Split lines with many copyright years
[alexxy/gromacs.git] / src / gromacs / simd / tests / simd4_floatingpoint.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2014,2015,2016,2017,2018 by the GROMACS development team.
5  * Copyright (c) 2019,2020, by the GROMACS development team, led by
6  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
7  * and including many others, as listed in the AUTHORS file in the
8  * top-level source directory and at http://www.gromacs.org.
9  *
10  * GROMACS is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public License
12  * as published by the Free Software Foundation; either version 2.1
13  * of the License, or (at your option) any later version.
14  *
15  * GROMACS is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with GROMACS; if not, see
22  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
23  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
24  *
25  * If you want to redistribute modifications to GROMACS, please
26  * consider that scientific software is very special. Version
27  * control is crucial - bugs must be traceable. We will be happy to
28  * consider code for inclusion in the official distribution, but
29  * derived work must not be called official GROMACS. Details are found
30  * in the README & COPYING files - if they are missing, get the
31  * official version at http://www.gromacs.org.
32  *
33  * To help us fund GROMACS development, we humbly ask that you cite
34  * the research papers on the package. Check out http://www.gromacs.org.
35  */
36 #include "gmxpre.h"
37
38 #include <cmath>
39
40 #include "gromacs/math/utilities.h"
41 #include "gromacs/simd/simd.h"
42 #include "gromacs/utility/basedefinitions.h"
43
44 #include "testutils/testasserts.h"
45
46 #include "data.h"
47 #include "simd4.h"
48
49 #if GMX_SIMD
50
51 namespace gmx
52 {
53 namespace test
54 {
55 namespace
56 {
57
58 /*! \cond internal */
59 /*! \addtogroup module_simd */
60 /*! \{ */
61
62 #    if GMX_SIMD4_HAVE_REAL
63
64 /*! \brief Test fixture for SIMD4 floating-point operations (identical to the SIMD4 \ref Simd4Test) */
65 typedef Simd4Test Simd4FloatingpointTest;
66
67 TEST_F(Simd4FloatingpointTest, setZero)
68 {
69     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(0.0), setZero());
70 }
71
72 TEST_F(Simd4FloatingpointTest, set)
73 {
74     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(c1), Simd4Real(c1));
75 }
76
77 TEST_F(Simd4FloatingpointTest, add)
78 {
79     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(c0 + c3, c1 + c4, c2 + c5), rSimd4_c0c1c2 + rSimd4_c3c4c5);
80 }
81
82 TEST_F(Simd4FloatingpointTest, sub)
83 {
84     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(c0 - c3, c1 - c4, c2 - c5), rSimd4_c0c1c2 - rSimd4_c3c4c5);
85 }
86
87 TEST_F(Simd4FloatingpointTest, mul)
88 {
89     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(c0 * c3, c1 * c4, c2 * c5), rSimd4_c0c1c2 * rSimd4_c3c4c5);
90 }
91
92 TEST_F(Simd4FloatingpointTest, fma)
93 {
94     // The last bit of FMA operations depends on hardware, so we don't require exact match
95     GMX_EXPECT_SIMD4_REAL_NEAR(setSimd4RealFrom3R(c0 * c3 + c6, c1 * c4 + c7, c2 * c5 + c8),
96                                fma(rSimd4_c0c1c2, rSimd4_c3c4c5, rSimd4_c6c7c8));
97 }
98
99 TEST_F(Simd4FloatingpointTest, fms)
100 {
101     // The last bit of FMA operations depends on hardware, so we don't require exact match
102     GMX_EXPECT_SIMD4_REAL_NEAR(setSimd4RealFrom3R(c0 * c3 - c6, c1 * c4 - c7, c2 * c5 - c8),
103                                fms(rSimd4_c0c1c2, rSimd4_c3c4c5, rSimd4_c6c7c8));
104 }
105
106 TEST_F(Simd4FloatingpointTest, fnma)
107 {
108     // The last bit of FMA operations depends on hardware, so we don't require exact match
109     GMX_EXPECT_SIMD4_REAL_NEAR(setSimd4RealFrom3R(c6 - c0 * c3, c7 - c1 * c4, c8 - c2 * c5),
110                                fnma(rSimd4_c0c1c2, rSimd4_c3c4c5, rSimd4_c6c7c8));
111 }
112
113 TEST_F(Simd4FloatingpointTest, fnms)
114 {
115     // The last bit of FMA operations depends on hardware, so we don't require exact match
116     GMX_EXPECT_SIMD4_REAL_NEAR(setSimd4RealFrom3R(-c0 * c3 - c6, -c1 * c4 - c7, -c2 * c5 - c8),
117                                fnms(rSimd4_c0c1c2, rSimd4_c3c4c5, rSimd4_c6c7c8));
118 }
119
120 TEST_F(Simd4FloatingpointTest, abs)
121 {
122     GMX_EXPECT_SIMD4_REAL_EQ(rSimd4_c0c1c2, abs(rSimd4_c0c1c2)); // fabs(x)=x
123     GMX_EXPECT_SIMD4_REAL_EQ(rSimd4_c0c1c2, abs(rSimd4_m0m1m2)); // fabs(-x)=x
124 }
125
126 TEST_F(Simd4FloatingpointTest, neg)
127 {
128     GMX_EXPECT_SIMD4_REAL_EQ(rSimd4_m0m1m2, -(rSimd4_c0c1c2)); // fneg(x)=-x
129     GMX_EXPECT_SIMD4_REAL_EQ(rSimd4_c0c1c2, -(rSimd4_m0m1m2)); // fneg(-x)=x
130 }
131
132 #        if GMX_SIMD_HAVE_LOGICAL
133 TEST_F(Simd4FloatingpointTest, and)
134 {
135     GMX_EXPECT_SIMD4_REAL_EQ(rSimd4_logicalResultAnd, (rSimd4_logicalA & rSimd4_logicalB));
136 }
137
138 TEST_F(Simd4FloatingpointTest, or)
139 {
140     GMX_EXPECT_SIMD4_REAL_EQ(rSimd4_logicalResultOr, (rSimd4_logicalA | rSimd4_logicalB));
141 }
142
143 TEST_F(Simd4FloatingpointTest, xor)
144 {
145     /* Test xor by taking xor with a number and its negative. This should result
146      * in only the sign bit being set. We then use this bit change the sign of
147      * different numbers.
148      */
149     Simd4Real signbit = Simd4Real(c1) ^ Simd4Real(-c1);
150     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(-c2, c3, -c4), signbit ^ setSimd4RealFrom3R(c2, -c3, c4));
151 }
152
153 TEST_F(Simd4FloatingpointTest, andNot)
154 {
155     /* Use xor (which we already tested, so fix that first if both tests fail)
156      * to extract the sign bit, and then use andnot to take absolute values.
157      */
158     Simd4Real signbit = Simd4Real(c1) ^ Simd4Real(-c1);
159     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(c2, c3, c4),
160                              andNot(signbit, setSimd4RealFrom3R(-c2, c3, -c4)));
161 }
162
163 #        endif
164
165 TEST_F(Simd4FloatingpointTest, max)
166 {
167     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(c3, c1, c4), max(rSimd4_c0c1c2, rSimd4_c3c0c4));
168     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(c3, c1, c4), max(rSimd4_c3c0c4, rSimd4_c0c1c2));
169     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(-c0, -c0, -c2), max(rSimd4_m0m1m2, rSimd4_m3m0m4));
170     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(-c0, -c0, -c2), max(rSimd4_m3m0m4, rSimd4_m0m1m2));
171 }
172
173 TEST_F(Simd4FloatingpointTest, min)
174 {
175     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(c0, c0, c2), min(rSimd4_c0c1c2, rSimd4_c3c0c4));
176     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(c0, c0, c2), min(rSimd4_c3c0c4, rSimd4_c0c1c2));
177     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(-c3, -c1, -c4), min(rSimd4_m0m1m2, rSimd4_m3m0m4));
178     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(-c3, -c1, -c4), min(rSimd4_m3m0m4, rSimd4_m0m1m2));
179 }
180
181 TEST_F(Simd4FloatingpointTest, round)
182 {
183     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(2), round(Simd4Real(2.25)));
184     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(4), round(Simd4Real(3.75)));
185     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(-2), round(Simd4Real(-2.25)));
186     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(-4), round(Simd4Real(-3.75)));
187 }
188
189 TEST_F(Simd4FloatingpointTest, trunc)
190 {
191     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(2), trunc(rSimd4_2p25));
192     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(3), trunc(rSimd4_3p75));
193     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(-2), trunc(rSimd4_m2p25));
194     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom1R(-3), trunc(rSimd4_m3p75));
195 }
196
197 /* We do extensive 1/sqrt(x) and 1/x accuracy testing in the tests for
198  * the SIMD math functions, so we just make sure the lookup instructions
199  * appear to work for a few values here.
200  */
201 TEST_F(Simd4FloatingpointTest, gmxSimd4RsqrtR)
202 {
203     Simd4Real x   = setSimd4RealFrom3R(4.0, M_PI, 1234567890.0);
204     Simd4Real ref = setSimd4RealFrom3R(0.5, 1.0 / std::sqrt(M_PI), 1.0 / std::sqrt(1234567890.0));
205     int       shiftbits = std::numeric_limits<real>::digits - GMX_SIMD_RSQRT_BITS;
206
207     if (shiftbits < 0)
208     {
209         shiftbits = 0;
210     }
211
212     // The allowed Ulp deviation is 2 to the power of the number of mantissa
213     // digits, minus the number of bits provided by the table lookup
214     setUlpTol(1LL << shiftbits);
215     GMX_EXPECT_SIMD4_REAL_NEAR(ref, rsqrt(x));
216 }
217
218 TEST_F(Simd4FloatingpointTest, cmpEqAndSelectByMask)
219 {
220     Simd4Bool eq = rSimd4_c4c6c8 == rSimd4_c6c7c8;
221     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(0, 0, c2), selectByMask(rSimd4_c0c1c2, eq));
222 }
223
224 TEST_F(Simd4FloatingpointTest, selectByNotMask)
225 {
226     Simd4Bool eq = rSimd4_c4c6c8 == rSimd4_c6c7c8;
227     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(c0, c1, 0), selectByNotMask(rSimd4_c0c1c2, eq));
228 }
229
230 TEST_F(Simd4FloatingpointTest, cmpNe)
231 {
232     Simd4Bool eq = rSimd4_c4c6c8 != rSimd4_c6c7c8;
233     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(c0, c1, 0), selectByMask(rSimd4_c0c1c2, eq));
234 }
235
236 TEST_F(Simd4FloatingpointTest, cmpLe)
237 {
238     Simd4Bool le = rSimd4_c4c6c8 <= rSimd4_c6c7c8;
239     GMX_EXPECT_SIMD4_REAL_EQ(rSimd4_c0c1c2, selectByMask(rSimd4_c0c1c2, le));
240 }
241
242 TEST_F(Simd4FloatingpointTest, cmpLt)
243 {
244     Simd4Bool lt = rSimd4_c4c6c8 < rSimd4_c6c7c8;
245     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(c0, c1, 0), selectByMask(rSimd4_c0c1c2, lt));
246 }
247
248 TEST_F(Simd4FloatingpointTest, andB)
249 {
250     Simd4Bool eq = rSimd4_c4c6c8 == rSimd4_c6c7c8;
251     Simd4Bool le = rSimd4_c4c6c8 <= rSimd4_c6c7c8;
252     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(0, 0, c2), selectByMask(rSimd4_c0c1c2, (eq && le)));
253 }
254
255 TEST_F(Simd4FloatingpointTest, orB)
256 {
257     Simd4Bool eq = rSimd4_c4c6c8 == rSimd4_c6c7c8;
258     Simd4Bool lt = rSimd4_c4c6c8 < rSimd4_c6c7c8;
259     GMX_EXPECT_SIMD4_REAL_EQ(rSimd4_c0c1c2, selectByMask(rSimd4_c0c1c2, (eq || lt)));
260 }
261
262 TEST_F(Simd4FloatingpointTest, anyTrue)
263 {
264     Simd4Bool eq;
265
266     /* this test is a bit tricky since we don't know the simd width.
267      * We cannot check for truth values for "any" element beyond the first,
268      * since that part of the data will not be used if simd width is 1.
269      */
270     eq = (rSimd4_c4c6c8 == setSimd4RealFrom3R(c4, 0, 0));
271     EXPECT_TRUE(anyTrue(eq));
272
273     eq = (rSimd4_c0c1c2 == rSimd4_c3c4c5);
274     EXPECT_FALSE(anyTrue(eq));
275 }
276
277 TEST_F(Simd4FloatingpointTest, blend)
278 {
279     Simd4Bool lt = rSimd4_c4c6c8 < rSimd4_c6c7c8;
280     GMX_EXPECT_SIMD4_REAL_EQ(setSimd4RealFrom3R(c3, c4, c2), blend(rSimd4_c0c1c2, rSimd4_c3c4c5, lt));
281 }
282
283 TEST_F(Simd4FloatingpointTest, reduce)
284 {
285     // The horizontal sum of the SIMD variable depends on the width, so
286     // simply store it an extra time and calculate what the sum should be
287     std::vector<real> v   = simd4Real2Vector(rSimd4_c3c4c5);
288     real              sum = 0.0;
289
290     for (int i = 0; i < GMX_SIMD4_WIDTH; i++)
291     {
292         sum += v[i];
293     }
294
295     EXPECT_REAL_EQ_TOL(sum, reduce(rSimd4_c3c4c5), defaultRealTolerance());
296 }
297
298
299 TEST_F(Simd4FloatingpointTest, dotProduct)
300 {
301     real res = c0 * c3 + c1 * c4 + c2 * c5;
302
303     EXPECT_REAL_EQ_TOL(res, dotProduct(rSimd4_c0c1c2, rSimd4_c3c4c5), defaultRealTolerance());
304 }
305
306 TEST_F(Simd4FloatingpointTest, transpose)
307 {
308     Simd4Real v0, v1, v2, v3;
309     int       i;
310     // aligned pointers
311     alignas(GMX_SIMD_ALIGNMENT) real p0[4 * GMX_SIMD4_WIDTH];
312     real*                            p1 = p0 + GMX_SIMD4_WIDTH;
313     real*                            p2 = p0 + 2 * GMX_SIMD4_WIDTH;
314     real*                            p3 = p0 + 3 * GMX_SIMD4_WIDTH;
315
316     // Assign data with tens as row, single-digit as column
317     for (i = 0; i < 4; i++)
318     {
319         // Scale by 1+100*eps to use low bits tii
320         p0[i] = (0 * 10 + i * 1) * (1.0 + 100 * GMX_REAL_EPS);
321         p1[i] = (1 * 10 + i * 1) * (1.0 + 100 * GMX_REAL_EPS);
322         p2[i] = (2 * 10 + i * 1) * (1.0 + 100 * GMX_REAL_EPS);
323         p3[i] = (3 * 10 + i * 1) * (1.0 + 100 * GMX_REAL_EPS);
324     }
325
326     v0 = load4(p0);
327     v1 = load4(p1);
328     v2 = load4(p2);
329     v3 = load4(p3);
330
331     transpose(&v0, &v1, &v2, &v3);
332
333     store4(p0, v0);
334     store4(p1, v1);
335     store4(p2, v2);
336     store4(p3, v3);
337
338     for (i = 0; i < 4; i++)
339     {
340         EXPECT_REAL_EQ_TOL((i * 10 + 0) * (1.0 + 100 * GMX_REAL_EPS), p0[i], defaultRealTolerance());
341         EXPECT_REAL_EQ_TOL((i * 10 + 1) * (1.0 + 100 * GMX_REAL_EPS), p1[i], defaultRealTolerance());
342         EXPECT_REAL_EQ_TOL((i * 10 + 2) * (1.0 + 100 * GMX_REAL_EPS), p2[i], defaultRealTolerance());
343         EXPECT_REAL_EQ_TOL((i * 10 + 3) * (1.0 + 100 * GMX_REAL_EPS), p3[i], defaultRealTolerance());
344     }
345 }
346
347 #    endif // GMX_SIMD4_HAVE_REAL
348
349 /*! \} */
350 /*! \endcond */
351
352 } // namespace
353 } // namespace test
354 } // namespace gmx
355
356 #endif // GMX_SIMD