e1f7ce822d809b58374ffff5e706e31291d13acd
[alexxy/gromacs.git] / src / gromacs / topology / mtop_util.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2008,2009,2010, The GROMACS development team.
5  * Copyright (c) 2012,2013,2014,2015,2016 The GROMACS development team.
6  * Copyright (c) 2017,2018,2019,2020, by the GROMACS development team, led by
7  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8  * and including many others, as listed in the AUTHORS file in the
9  * top-level source directory and at http://www.gromacs.org.
10  *
11  * GROMACS is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU Lesser General Public License
13  * as published by the Free Software Foundation; either version 2.1
14  * of the License, or (at your option) any later version.
15  *
16  * GROMACS is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * Lesser General Public License for more details.
20  *
21  * You should have received a copy of the GNU Lesser General Public
22  * License along with GROMACS; if not, see
23  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
25  *
26  * If you want to redistribute modifications to GROMACS, please
27  * consider that scientific software is very special. Version
28  * control is crucial - bugs must be traceable. We will be happy to
29  * consider code for inclusion in the official distribution, but
30  * derived work must not be called official GROMACS. Details are found
31  * in the README & COPYING files - if they are missing, get the
32  * official version at http://www.gromacs.org.
33  *
34  * To help us fund GROMACS development, we humbly ask that you cite
35  * the research papers on the package. Check out http://www.gromacs.org.
36  */
37 #include "gmxpre.h"
38
39 #include "mtop_util.h"
40
41 #include <climits>
42 #include <cstddef>
43 #include <cstdio>
44 #include <cstdlib>
45 #include <cstring>
46
47 #include "gromacs/math/vectypes.h"
48 #include "gromacs/topology/atoms.h"
49 #include "gromacs/topology/block.h"
50 #include "gromacs/topology/exclusionblocks.h"
51 #include "gromacs/topology/idef.h"
52 #include "gromacs/topology/ifunc.h"
53 #include "gromacs/topology/topology.h"
54 #include "gromacs/topology/topsort.h"
55 #include "gromacs/utility/arrayref.h"
56 #include "gromacs/utility/fatalerror.h"
57 #include "gromacs/utility/real.h"
58 #include "gromacs/utility/smalloc.h"
59
60 static int gmx_mtop_maxresnr(const gmx_mtop_t* mtop, int maxres_renum)
61 {
62     int maxresnr = 0;
63
64     for (const gmx_moltype_t& moltype : mtop->moltype)
65     {
66         const t_atoms& atoms = moltype.atoms;
67         if (atoms.nres > maxres_renum)
68         {
69             for (int r = 0; r < atoms.nres; r++)
70             {
71                 if (atoms.resinfo[r].nr > maxresnr)
72                 {
73                     maxresnr = atoms.resinfo[r].nr;
74                 }
75             }
76         }
77     }
78
79     return maxresnr;
80 }
81
82 static void buildMolblockIndices(gmx_mtop_t* mtop)
83 {
84     mtop->moleculeBlockIndices.resize(mtop->molblock.size());
85
86     int atomIndex          = 0;
87     int residueIndex       = 0;
88     int residueNumberStart = mtop->maxresnr + 1;
89     int moleculeIndexStart = 0;
90     for (size_t mb = 0; mb < mtop->molblock.size(); mb++)
91     {
92         const gmx_molblock_t& molb         = mtop->molblock[mb];
93         MoleculeBlockIndices& indices      = mtop->moleculeBlockIndices[mb];
94         const int             numResPerMol = mtop->moltype[molb.type].atoms.nres;
95
96         indices.numAtomsPerMolecule = mtop->moltype[molb.type].atoms.nr;
97         indices.globalAtomStart     = atomIndex;
98         indices.globalResidueStart  = residueIndex;
99         atomIndex += molb.nmol * indices.numAtomsPerMolecule;
100         residueIndex += molb.nmol * numResPerMol;
101         indices.globalAtomEnd      = atomIndex;
102         indices.residueNumberStart = residueNumberStart;
103         if (numResPerMol <= mtop->maxres_renum)
104         {
105             residueNumberStart += molb.nmol * numResPerMol;
106         }
107         indices.moleculeIndexStart = moleculeIndexStart;
108         moleculeIndexStart += molb.nmol;
109     }
110 }
111
112 void gmx_mtop_finalize(gmx_mtop_t* mtop)
113 {
114     char* env;
115
116     if (mtop->molblock.size() == 1 && mtop->molblock[0].nmol == 1)
117     {
118         /* We have a single molecule only, no renumbering needed.
119          * This case also covers an mtop converted from pdb/gro/... input,
120          * so we retain the original residue numbering.
121          */
122         mtop->maxres_renum = 0;
123     }
124     else
125     {
126         /* We only renumber single residue molecules. Their intra-molecular
127          * residue numbering is anyhow irrelevant.
128          */
129         mtop->maxres_renum = 1;
130     }
131
132     env = getenv("GMX_MAXRESRENUM");
133     if (env != nullptr)
134     {
135         sscanf(env, "%d", &mtop->maxres_renum);
136     }
137     if (mtop->maxres_renum == -1)
138     {
139         /* -1 signals renumber residues in all molecules */
140         mtop->maxres_renum = INT_MAX;
141     }
142
143     mtop->maxresnr = gmx_mtop_maxresnr(mtop, mtop->maxres_renum);
144
145     buildMolblockIndices(mtop);
146 }
147
148 void gmx_mtop_count_atomtypes(const gmx_mtop_t* mtop, int state, int typecount[])
149 {
150     for (int i = 0; i < mtop->ffparams.atnr; ++i)
151     {
152         typecount[i] = 0;
153     }
154     for (const gmx_molblock_t& molb : mtop->molblock)
155     {
156         const t_atoms& atoms = mtop->moltype[molb.type].atoms;
157         for (int i = 0; i < atoms.nr; ++i)
158         {
159             int tpi;
160             if (state == 0)
161             {
162                 tpi = atoms.atom[i].type;
163             }
164             else
165             {
166                 tpi = atoms.atom[i].typeB;
167             }
168             typecount[tpi] += molb.nmol;
169         }
170     }
171 }
172
173 int gmx_mtop_num_molecules(const gmx_mtop_t& mtop)
174 {
175     int numMolecules = 0;
176     for (const gmx_molblock_t& molb : mtop.molblock)
177     {
178         numMolecules += molb.nmol;
179     }
180     return numMolecules;
181 }
182
183 int gmx_mtop_nres(const gmx_mtop_t* mtop)
184 {
185     int nres = 0;
186     for (const gmx_molblock_t& molb : mtop->molblock)
187     {
188         nres += molb.nmol * mtop->moltype[molb.type].atoms.nres;
189     }
190     return nres;
191 }
192
193 AtomIterator::AtomIterator(const gmx_mtop_t& mtop, int globalAtomNumber) :
194     mtop_(&mtop),
195     mblock_(0),
196     atoms_(&mtop.moltype[mtop.molblock[0].type].atoms),
197     currentMolecule_(0),
198     highestResidueNumber_(mtop.maxresnr),
199     localAtomNumber_(0),
200     globalAtomNumber_(globalAtomNumber)
201 {
202     GMX_ASSERT(globalAtomNumber == 0 || globalAtomNumber == mtop.natoms,
203                "Starting at other atoms not implemented yet");
204 }
205
206 AtomIterator& AtomIterator::operator++()
207 {
208     localAtomNumber_++;
209     globalAtomNumber_++;
210
211     if (localAtomNumber_ >= atoms_->nr)
212     {
213         if (atoms_->nres <= mtop_->maxresnr)
214         {
215             /* Single residue molecule, increase the count with one */
216             highestResidueNumber_ += atoms_->nres;
217         }
218         currentMolecule_++;
219         localAtomNumber_ = 0;
220         if (currentMolecule_ >= mtop_->molblock[mblock_].nmol)
221         {
222             mblock_++;
223             if (mblock_ >= mtop_->molblock.size())
224             {
225                 return *this;
226             }
227             atoms_           = &mtop_->moltype[mtop_->molblock[mblock_].type].atoms;
228             currentMolecule_ = 0;
229         }
230     }
231     return *this;
232 }
233
234 AtomIterator AtomIterator::operator++(int)
235 {
236     AtomIterator temp = *this;
237     ++(*this);
238     return temp;
239 }
240
241 bool AtomIterator::operator==(const AtomIterator& o) const
242 {
243     return mtop_ == o.mtop_ && globalAtomNumber_ == o.globalAtomNumber_;
244 }
245
246 bool AtomIterator::operator!=(const AtomIterator& o) const
247 {
248     return !(*this == o);
249 }
250
251 const t_atom& AtomProxy::atom() const
252 {
253     return it_->atoms_->atom[it_->localAtomNumber_];
254 }
255
256 int AtomProxy::globalAtomNumber() const
257 {
258     return it_->globalAtomNumber_;
259 }
260
261 const char* AtomProxy::atomName() const
262 {
263     return *(it_->atoms_->atomname[it_->localAtomNumber_]);
264 }
265
266 const char* AtomProxy::residueName() const
267 {
268     int residueIndexInMolecule = it_->atoms_->atom[it_->localAtomNumber_].resind;
269     return *(it_->atoms_->resinfo[residueIndexInMolecule].name);
270 }
271
272 int AtomProxy::residueNumber() const
273 {
274     int residueIndexInMolecule = it_->atoms_->atom[it_->localAtomNumber_].resind;
275     if (it_->atoms_->nres <= it_->mtop_->maxres_renum)
276     {
277         return it_->highestResidueNumber_ + 1 + residueIndexInMolecule;
278     }
279     else
280     {
281         return it_->atoms_->resinfo[residueIndexInMolecule].nr;
282     }
283 }
284
285 const gmx_moltype_t& AtomProxy::moleculeType() const
286 {
287     return it_->mtop_->moltype[it_->mtop_->molblock[it_->mblock_].type];
288 }
289
290 int AtomProxy::atomNumberInMol() const
291 {
292     return it_->localAtomNumber_;
293 }
294
295 typedef struct gmx_mtop_atomloop_block
296 {
297     const gmx_mtop_t* mtop;
298     size_t            mblock;
299     const t_atoms*    atoms;
300     int               at_local;
301 } t_gmx_mtop_atomloop_block;
302
303 gmx_mtop_atomloop_block_t gmx_mtop_atomloop_block_init(const gmx_mtop_t* mtop)
304 {
305     struct gmx_mtop_atomloop_block* aloop;
306
307     snew(aloop, 1);
308
309     aloop->mtop     = mtop;
310     aloop->mblock   = 0;
311     aloop->atoms    = &mtop->moltype[mtop->molblock[aloop->mblock].type].atoms;
312     aloop->at_local = -1;
313
314     return aloop;
315 }
316
317 static void gmx_mtop_atomloop_block_destroy(gmx_mtop_atomloop_block_t aloop)
318 {
319     sfree(aloop);
320 }
321
322 gmx_bool gmx_mtop_atomloop_block_next(gmx_mtop_atomloop_block_t aloop, const t_atom** atom, int* nmol)
323 {
324     if (aloop == nullptr)
325     {
326         gmx_incons("gmx_mtop_atomloop_all_next called without calling gmx_mtop_atomloop_all_init");
327     }
328
329     aloop->at_local++;
330
331     if (aloop->at_local >= aloop->atoms->nr)
332     {
333         aloop->mblock++;
334         if (aloop->mblock >= aloop->mtop->molblock.size())
335         {
336             gmx_mtop_atomloop_block_destroy(aloop);
337             return FALSE;
338         }
339         aloop->atoms    = &aloop->mtop->moltype[aloop->mtop->molblock[aloop->mblock].type].atoms;
340         aloop->at_local = 0;
341     }
342
343     *atom = &aloop->atoms->atom[aloop->at_local];
344     *nmol = aloop->mtop->molblock[aloop->mblock].nmol;
345
346     return TRUE;
347 }
348
349 typedef struct gmx_mtop_ilistloop
350 {
351     const gmx_mtop_t* mtop;
352     int               mblock;
353 } t_gmx_mtop_ilist;
354
355 gmx_mtop_ilistloop_t gmx_mtop_ilistloop_init(const gmx_mtop_t* mtop)
356 {
357     struct gmx_mtop_ilistloop* iloop;
358
359     snew(iloop, 1);
360
361     iloop->mtop   = mtop;
362     iloop->mblock = -1;
363
364     return iloop;
365 }
366
367 gmx_mtop_ilistloop_t gmx_mtop_ilistloop_init(const gmx_mtop_t& mtop)
368 {
369     return gmx_mtop_ilistloop_init(&mtop);
370 }
371
372 static void gmx_mtop_ilistloop_destroy(gmx_mtop_ilistloop_t iloop)
373 {
374     sfree(iloop);
375 }
376
377 const InteractionLists* gmx_mtop_ilistloop_next(gmx_mtop_ilistloop_t iloop, int* nmol)
378 {
379     if (iloop == nullptr)
380     {
381         gmx_incons("gmx_mtop_ilistloop_next called without calling gmx_mtop_ilistloop_init");
382     }
383
384     iloop->mblock++;
385     if (iloop->mblock >= gmx::ssize(iloop->mtop->molblock))
386     {
387         if (iloop->mblock == gmx::ssize(iloop->mtop->molblock) && iloop->mtop->bIntermolecularInteractions)
388         {
389             *nmol = 1;
390             return iloop->mtop->intermolecular_ilist.get();
391         }
392
393         gmx_mtop_ilistloop_destroy(iloop);
394         return nullptr;
395     }
396
397     *nmol = iloop->mtop->molblock[iloop->mblock].nmol;
398
399     return &iloop->mtop->moltype[iloop->mtop->molblock[iloop->mblock].type].ilist;
400 }
401 typedef struct gmx_mtop_ilistloop_all
402 {
403     const gmx_mtop_t* mtop;
404     size_t            mblock;
405     int               mol;
406     int               a_offset;
407 } t_gmx_mtop_ilist_all;
408
409 gmx_mtop_ilistloop_all_t gmx_mtop_ilistloop_all_init(const gmx_mtop_t* mtop)
410 {
411     struct gmx_mtop_ilistloop_all* iloop;
412
413     snew(iloop, 1);
414
415     iloop->mtop     = mtop;
416     iloop->mblock   = 0;
417     iloop->mol      = -1;
418     iloop->a_offset = 0;
419
420     return iloop;
421 }
422
423 static void gmx_mtop_ilistloop_all_destroy(gmx_mtop_ilistloop_all_t iloop)
424 {
425     sfree(iloop);
426 }
427
428 const InteractionLists* gmx_mtop_ilistloop_all_next(gmx_mtop_ilistloop_all_t iloop, int* atnr_offset)
429 {
430
431     if (iloop == nullptr)
432     {
433         gmx_incons(
434                 "gmx_mtop_ilistloop_all_next called without calling gmx_mtop_ilistloop_all_init");
435     }
436
437     if (iloop->mol >= 0)
438     {
439         iloop->a_offset += iloop->mtop->moleculeBlockIndices[iloop->mblock].numAtomsPerMolecule;
440     }
441
442     iloop->mol++;
443
444     /* Inter-molecular interactions, if present, are indexed with
445      * iloop->mblock == iloop->mtop->nmolblock, thus we should separately
446      * check for this value in this conditional.
447      */
448     if (iloop->mblock == iloop->mtop->molblock.size()
449         || iloop->mol >= iloop->mtop->molblock[iloop->mblock].nmol)
450     {
451         iloop->mblock++;
452         iloop->mol = 0;
453         if (iloop->mblock >= iloop->mtop->molblock.size())
454         {
455             if (iloop->mblock == iloop->mtop->molblock.size() && iloop->mtop->bIntermolecularInteractions)
456             {
457                 *atnr_offset = 0;
458                 return iloop->mtop->intermolecular_ilist.get();
459             }
460
461             gmx_mtop_ilistloop_all_destroy(iloop);
462             return nullptr;
463         }
464     }
465
466     *atnr_offset = iloop->a_offset;
467
468     return &iloop->mtop->moltype[iloop->mtop->molblock[iloop->mblock].type].ilist;
469 }
470
471 int gmx_mtop_ftype_count(const gmx_mtop_t* mtop, int ftype)
472 {
473     gmx_mtop_ilistloop_t iloop;
474     int                  n, nmol;
475
476     n = 0;
477
478     iloop = gmx_mtop_ilistloop_init(mtop);
479     while (const InteractionLists* il = gmx_mtop_ilistloop_next(iloop, &nmol))
480     {
481         n += nmol * (*il)[ftype].size() / (1 + NRAL(ftype));
482     }
483
484     if (mtop->bIntermolecularInteractions)
485     {
486         n += (*mtop->intermolecular_ilist)[ftype].size() / (1 + NRAL(ftype));
487     }
488
489     return n;
490 }
491
492 int gmx_mtop_ftype_count(const gmx_mtop_t& mtop, int ftype)
493 {
494     return gmx_mtop_ftype_count(&mtop, ftype);
495 }
496
497 int gmx_mtop_interaction_count(const gmx_mtop_t& mtop, const int unsigned if_flags)
498 {
499     int n = 0;
500
501     gmx_mtop_ilistloop_t iloop = gmx_mtop_ilistloop_init(mtop);
502     int                  nmol;
503     while (const InteractionLists* il = gmx_mtop_ilistloop_next(iloop, &nmol))
504     {
505         for (int ftype = 0; ftype < F_NRE; ftype++)
506         {
507             if ((interaction_function[ftype].flags & if_flags) == if_flags)
508             {
509                 n += nmol * (*il)[ftype].size() / (1 + NRAL(ftype));
510             }
511         }
512     }
513
514     if (mtop.bIntermolecularInteractions)
515     {
516         for (int ftype = 0; ftype < F_NRE; ftype++)
517         {
518             if ((interaction_function[ftype].flags & if_flags) == if_flags)
519             {
520                 n += (*mtop.intermolecular_ilist)[ftype].size() / (1 + NRAL(ftype));
521             }
522         }
523     }
524
525     return n;
526 }
527
528 std::array<int, eptNR> gmx_mtop_particletype_count(const gmx_mtop_t& mtop)
529 {
530     std::array<int, eptNR> count = { { 0 } };
531
532     for (const auto& molblock : mtop.molblock)
533     {
534         const t_atoms& atoms = mtop.moltype[molblock.type].atoms;
535         for (int a = 0; a < atoms.nr; a++)
536         {
537             count[atoms.atom[a].ptype] += molblock.nmol;
538         }
539     }
540
541     return count;
542 }
543
544 static void atomcat(t_atoms* dest, const t_atoms* src, int copies, int maxres_renum, int* maxresnr)
545 {
546     int i, j, l, size;
547     int srcnr  = src->nr;
548     int destnr = dest->nr;
549
550     if (dest->nr == 0)
551     {
552         dest->haveMass    = src->haveMass;
553         dest->haveType    = src->haveType;
554         dest->haveCharge  = src->haveCharge;
555         dest->haveBState  = src->haveBState;
556         dest->havePdbInfo = src->havePdbInfo;
557     }
558     else
559     {
560         dest->haveMass    = dest->haveMass && src->haveMass;
561         dest->haveType    = dest->haveType && src->haveType;
562         dest->haveCharge  = dest->haveCharge && src->haveCharge;
563         dest->haveBState  = dest->haveBState && src->haveBState;
564         dest->havePdbInfo = dest->havePdbInfo && src->havePdbInfo;
565     }
566
567     if (srcnr)
568     {
569         size = destnr + copies * srcnr;
570         srenew(dest->atom, size);
571         srenew(dest->atomname, size);
572         if (dest->haveType)
573         {
574             srenew(dest->atomtype, size);
575             if (dest->haveBState)
576             {
577                 srenew(dest->atomtypeB, size);
578             }
579         }
580         if (dest->havePdbInfo)
581         {
582             srenew(dest->pdbinfo, size);
583         }
584     }
585     if (src->nres)
586     {
587         size = dest->nres + copies * src->nres;
588         srenew(dest->resinfo, size);
589     }
590
591     /* residue information */
592     for (l = dest->nres, j = 0; (j < copies); j++, l += src->nres)
593     {
594         memcpy(reinterpret_cast<char*>(&(dest->resinfo[l])), reinterpret_cast<char*>(&(src->resinfo[0])),
595                static_cast<size_t>(src->nres * sizeof(src->resinfo[0])));
596     }
597
598     for (l = destnr, j = 0; (j < copies); j++, l += srcnr)
599     {
600         memcpy(reinterpret_cast<char*>(&(dest->atom[l])), reinterpret_cast<char*>(&(src->atom[0])),
601                static_cast<size_t>(srcnr * sizeof(src->atom[0])));
602         memcpy(reinterpret_cast<char*>(&(dest->atomname[l])),
603                reinterpret_cast<char*>(&(src->atomname[0])),
604                static_cast<size_t>(srcnr * sizeof(src->atomname[0])));
605         if (dest->haveType)
606         {
607             memcpy(reinterpret_cast<char*>(&(dest->atomtype[l])),
608                    reinterpret_cast<char*>(&(src->atomtype[0])),
609                    static_cast<size_t>(srcnr * sizeof(src->atomtype[0])));
610             if (dest->haveBState)
611             {
612                 memcpy(reinterpret_cast<char*>(&(dest->atomtypeB[l])),
613                        reinterpret_cast<char*>(&(src->atomtypeB[0])),
614                        static_cast<size_t>(srcnr * sizeof(src->atomtypeB[0])));
615             }
616         }
617         if (dest->havePdbInfo)
618         {
619             memcpy(reinterpret_cast<char*>(&(dest->pdbinfo[l])),
620                    reinterpret_cast<char*>(&(src->pdbinfo[0])),
621                    static_cast<size_t>(srcnr * sizeof(src->pdbinfo[0])));
622         }
623     }
624
625     /* Increment residue indices */
626     for (l = destnr, j = 0; (j < copies); j++)
627     {
628         for (i = 0; (i < srcnr); i++, l++)
629         {
630             dest->atom[l].resind = dest->nres + j * src->nres + src->atom[i].resind;
631         }
632     }
633
634     if (src->nres <= maxres_renum)
635     {
636         /* Single residue molecule, continue counting residues */
637         for (j = 0; (j < copies); j++)
638         {
639             for (l = 0; l < src->nres; l++)
640             {
641                 (*maxresnr)++;
642                 dest->resinfo[dest->nres + j * src->nres + l].nr = *maxresnr;
643             }
644         }
645     }
646
647     dest->nres += copies * src->nres;
648     dest->nr += copies * src->nr;
649 }
650
651 t_atoms gmx_mtop_global_atoms(const gmx_mtop_t* mtop)
652 {
653     t_atoms atoms;
654
655     init_t_atoms(&atoms, 0, FALSE);
656
657     int maxresnr = mtop->maxresnr;
658     for (const gmx_molblock_t& molb : mtop->molblock)
659     {
660         atomcat(&atoms, &mtop->moltype[molb.type].atoms, molb.nmol, mtop->maxres_renum, &maxresnr);
661     }
662
663     return atoms;
664 }
665
666 /*
667  * The cat routines below are old code from src/kernel/topcat.c
668  */
669
670 static void ilistcat(int ftype, t_ilist* dest, const InteractionList& src, int copies, int dnum, int snum)
671 {
672     int nral, c, i, a;
673
674     nral = NRAL(ftype);
675
676     dest->nalloc = dest->nr + copies * src.size();
677     srenew(dest->iatoms, dest->nalloc);
678
679     for (c = 0; c < copies; c++)
680     {
681         for (i = 0; i < src.size();)
682         {
683             dest->iatoms[dest->nr++] = src.iatoms[i++];
684             for (a = 0; a < nral; a++)
685             {
686                 dest->iatoms[dest->nr++] = dnum + src.iatoms[i++];
687             }
688         }
689         dnum += snum;
690     }
691 }
692
693 static void set_posres_params(t_idef* idef, const gmx_molblock_t* molb, int i0, int a_offset)
694 {
695     t_ilist*   il;
696     int        i1, i, a_molb;
697     t_iparams* ip;
698
699     il                          = &idef->il[F_POSRES];
700     i1                          = il->nr / 2;
701     idef->iparams_posres_nalloc = i1;
702     srenew(idef->iparams_posres, idef->iparams_posres_nalloc);
703     for (i = i0; i < i1; i++)
704     {
705         ip = &idef->iparams_posres[i];
706         /* Copy the force constants */
707         *ip    = idef->iparams[il->iatoms[i * 2]];
708         a_molb = il->iatoms[i * 2 + 1] - a_offset;
709         if (molb->posres_xA.empty())
710         {
711             gmx_incons("Position restraint coordinates are missing");
712         }
713         ip->posres.pos0A[XX] = molb->posres_xA[a_molb][XX];
714         ip->posres.pos0A[YY] = molb->posres_xA[a_molb][YY];
715         ip->posres.pos0A[ZZ] = molb->posres_xA[a_molb][ZZ];
716         if (!molb->posres_xB.empty())
717         {
718             ip->posres.pos0B[XX] = molb->posres_xB[a_molb][XX];
719             ip->posres.pos0B[YY] = molb->posres_xB[a_molb][YY];
720             ip->posres.pos0B[ZZ] = molb->posres_xB[a_molb][ZZ];
721         }
722         else
723         {
724             ip->posres.pos0B[XX] = ip->posres.pos0A[XX];
725             ip->posres.pos0B[YY] = ip->posres.pos0A[YY];
726             ip->posres.pos0B[ZZ] = ip->posres.pos0A[ZZ];
727         }
728         /* Set the parameter index for idef->iparams_posre */
729         il->iatoms[i * 2] = i;
730     }
731 }
732
733 static void set_fbposres_params(t_idef* idef, const gmx_molblock_t* molb, int i0, int a_offset)
734 {
735     t_ilist*   il;
736     int        i1, i, a_molb;
737     t_iparams* ip;
738
739     il                            = &idef->il[F_FBPOSRES];
740     i1                            = il->nr / 2;
741     idef->iparams_fbposres_nalloc = i1;
742     srenew(idef->iparams_fbposres, idef->iparams_fbposres_nalloc);
743     for (i = i0; i < i1; i++)
744     {
745         ip = &idef->iparams_fbposres[i];
746         /* Copy the force constants */
747         *ip    = idef->iparams[il->iatoms[i * 2]];
748         a_molb = il->iatoms[i * 2 + 1] - a_offset;
749         if (molb->posres_xA.empty())
750         {
751             gmx_incons("Position restraint coordinates are missing");
752         }
753         /* Take flat-bottom posres reference from normal position restraints */
754         ip->fbposres.pos0[XX] = molb->posres_xA[a_molb][XX];
755         ip->fbposres.pos0[YY] = molb->posres_xA[a_molb][YY];
756         ip->fbposres.pos0[ZZ] = molb->posres_xA[a_molb][ZZ];
757         /* Note: no B-type for flat-bottom posres */
758
759         /* Set the parameter index for idef->iparams_posre */
760         il->iatoms[i * 2] = i;
761     }
762 }
763
764 /*! \brief Copy idef structure from mtop.
765  *
766  * Makes a deep copy of an idef data structure from a gmx_mtop_t.
767  * Used to initialize legacy topology types.
768  *
769  * \param[in] mtop Reference to input mtop.
770  * \param[in] idef Pointer to idef to populate.
771  * \param[in] mergeConstr Decide if constraints will be merged.
772  * \param[in] freeEnergyInteractionsAtEnd Decide if free energy stuff should
773  *              be added at the end.
774  */
775 static void copyIdefFromMtop(const gmx_mtop_t& mtop, t_idef* idef, bool freeEnergyInteractionsAtEnd, bool mergeConstr)
776 {
777     const gmx_ffparams_t* ffp = &mtop.ffparams;
778
779     idef->ntypes = ffp->numTypes();
780     idef->atnr   = ffp->atnr;
781     /* we can no longer copy the pointers to the mtop members,
782      * because they will become invalid as soon as mtop gets free'd.
783      * We also need to make sure to only operate on valid data!
784      */
785
786     if (!ffp->functype.empty())
787     {
788         snew(idef->functype, ffp->functype.size());
789         std::copy(ffp->functype.data(), ffp->functype.data() + ffp->functype.size(), idef->functype);
790     }
791     else
792     {
793         idef->functype = nullptr;
794     }
795     if (!ffp->iparams.empty())
796     {
797         snew(idef->iparams, ffp->iparams.size());
798         std::copy(ffp->iparams.data(), ffp->iparams.data() + ffp->iparams.size(), idef->iparams);
799     }
800     else
801     {
802         idef->iparams = nullptr;
803     }
804     idef->iparams_posres          = nullptr;
805     idef->iparams_posres_nalloc   = 0;
806     idef->iparams_fbposres        = nullptr;
807     idef->iparams_fbposres_nalloc = 0;
808     idef->fudgeQQ                 = ffp->fudgeQQ;
809     idef->cmap_grid               = new gmx_cmap_t;
810     *idef->cmap_grid              = ffp->cmap_grid;
811     idef->ilsort                  = ilsortUNKNOWN;
812
813     for (int ftype = 0; ftype < F_NRE; ftype++)
814     {
815         idef->il[ftype].nr     = 0;
816         idef->il[ftype].nalloc = 0;
817         idef->il[ftype].iatoms = nullptr;
818     }
819
820     int natoms = 0;
821     for (const gmx_molblock_t& molb : mtop.molblock)
822     {
823         const gmx_moltype_t& molt = mtop.moltype[molb.type];
824
825         int srcnr  = molt.atoms.nr;
826         int destnr = natoms;
827
828         int nposre_old   = idef->il[F_POSRES].nr;
829         int nfbposre_old = idef->il[F_FBPOSRES].nr;
830         for (int ftype = 0; ftype < F_NRE; ftype++)
831         {
832             if (mergeConstr && ftype == F_CONSTR && molt.ilist[F_CONSTRNC].size() > 0)
833             {
834                 /* Merge all constrains into one ilist.
835                  * This simplifies the constraint code.
836                  */
837                 for (int mol = 0; mol < molb.nmol; mol++)
838                 {
839                     ilistcat(ftype, &idef->il[F_CONSTR], molt.ilist[F_CONSTR], 1,
840                              destnr + mol * srcnr, srcnr);
841                     ilistcat(ftype, &idef->il[F_CONSTR], molt.ilist[F_CONSTRNC], 1,
842                              destnr + mol * srcnr, srcnr);
843                 }
844             }
845             else if (!(mergeConstr && ftype == F_CONSTRNC))
846             {
847                 ilistcat(ftype, &idef->il[ftype], molt.ilist[ftype], molb.nmol, destnr, srcnr);
848             }
849         }
850         if (idef->il[F_POSRES].nr > nposre_old)
851         {
852             /* Executing this line line stops gmxdump -sys working
853              * correctly. I'm not aware there's an elegant fix. */
854             set_posres_params(idef, &molb, nposre_old / 2, natoms);
855         }
856         if (idef->il[F_FBPOSRES].nr > nfbposre_old)
857         {
858             set_fbposres_params(idef, &molb, nfbposre_old / 2, natoms);
859         }
860
861         natoms += molb.nmol * srcnr;
862     }
863
864     if (mtop.bIntermolecularInteractions)
865     {
866         for (int ftype = 0; ftype < F_NRE; ftype++)
867         {
868             ilistcat(ftype, &idef->il[ftype], (*mtop.intermolecular_ilist)[ftype], 1, 0, mtop.natoms);
869         }
870     }
871
872     if (freeEnergyInteractionsAtEnd && gmx_mtop_bondeds_free_energy(&mtop))
873     {
874         std::vector<real> qA(mtop.natoms);
875         std::vector<real> qB(mtop.natoms);
876         for (const AtomProxy atomP : AtomRange(mtop))
877         {
878             const t_atom& local = atomP.atom();
879             int           index = atomP.globalAtomNumber();
880             qA[index]           = local.q;
881             qB[index]           = local.qB;
882         }
883         gmx_sort_ilist_fe(idef, qA.data(), qB.data());
884     }
885     else
886     {
887         idef->ilsort = ilsortNO_FE;
888     }
889 }
890
891 /*! \brief Copy atomtypes from mtop
892  *
893  * Makes a deep copy of t_atomtypes from gmx_mtop_t.
894  * Used to initialize legacy topology types.
895  *
896  * \param[in] mtop Reference to input mtop.
897  * \param[in] atomtypes Pointer to atomtypes to populate.
898  */
899 static void copyAtomtypesFromMtop(const gmx_mtop_t& mtop, t_atomtypes* atomtypes)
900 {
901     atomtypes->nr = mtop.atomtypes.nr;
902     if (mtop.atomtypes.atomnumber)
903     {
904         snew(atomtypes->atomnumber, mtop.atomtypes.nr);
905         std::copy(mtop.atomtypes.atomnumber, mtop.atomtypes.atomnumber + mtop.atomtypes.nr,
906                   atomtypes->atomnumber);
907     }
908     else
909     {
910         atomtypes->atomnumber = nullptr;
911     }
912 }
913
914 /*! \brief Generate a single list of lists of exclusions for the whole system
915  *
916  * \param[in] mtop  Reference to input mtop.
917  */
918 static gmx::ListOfLists<int> globalExclusionLists(const gmx_mtop_t& mtop)
919 {
920     gmx::ListOfLists<int> excls;
921
922     int atomIndex = 0;
923     for (const gmx_molblock_t& molb : mtop.molblock)
924     {
925         const gmx_moltype_t& molt = mtop.moltype[molb.type];
926
927         for (int mol = 0; mol < molb.nmol; mol++)
928         {
929             excls.appendListOfLists(molt.excls, atomIndex);
930
931             atomIndex += molt.atoms.nr;
932         }
933     }
934
935     return excls;
936 }
937
938 /*! \brief Updates inter-molecular exclusion lists
939  *
940  * This function updates inter-molecular exclusions to exclude all
941  * non-bonded interactions between a given list of atoms
942  *
943  * \param[inout]    excls   existing exclusions in local topology
944  * \param[in]       ids     list of global IDs of atoms
945  */
946 static void addMimicExclusions(gmx::ListOfLists<int>* excls, const gmx::ArrayRef<const int> ids)
947 {
948     t_blocka inter_excl{};
949     init_blocka(&inter_excl);
950     size_t n_q = ids.size();
951
952     inter_excl.nr  = excls->ssize();
953     inter_excl.nra = n_q * n_q;
954
955     size_t total_nra = n_q * n_q;
956
957     snew(inter_excl.index, excls->ssize() + 1);
958     snew(inter_excl.a, total_nra);
959
960     for (int i = 0; i < inter_excl.nr; ++i)
961     {
962         inter_excl.index[i] = 0;
963     }
964
965     /* Here we loop over the list of QM atom ids
966      *  and create exclusions between all of them resulting in
967      *  n_q * n_q sized exclusion list
968      */
969     int prev_index = 0;
970     for (int k = 0; k < inter_excl.nr; ++k)
971     {
972         inter_excl.index[k] = prev_index;
973         for (long i = 0; i < ids.ssize(); i++)
974         {
975             if (k != ids[i])
976             {
977                 continue;
978             }
979             size_t index             = n_q * i;
980             inter_excl.index[ids[i]] = index;
981             prev_index               = index + n_q;
982             for (size_t j = 0; j < n_q; ++j)
983             {
984                 inter_excl.a[n_q * i + j] = ids[j];
985             }
986         }
987     }
988     inter_excl.index[ids[n_q - 1] + 1] = n_q * n_q;
989
990     inter_excl.index[inter_excl.nr] = n_q * n_q;
991
992     std::vector<gmx::ExclusionBlock> qmexcl2(excls->size());
993     gmx::blockaToExclusionBlocks(&inter_excl, qmexcl2);
994
995     // Merge the created exclusion list with the existing one
996     gmx::mergeExclusions(excls, qmexcl2);
997 }
998
999 static void gen_local_top(const gmx_mtop_t& mtop,
1000                           bool              freeEnergyInteractionsAtEnd,
1001                           bool              bMergeConstr,
1002                           gmx_localtop_t*   top)
1003 {
1004     copyAtomtypesFromMtop(mtop, &top->atomtypes);
1005     copyIdefFromMtop(mtop, &top->idef, freeEnergyInteractionsAtEnd, bMergeConstr);
1006     top->excls = globalExclusionLists(mtop);
1007     if (!mtop.intermolecularExclusionGroup.empty())
1008     {
1009         addMimicExclusions(&top->excls, mtop.intermolecularExclusionGroup);
1010     }
1011 }
1012
1013 void gmx_mtop_generate_local_top(const gmx_mtop_t& mtop, gmx_localtop_t* top, bool freeEnergyInteractionsAtEnd)
1014 {
1015     gen_local_top(mtop, freeEnergyInteractionsAtEnd, true, top);
1016 }
1017
1018 /*! \brief Fills an array with molecule begin/end atom indices
1019  *
1020  * \param[in]  mtop   The global topology
1021  * \param[out] index  Array of size nr. of molecules + 1 to be filled with molecule begin/end indices
1022  */
1023 static void fillMoleculeIndices(const gmx_mtop_t& mtop, gmx::ArrayRef<int> index)
1024 {
1025     int globalAtomIndex   = 0;
1026     int globalMolIndex    = 0;
1027     index[globalMolIndex] = globalAtomIndex;
1028     for (const gmx_molblock_t& molb : mtop.molblock)
1029     {
1030         int numAtomsPerMolecule = mtop.moltype[molb.type].atoms.nr;
1031         for (int mol = 0; mol < molb.nmol; mol++)
1032         {
1033             globalAtomIndex += numAtomsPerMolecule;
1034             globalMolIndex += 1;
1035             index[globalMolIndex] = globalAtomIndex;
1036         }
1037     }
1038 }
1039
1040 gmx::RangePartitioning gmx_mtop_molecules(const gmx_mtop_t& mtop)
1041 {
1042     gmx::RangePartitioning mols;
1043
1044     for (const gmx_molblock_t& molb : mtop.molblock)
1045     {
1046         int numAtomsPerMolecule = mtop.moltype[molb.type].atoms.nr;
1047         for (int mol = 0; mol < molb.nmol; mol++)
1048         {
1049             mols.appendBlock(numAtomsPerMolecule);
1050         }
1051     }
1052
1053     return mols;
1054 }
1055
1056 /*! \brief Creates and returns a deprecated t_block struct with molecule indices
1057  *
1058  * \param[in] mtop  The global topology
1059  */
1060 static t_block gmx_mtop_molecules_t_block(const gmx_mtop_t& mtop)
1061 {
1062     t_block mols;
1063
1064     mols.nr           = gmx_mtop_num_molecules(mtop);
1065     mols.nalloc_index = mols.nr + 1;
1066     snew(mols.index, mols.nalloc_index);
1067
1068     fillMoleculeIndices(mtop, gmx::arrayRefFromArray(mols.index, mols.nr + 1));
1069
1070     return mols;
1071 }
1072
1073 static void gen_t_topology(const gmx_mtop_t& mtop,
1074                            bool              freeEnergyInteractionsAtEnd,
1075                            bool              bMergeConstr,
1076                            t_topology*       top)
1077 {
1078     copyAtomtypesFromMtop(mtop, &top->atomtypes);
1079     copyIdefFromMtop(mtop, &top->idef, freeEnergyInteractionsAtEnd, bMergeConstr);
1080
1081     top->name                        = mtop.name;
1082     top->atoms                       = gmx_mtop_global_atoms(&mtop);
1083     top->mols                        = gmx_mtop_molecules_t_block(mtop);
1084     top->bIntermolecularInteractions = mtop.bIntermolecularInteractions;
1085     top->symtab                      = mtop.symtab;
1086 }
1087
1088 t_topology gmx_mtop_t_to_t_topology(gmx_mtop_t* mtop, bool freeMTop)
1089 {
1090     t_topology top;
1091
1092     gen_t_topology(*mtop, false, false, &top);
1093
1094     if (freeMTop)
1095     {
1096         // Clear pointers and counts, such that the pointers copied to top
1097         // keep pointing to valid data after destroying mtop.
1098         mtop->symtab.symbuf = nullptr;
1099         mtop->symtab.nr     = 0;
1100     }
1101     return top;
1102 }
1103
1104 std::vector<int> get_atom_index(const gmx_mtop_t* mtop)
1105 {
1106
1107     std::vector<int> atom_index;
1108     for (const AtomProxy atomP : AtomRange(*mtop))
1109     {
1110         const t_atom& local = atomP.atom();
1111         int           index = atomP.globalAtomNumber();
1112         if (local.ptype == eptAtom)
1113         {
1114             atom_index.push_back(index);
1115         }
1116     }
1117     return atom_index;
1118 }
1119
1120 void convertAtomsToMtop(t_symtab* symtab, char** name, t_atoms* atoms, gmx_mtop_t* mtop)
1121 {
1122     mtop->symtab = *symtab;
1123
1124     mtop->name = name;
1125
1126     mtop->moltype.clear();
1127     mtop->moltype.resize(1);
1128     mtop->moltype.back().atoms = *atoms;
1129
1130     mtop->molblock.resize(1);
1131     mtop->molblock[0].type = 0;
1132     mtop->molblock[0].nmol = 1;
1133
1134     mtop->bIntermolecularInteractions = FALSE;
1135
1136     mtop->natoms = atoms->nr;
1137
1138     mtop->haveMoleculeIndices = false;
1139
1140     gmx_mtop_finalize(mtop);
1141 }
1142
1143 bool haveFepPerturbedNBInteractions(const gmx_mtop_t* mtop)
1144 {
1145     for (size_t mb = 0; mb < mtop->molblock.size(); mb++)
1146     {
1147         const gmx_molblock_t& molb = mtop->molblock[mb];
1148         const gmx_moltype_t&  molt = mtop->moltype[molb.type];
1149         for (int m = 0; m < molb.nmol; m++)
1150         {
1151             for (int a = 0; a < molt.atoms.nr; a++)
1152             {
1153                 const t_atom& atom = molt.atoms.atom[a];
1154                 if (PERTURBED(atom))
1155                 {
1156                     return true;
1157                 }
1158             }
1159         }
1160     }
1161     return false;
1162 }