                 }
487
488                 nthreads = gmx_omp_nthreads_get(emntBonded);
489 #pragma omp parallel for num_threads(nthreads) schedule(static)
490                 for(t=0; t<nthreads; t++)
491                 {
492                     int s,e,i;
493                     rvec *fnv;
494                     tensor *vir;
495                     real *Vcorrt,*dvdlt;
496                     if (t == 0)
497                     {
498                         fnv    = fr->f_novirsum;
499                         vir    = &fr->vir_el_recip;
500                         Vcorrt = &Vcorr;
501                         dvdlt  = &dvdl;
502                     }
503                     else
504                     {
505                         fnv    = fr->f_t[t].f;
506                         vir    = &fr->f_t[t].vir;
507                         Vcorrt = &fr->f_t[t].Vcorr;
508                         dvdlt  = &fr->f_t[t].dvdl[efptCOUL];
509                         for(i=0; i<fr->natoms_force; i++)
510                         {
511                             clear_rvec(fnv[i]);
512                         }
513                         clear_mat(*vir);
514                     }
515                     *dvdlt = 0;
516                     *Vcorrt =
517                         ewald_LRcorrection(fplog,
518                                            fr->excl_load[t],fr->excl_load[t+1],
519                                            cr,t,fr,
520                                            md->chargeA,
521                                            md->nChargePerturbed ? md->chargeB : NULL,
522                                            ir->cutoff_scheme != ecutsVERLET,
523                                            excl,x,bSB ? boxs : box,mu_tot,
524                                            ir->ewald_geometry,
525                                            ir->epsilon_surface,
526                                            fnv,*vir,
527                                            lambda[efptCOUL],dvdlt);
528                 }
529                 if (nthreads > 1)
530                 {
531                     reduce_thread_forces(fr->natoms_force,fr->f_novirsum,
532                                          fr->vir_el_recip,
533                                          &Vcorr,efptCOUL,&dvdl,
534                                          nthreads,fr->f_t);
535                 }
536
537                 wallcycle_sub_stop(wcycle, ewcsEWALD_CORRECTION);
538             }
539
540             if (fr->n_tpi == 0)
541             {
542                 Vcorr += ewald_charge_correction(cr,fr,lambda[efptCOUL],box,
543                                                  &dvdl,fr->vir_el_recip);
544             }
545
546             PRINT_SEPDVDL("Ewald excl./charge/dip. corr.",Vcorr,dvdl);
547             enerd->dvdl_lin[efptCOUL] += dvdl;
548         }
549
550         status = 0;
551         Vlr  = 0;
552         dvdl = 0;
553         switch (fr->eeltype)
554         {
555         case eelPME:
556         case eelPMESWITCH:
557         case eelPMEUSER:
558         case eelPMEUSERSWITCH:
559         case eelP3M_AD:
560             if (cr->duty & DUTY_PME)
561             {
562                 assert(fr->n_tpi >= 0);
563                 if (fr->n_tpi == 0 || (flags & GMX_FORCE_STATECHANGED))
564                 {
565                     pme_flags = GMX_PME_SPREAD_Q | GMX_PME_SOLVE;
566                     if (flags & GMX_FORCE_FORCES)
567                     {
568                         pme_flags |= GMX_PME_CALC_F;
569                     }
570                     if (flags & (GMX_FORCE_VIRIAL | GMX_FORCE_ENERGY))
571                     {
572                         pme_flags |= GMX_PME_CALC_ENER_VIR;
573                     }
574                     if (fr->n_tpi > 0)
575                     {
576                         /* We don't calculate f, but we do want the potential */
577                         pme_flags |= GMX_PME_CALC_POT;
578                     }
579                     wallcycle_start(wcycle,ewcPMEMESH);
580                     status = gmx_pme_do(fr->pmedata,
581                                         md->start,md->homenr - fr->n_tpi,
582                                         x,fr->f_novirsum,
583                                         md->chargeA,md->chargeB,
584                                         bSB ? boxs : box,cr,
585                                         DOMAINDECOMP(cr) ? dd_pme_maxshift_x(cr->dd) : 0,
586                                         DOMAINDECOMP(cr) ? dd_pme_maxshift_y(cr->dd) : 0,
587                                         nrnb,wcycle,
588                                         fr->vir_el_recip,fr->ewaldcoeff,
589                                         &Vlr,lambda[efptCOUL],&dvdl,
590                                         pme_flags);
591                     *cycles_pme = wallcycle_stop(wcycle,ewcPMEMESH);
592
593                     /* We should try to do as little computation after
594                      * this as possible, because parallel PME synchronizes
595                      * the nodes, so we want all load imbalance of the rest
596                      * of the force calculation to be before the PME call.
597                      * DD load balancing is done on the whole time of
598                      * the force call (without PME).
599                      */
600                 }
601                 if (fr->n_tpi > 0)
602                 {
603                     /* Determine the PME grid energy of the test molecule
604                      * with the PME grid potential of the other charges.
605                      */
606                     gmx_pme_calc_energy(fr->pmedata,fr->n_tpi,
607                                         x + md->homenr - fr->n_tpi,
608                                         md->chargeA + md->homenr - fr->n_tpi,
609                                         &Vlr);
610                 }
611                 PRINT_SEPDVDL("PME mesh",Vlr,dvdl);
612             }
613             break;
614         case eelEWALD:
615             Vlr = do_ewald(fplog,FALSE,ir,x,fr->f_novirsum,
616                            md->chargeA,md->chargeB,
617                            box_size,cr,md->homenr,
618                            fr->vir_el_recip,fr->ewaldcoeff,
619                            lambda[efptCOUL],&dvdl,fr->ewald_table);
620             PRINT_SEPDVDL("Ewald long-range",Vlr,dvdl);
621             break;
622         default:
623             gmx_fatal(FARGS,"No such electrostatics method implemented %s",
624                       eel_names[fr->eeltype]);
625         }
626         if (status != 0)
627         {
628             gmx_fatal(FARGS,"Error %d in long range electrostatics routine %s",
629                       status,EELTYPE(fr->eeltype));
630                 }
631         /* Note that with separate PME nodes we get the real energies later */
632         enerd->dvdl_lin[efptCOUL] += dvdl;
633         enerd->term[F_COUL_RECIP] = Vlr + Vcorr;
634         if (debug)
635         {
636             fprintf(debug,"Vlr = %g, Vcorr = %g, Vlr_corr = %g\n",
637                     Vlr,Vcorr,enerd->term[F_COUL_RECIP]);
638             pr_rvecs(debug,0,"vir_el_recip after corr",fr->vir_el_recip,DIM);
639             pr_rvecs(debug,0,"fshift after LR Corrections",fr->fshift,SHIFTS);
640         }
641     }
642     else
643     {
644         if (EEL_RF(fr->eeltype))
645         {
646             /* With the Verlet scheme exclusion forces are calculated
647              * in the non-bonded kernel.
648              */
649             if (ir->cutoff_scheme != ecutsVERLET && fr->eeltype != eelRF_NEC)
650             {
651                 dvdl = 0;
652                 enerd->term[F_RF_EXCL] =
653                     RF_excl_correction(fplog,fr,graph,md,excl,x,f,
654                                        fr->fshift,&pbc,lambda[efptCOUL],&dvdl);
655             }
656
657             enerd->dvdl_lin[efptCOUL] += dvdl;
658             PRINT_SEPDVDL("RF exclusion correction",
659                           enerd->term[F_RF_EXCL],dvdl);
660         }
661     }
662     where();
663     debug_gmx();
664
665     if (debug)
666     {
667         print_nrnb(debug,nrnb);
668     }
669     debug_gmx();
670
671 #ifdef GMX_MPI
672     if (TAKETIME)
673     {
674         t2=MPI_Wtime();
675         MPI_Barrier(cr->mpi_comm_mygroup);
676         t3=MPI_Wtime();
677         fr->t_wait += t3-t2;
678         if (fr->timesteps == 11)
679         {
680             fprintf(stderr,"* PP load balancing info: node %d, step %s, rel wait time=%3.0f%% , load string value: %7.2f\n",
681                     cr->nodeid, gmx_step_str(fr->timesteps,buf),
682                     100*fr->t_wait/(fr->t_wait+fr->t_fnbf),
683                     (fr->t_fnbf+fr->t_wait)/fr->t_fnbf);
684         }
685         fr->timesteps++;
686     }
687 #endif
688
689     if (debug)
690     {
691         pr_rvecs(debug,0,"fshift after bondeds",fr->fshift,SHIFTS);
692     }
693
694     GMX_MPE_LOG(ev_force_finish);
695
696 }
697
698 void init_enerdata(int ngener,int n_lambda,gmx_enerdata_t *enerd)
699 {
700     int i,n2;
701
702     for(i=0; i<F_NRE; i++)
703     {
704         enerd->term[i] = 0;
705     }
706
707
708     for(i=0; i<efptNR; i++) {
709         enerd->dvdl_lin[i]  = 0;
710         enerd->dvdl_nonlin[i]  = 0;
711     }
712
713     n2=ngener*ngener;
714     if (debug)
715     {
716         fprintf(debug,"Creating %d sized group matrix for energies\n",n2);
717     }
718     enerd->grpp.nener = n2;
719     for(i=0; (i<egNR); i++)
720     {
721         snew(enerd->grpp.ener[i],n2);
722     }
723
724     if (n_lambda)
725     {
726         enerd->n_lambda = 1 + n_lambda;
727         snew(enerd->enerpart_lambda,enerd->n_lambda);
728     }
729     else
730     {
731         enerd->n_lambda = 0;
732     }
733 }
734
735 void destroy_enerdata(gmx_enerdata_t *enerd)
736 {
737     int i;
738
739     for(i=0; (i<egNR); i++)
740     {
741         sfree(enerd->grpp.ener[i]);
742     }
743
744     if (enerd->n_lambda)
745     {
746         sfree(enerd->enerpart_lambda);
747     }
748 }
749
750 static real sum_v(int n,real v[])
751 {
752   real t;
753   int  i;
754
755   t = 0.0;
756   for(i=0; (i<n); i++)
757     t = t + v[i];
758
759   return t;
760 }
761
762 void sum_epot(t_grpopts *opts,gmx_enerdata_t *enerd)
763 {
764   gmx_grppairener_t *grpp;
765   real *epot;
766   int i;
767
768   grpp = &enerd->grpp;
769   epot = enerd->term;
770
771   /* Accumulate energies */
772   epot[F_COUL_SR]  = sum_v(grpp->nener,grpp->ener[egCOULSR]);
773   epot[F_LJ]       = sum_v(grpp->nener,grpp->ener[egLJSR]);
774   epot[F_LJ14]     = sum_v(grpp->nener,grpp->ener[egLJ14]);
775   epot[F_COUL14]   = sum_v(grpp->nener,grpp->ener[egCOUL14]);
776   epot[F_COUL_LR]  = sum_v(grpp->nener,grpp->ener[egCOULLR]);
777   epot[F_LJ_LR]    = sum_v(grpp->nener,grpp->ener[egLJLR]);
778   /* We have already added 1-2,1-3, and 1-4 terms to F_GBPOL */
779   epot[F_GBPOL]   += sum_v(grpp->nener,grpp->ener[egGB]);
780
781 /* lattice part of LR doesnt belong to any group
782  * and has been added earlier
783  */
784   epot[F_BHAM]     = sum_v(grpp->nener,grpp->ener[egBHAMSR]);
785   epot[F_BHAM_LR]  = sum_v(grpp->nener,grpp->ener[egBHAMLR]);
786
787   epot[F_EPOT] = 0;
788   for(i=0; (i<F_EPOT); i++)
789   {
790       if (i != F_DISRESVIOL && i != F_ORIRESDEV)
791       {
792           epot[F_EPOT] += epot[i];
793       }
794   }
795 }
796
797 void sum_dhdl(gmx_enerdata_t *enerd, real *lambda, t_lambda *fepvals)
798 {
799     int i,j,index;
800     double dlam;
801
802     enerd->dvdl_lin[efptVDW] += enerd->term[F_DVDL_VDW];  /* include dispersion correction */
803     enerd->term[F_DVDL] = 0.0;
804     for (i=0;i<efptNR;i++)
805     {
806         if (fepvals->separate_dvdl[i])
807         {
808             /* could this be done more readably/compactly? */
809             switch (i) {
810             case (efptCOUL):
811                 index = F_DVDL_COUL;
812                 break;
813             case (efptVDW):
814                 index = F_DVDL_VDW;
815                 break;
816             case (efptBONDED):
817                 index = F_DVDL_BONDED;
818                 break;
819             case (efptRESTRAINT):
820                 index = F_DVDL_RESTRAINT;
821                 break;
822             case (efptMASS):
823                 index = F_DKDL;
824                 break;
825             default:
826                 index = F_DVDL;
827                 break;
828             }
829             enerd->term[index] = enerd->dvdl_lin[i] + enerd->dvdl_nonlin[i];
830             if (debug)
831             {
832                 fprintf(debug,"dvdl-%s[%2d]: %f: non-linear %f + linear %f\n",
833                         efpt_names[i],i,enerd->term[index],enerd->dvdl_nonlin[i],enerd->dvdl_lin[i]);
834             }
835         }
836         else
837         {
838             enerd->term[F_DVDL] += enerd->dvdl_lin[i] + enerd->dvdl_nonlin[i];
839             if (debug)
840             {
841                 fprintf(debug,"dvd-%sl[%2d]: %f: non-linear %f + linear %f\n",
842                         efpt_names[0],i,enerd->term[F_DVDL],enerd->dvdl_nonlin[i],enerd->dvdl_lin[i]);
843             }
844         }
845     }
846
847     /* Notes on the foreign lambda free energy difference evaluation:
848      * Adding the potential and ekin terms that depend linearly on lambda
849      * as delta lam * dvdl to the energy differences is exact.
850      * For the constraints this is not exact, but we have no other option
851      * without literally changing the lengths and reevaluating the energies at each step.
852      * (try to remedy this post 4.6 - MRS)
853      * For the non-bonded LR term we assume that the soft-core (if present)
854      * no longer affects the energy beyond the short-range cut-off,
855      * which is a very good approximation (except for exotic settings).
856      * (investigate how to overcome this post 4.6 - MRS)
857      */
858
859     for(i=0; i<fepvals->n_lambda; i++)
860     {                                         /* note we are iterating over fepvals here!
861                                                  For the current lam, dlam = 0 automatically,
862                                                  so we don't need to add anything to the
863                                                  enerd->enerpart_lambda[0] */
864
865         /* we don't need to worry about dvdl contributions to the current lambda, because
866            it's automatically zero */
867
868         /* first kinetic energy term */
869         dlam = (fepvals->all_lambda[efptMASS][i] - lambda[efptMASS]);
870
871         enerd->enerpart_lambda[i+1] += enerd->term[F_DKDL]*dlam;
872
873         for (j=0;j<efptNR;j++)
874         {
875             if (j==efptMASS) {continue;} /* no other mass term to worry about */
876
877             dlam = (fepvals->all_lambda[j][i]-lambda[j]);
878             enerd->enerpart_lambda[i+1] += dlam*enerd->dvdl_lin[j];
879             if (debug)
880             {
881                 fprintf(debug,"enerdiff lam %g: (%15s), non-linear %f linear %f*%f\n",
882                         fepvals->all_lambda[j][i],efpt_names[j],
883                         (enerd->enerpart_lambda[i+1] - enerd->enerpart_lambda[0]),
884                         dlam,enerd->dvdl_lin[j]);
885             }
886         }
887     }
888 }
889
890 void reset_enerdata(t_grpopts *opts,
891                     t_forcerec *fr,gmx_bool bNS,
892                     gmx_enerdata_t *enerd,
893                     gmx_bool bMaster)
894 {
895     gmx_bool bKeepLR;
896     int  i,j;
897
898     /* First reset all energy components, except for the long range terms
899      * on the master at non neighbor search steps, since the long range
900      * terms have already been summed at the last neighbor search step.
901      */
902     bKeepLR = (fr->bTwinRange && !bNS);
903     for(i=0; (i<egNR); i++) {
904         if (!(bKeepLR && bMaster && (i == egCOULLR || i == egLJLR))) {
905             for(j=0; (j<enerd->grpp.nener); j++)
906                 enerd->grpp.ener[i][j] = 0.0;
907         }
908     }
909     for (i=0;i<efptNR;i++)
910     {
911         enerd->dvdl_lin[i]    = 0.0;
912         enerd->dvdl_nonlin[i] = 0.0;
913     }
914
915     /* Normal potential energy components */
916     for(i=0; (i<=F_EPOT); i++) {
917         enerd->term[i] = 0.0;
918     }
919     /* Initialize the dVdlambda term with the long range contribution */
920     /* Initialize the dvdl term with the long range contribution */
921     enerd->term[F_DVDL]            = 0.0;
922     enerd->term[F_DVDL_COUL]       = 0.0;
923     enerd->term[F_DVDL_VDW]        = 0.0;
924     enerd->term[F_DVDL_BONDED]     = 0.0;
925     enerd->term[F_DVDL_RESTRAINT]  = 0.0;
926     enerd->term[F_DKDL]            = 0.0;
927     if (enerd->n_lambda > 0)
928     {
929         for(i=0; i<enerd->n_lambda; i++)
930         {
931             enerd->enerpart_lambda[i] = 0.0;
932         }
933     }
934 }