Apply clang-format to source tree
[alexxy/gromacs.git] / src / gromacs / simd / tests / simd4_floatingpoint.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2014,2015,2016,2017,2018,2019, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 #include "gmxpre.h"
36
37 #include <cmath>
38
39 #include "gromacs/math/utilities.h"
40 #include "gromacs/simd/simd.h"
41 #include "gromacs/utility/basedefinitions.h"
42
43 #include "testutils/testasserts.h"
44
45 #include "data.h"
46 #include "simd4.h"
47
48 #if GMX_SIMD
49
50 namespace gmx
51 {
52 namespace test
53 {
54 namespace
55 {
56
57 /*! \cond internal */
58 /*! \addtogroup module_simd */
59 /*! \{ */
60
61 #    if GMX_SIMD4_HAVE_REAL
62
63 /*! \brief Test fixture for SIMD4 floating-point operations (identical to the SIMD4 \ref Simd4Test) */
64 typedef Simd4Test Simd4FloatingpointTest;
65
66 TEST_F(Simd4FloatingpointTest, setZero)
67 {
68     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(0.0), setZero());
69 }
70
71 TEST_F(Simd4FloatingpointTest, set)
72 {
73     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(c1), Simd4Real(c1));
74 }
75
76 TEST_F(Simd4FloatingpointTest, add)
77 {
78     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(c0 + c3, c1 + c4, c2 + c5), rSimd4_c0c1c2 + rSimd4_c3c4c5);
79 }
80
81 TEST_F(Simd4FloatingpointTest, sub)
82 {
83     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(c0 - c3, c1 - c4, c2 - c5), rSimd4_c0c1c2 - rSimd4_c3c4c5);
84 }
85
86 TEST_F(Simd4FloatingpointTest, mul)
87 {
88     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(c0 * c3, c1 * c4, c2 * c5), rSimd4_c0c1c2 * rSimd4_c3c4c5);
89 }
90
91 TEST_F(Simd4FloatingpointTest, fma)
92 {
93     // The last bit of FMA operations depends on hardware, so we don't require exact match
94     GMX_EXPECT_SIMD4_REAL_NEAR(setSimd4RealFrom3R(c0 * c3 + c6, c1 * c4 + c7, c2 * c5 + c8),
95                                fma(rSimd4_c0c1c2, rSimd4_c3c4c5, rSimd4_c6c7c8));
96 }
97
98 TEST_F(Simd4FloatingpointTest, fms)
99 {
100     // The last bit of FMA operations depends on hardware, so we don't require exact match
101     GMX_EXPECT_SIMD4_REAL_NEAR(setSimd4RealFrom3R(c0 * c3 - c6, c1 * c4 - c7, c2 * c5 - c8),
102                                fms(rSimd4_c0c1c2, rSimd4_c3c4c5, rSimd4_c6c7c8));
103 }
104
105 TEST_F(Simd4FloatingpointTest, fnma)
106 {
107     // The last bit of FMA operations depends on hardware, so we don't require exact match
108     GMX_EXPECT_SIMD4_REAL_NEAR(setSimd4RealFrom3R(c6 - c0 * c3, c7 - c1 * c4, c8 - c2 * c5),
109                                fnma(rSimd4_c0c1c2, rSimd4_c3c4c5, rSimd4_c6c7c8));
110 }
111
112 TEST_F(Simd4FloatingpointTest, fnms)
113 {
114     // The last bit of FMA operations depends on hardware, so we don't require exact match
115     GMX_EXPECT_SIMD4_REAL_NEAR(setSimd4RealFrom3R(-c0 * c3 - c6, -c1 * c4 - c7, -c2 * c5 - c8),
116                                fnms(rSimd4_c0c1c2, rSimd4_c3c4c5, rSimd4_c6c7c8));
117 }
118
119 TEST_F(Simd4FloatingpointTest, abs)
120 {
121     GMX_EXPECT_SIMD4_REAL_EQ(rSimd4_c0c1c2, abs(rSimd4_c0c1c2)); // fabs(x)=x
122     GMX_EXPECT_SIMD4_REAL_EQ(rSimd4_c0c1c2, abs(rSimd4_m0m1m2)); // fabs(-x)=x
123 }
124
125 TEST_F(Simd4FloatingpointTest, neg)
126 {
127     GMX_EXPECT_SIMD4_REAL_EQ(rSimd4_m0m1m2, -(rSimd4_c0c1c2)); // fneg(x)=-x
128     GMX_EXPECT_SIMD4_REAL_EQ(rSimd4_c0c1c2, -(rSimd4_m0m1m2)); // fneg(-x)=x
129 }
130
131 #        if GMX_SIMD_HAVE_LOGICAL
132 TEST_F(Simd4FloatingpointTest, and)
133 {
134     GMX_EXPECT_SIMD4_REAL_EQ(rSimd4_logicalResultAnd, (rSimd4_logicalA & rSimd4_logicalB));
135 }
136
137 TEST_F(Simd4FloatingpointTest, or)
138 {
139     GMX_EXPECT_SIMD4_REAL_EQ(rSimd4_logicalResultOr, (rSimd4_logicalA | rSimd4_logicalB));
140 }
141
142 TEST_F(Simd4FloatingpointTest, xor)
143 {
144     /* Test xor by taking xor with a number and its negative. This should result
145      * in only the sign bit being set. We then use this bit change the sign of
146      * different numbers.
147      */
148     Simd4Real signbit = Simd4Real(c1) ^ Simd4Real(-c1);
149     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(-c2, c3, -c4), signbit ^ setSimd4RealFrom3R(c2, -c3, c4));
150 }
151
152 TEST_F(Simd4FloatingpointTest, andNot)
153 {
154     /* Use xor (which we already tested, so fix that first if both tests fail)
155      * to extract the sign bit, and then use andnot to take absolute values.
156      */
157     Simd4Real signbit = Simd4Real(c1) ^ Simd4Real(-c1);
158     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(c2, c3, c4),
159                              andNot(signbit, setSimd4RealFrom3R(-c2, c3, -c4)));
160 }
161
162 #        endif
163
164 TEST_F(Simd4FloatingpointTest, max)
165 {
166     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(c3, c1, c4), max(rSimd4_c0c1c2, rSimd4_c3c0c4));
167     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(c3, c1, c4), max(rSimd4_c3c0c4, rSimd4_c0c1c2));
168     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(-c0, -c0, -c2), max(rSimd4_m0m1m2, rSimd4_m3m0m4));
169     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(-c0, -c0, -c2), max(rSimd4_m3m0m4, rSimd4_m0m1m2));
170 }
171
172 TEST_F(Simd4FloatingpointTest, min)
173 {
174     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(c0, c0, c2), min(rSimd4_c0c1c2, rSimd4_c3c0c4));
175     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(c0, c0, c2), min(rSimd4_c3c0c4, rSimd4_c0c1c2));
176     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(-c3, -c1, -c4), min(rSimd4_m0m1m2, rSimd4_m3m0m4));
177     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(-c3, -c1, -c4), min(rSimd4_m3m0m4, rSimd4_m0m1m2));
178 }
179
180 TEST_F(Simd4FloatingpointTest, round)
181 {
182     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(2), round(Simd4Real(2.25)));
183     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(4), round(Simd4Real(3.75)));
184     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(-2), round(Simd4Real(-2.25)));
185     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(-4), round(Simd4Real(-3.75)));
186 }
187
188 TEST_F(Simd4FloatingpointTest, trunc)
189 {
190     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(2), trunc(rSimd4_2p25));
191     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(3), trunc(rSimd4_3p75));
192     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(-2), trunc(rSimd4_m2p25));
193     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(-3), trunc(rSimd4_m3p75));
194 }
195
196 /* We do extensive 1/sqrt(x) and 1/x accuracy testing in the tests for
197  * the SIMD math functions, so we just make sure the lookup instructions
198  * appear to work for a few values here.
199  */
200 TEST_F(Simd4FloatingpointTest, gmxSimd4RsqrtR)
201 {
202     Simd4Real x   = setSimd4RealFrom3R(4.0, M_PI, 1234567890.0);
203     Simd4Real ref = setSimd4RealFrom3R(0.5, 1.0 / std::sqrt(M_PI), 1.0 / std::sqrt(1234567890.0));
204     int       shiftbits = std::numeric_limits<real>::digits - GMX_SIMD_RSQRT_BITS;
205
206     if (shiftbits < 0)
207     {
208         shiftbits = 0;
209     }
210
211     // The allowed Ulp deviation is 2 to the power of the number of mantissa
212     // digits, minus the number of bits provided by the table lookup
213     setUlpTol(1LL << shiftbits);
214     GMX_EXPECT_SIMD4_REAL_NEAR(ref, rsqrt(x));
215 }
216
217 TEST_F(Simd4FloatingpointTest, cmpEqAndSelectByMask)
218 {
219     Simd4Bool eq = rSimd4_c4c6c8 == rSimd4_c6c7c8;
220     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(0, 0, c2), selectByMask(rSimd4_c0c1c2, eq));
221 }
222
223 TEST_F(Simd4FloatingpointTest, selectByNotMask)
224 {
225     Simd4Bool eq = rSimd4_c4c6c8 == rSimd4_c6c7c8;
226     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(c0, c1, 0), selectByNotMask(rSimd4_c0c1c2, eq));
227 }
228
229 TEST_F(Simd4FloatingpointTest, cmpNe)
230 {
231     Simd4Bool eq = rSimd4_c4c6c8 != rSimd4_c6c7c8;
232     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(c0, c1, 0), selectByMask(rSimd4_c0c1c2, eq));
233 }
234
235 TEST_F(Simd4FloatingpointTest, cmpLe)
236 {
237     Simd4Bool le = rSimd4_c4c6c8 <= rSimd4_c6c7c8;
238     GMX_EXPECT_SIMD4_REAL_EQ(rSimd4_c0c1c2, selectByMask(rSimd4_c0c1c2, le));
239 }
240
241 TEST_F(Simd4FloatingpointTest, cmpLt)
242 {
243     Simd4Bool lt = rSimd4_c4c6c8 < rSimd4_c6c7c8;
244     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(c0, c1, 0), selectByMask(rSimd4_c0c1c2, lt));
245 }
246
247 TEST_F(Simd4FloatingpointTest, andB)
248 {
249     Simd4Bool eq = rSimd4_c4c6c8 == rSimd4_c6c7c8;
250     Simd4Bool le = rSimd4_c4c6c8 <= rSimd4_c6c7c8;
251     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(0, 0, c2), selectByMask(rSimd4_c0c1c2, (eq && le)));
252 }
253
254 TEST_F(Simd4FloatingpointTest, orB)
255 {
256     Simd4Bool eq = rSimd4_c4c6c8 == rSimd4_c6c7c8;
257     Simd4Bool lt = rSimd4_c4c6c8 < rSimd4_c6c7c8;
258     GMX_EXPECT_SIMD4_REAL_EQ(rSimd4_c0c1c2, selectByMask(rSimd4_c0c1c2, (eq || lt)));
259 }
260
261 TEST_F(Simd4FloatingpointTest, anyTrue)
262 {
263     Simd4Bool eq;
264
265     /* this test is a bit tricky since we don't know the simd width.
266      * We cannot check for truth values for "any" element beyond the first,
267      * since that part of the data will not be used if simd width is 1.
268      */
269     eq = (rSimd4_c4c6c8 == setSimd4RealFrom3R(c4, 0, 0));
270     EXPECT_TRUE(anyTrue(eq));
271
272     eq = (rSimd4_c0c1c2 == rSimd4_c3c4c5);
273     EXPECT_FALSE(anyTrue(eq));
274 }
275
276 TEST_F(Simd4FloatingpointTest, blend)
277 {
278     Simd4Bool lt = rSimd4_c4c6c8 < rSimd4_c6c7c8;
279     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(c3, c4, c2), blend(rSimd4_c0c1c2, rSimd4_c3c4c5, lt));
280 }
281
282 TEST_F(Simd4FloatingpointTest, reduce)
283 {
284     // The horizontal sum of the SIMD variable depends on the width, so
285     // simply store it an extra time and calculate what the sum should be
286     std::vector<real> v   = simd4Real2Vector(rSimd4_c3c4c5);
287     real              sum = 0.0;
288
289     for (int i = 0; i < GMX_SIMD4_WIDTH; i++)
290     {
291         sum += v[i];
292     }
293
294     EXPECT_REAL_EQ_TOL(sum, reduce(rSimd4_c3c4c5), defaultRealTolerance());
295 }
296
297
298 TEST_F(Simd4FloatingpointTest, dotProduct)
299 {
300     real res = c0 * c3 + c1 * c4 + c2 * c5;
301
302     EXPECT_REAL_EQ_TOL(res, dotProduct(rSimd4_c0c1c2, rSimd4_c3c4c5), defaultRealTolerance());
303 }
304
305 TEST_F(Simd4FloatingpointTest, transpose)
306 {
307     Simd4Real v0, v1, v2, v3;
308     int       i;
309     // aligned pointers
310     alignas(GMX_SIMD_ALIGNMENT) real p0[4 * GMX_SIMD4_WIDTH];
311     real*                            p1 = p0 + GMX_SIMD4_WIDTH;
312     real*                            p2 = p0 + 2 * GMX_SIMD4_WIDTH;
313     real*                            p3 = p0 + 3 * GMX_SIMD4_WIDTH;
314
315     // Assign data with tens as row, single-digit as column
316     for (i = 0; i < 4; i++)
317     {
318         // Scale by 1+100*eps to use low bits tii
319         p0[i] = (0 * 10 + i * 1) * (1.0 + 100 * GMX_REAL_EPS);
320         p1[i] = (1 * 10 + i * 1) * (1.0 + 100 * GMX_REAL_EPS);
321         p2[i] = (2 * 10 + i * 1) * (1.0 + 100 * GMX_REAL_EPS);
322         p3[i] = (3 * 10 + i * 1) * (1.0 + 100 * GMX_REAL_EPS);
323     }
324
325     v0 = load4(p0);
326     v1 = load4(p1);
327     v2 = load4(p2);
328     v3 = load4(p3);
329
330     transpose(&v0, &v1, &v2, &v3);
331
332     store4(p0, v0);
333     store4(p1, v1);
334     store4(p2, v2);
335     store4(p3, v3);
336
337     for (i = 0; i < 4; i++)
338     {
339         EXPECT_REAL_EQ_TOL((i * 10 + 0) * (1.0 + 100 * GMX_REAL_EPS), p0[i], defaultRealTolerance());
340         EXPECT_REAL_EQ_TOL((i * 10 + 1) * (1.0 + 100 * GMX_REAL_EPS), p1[i], defaultRealTolerance());
341         EXPECT_REAL_EQ_TOL((i * 10 + 2) * (1.0 + 100 * GMX_REAL_EPS), p2[i], defaultRealTolerance());
342         EXPECT_REAL_EQ_TOL((i * 10 + 3) * (1.0 + 100 * GMX_REAL_EPS), p3[i], defaultRealTolerance());
343     }
344 }
345
346 #    endif // GMX_SIMD4_HAVE_REAL
347
348 /*! \} */
349 /*! \endcond */
350
351 } // namespace
352 } // namespace test
353 } // namespace gmx
354
355 #endif // GMX_SIMD