Fix warnings & consolidate declarations
[alexxy/gromacs.git] / src / gromacs / nbnxm / opencl / nbnxm_ocl.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2016,2017,2018,2019, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*! \internal \file
36  *  \brief Define OpenCL implementation of nbnxm_gpu.h
37  *
38  *  \author Anca Hamuraru <anca@streamcomputing.eu>
39  *  \author Teemu Virolainen <teemu@streamcomputing.eu>
40  *  \author Dimitrios Karkoulis <dimitris.karkoulis@gmail.com>
41  *  \author Szilárd Páll <pall.szilard@gmail.com>
42  *  \ingroup module_nbnxm
43  *
44  *  TODO (psz):
45  *  - Add a static const cl_uint c_pruneKernelWorkDim / c_nbnxnKernelWorkDim = 3;
46  *  - Rework the copying of OCL data structures done before every invocation of both
47  *    nb and prune kernels (using fillin_ocl_structures); also consider at the same
48  *    time calling clSetKernelArg only on the updated parameters (if tracking changed
49  *    parameters is feasible);
50  *  - Consider using the event_wait_list argument to clEnqueueNDRangeKernel to mark
51  *    dependencies on the kernel launched: e.g. the non-local nb kernel's dependency
52  *    on the misc_ops_and_local_H2D_done event could be better expressed this way.
53  *
54  *  - Consider extracting common sections of the OpenCL and CUDA nbnxn logic, e.g:
55  *    - in nbnxn_gpu_launch_kernel_pruneonly() the pre- and post-kernel launch logic
56  *      is identical in the two implementations, so a 3-way split might allow sharing
57  *      code;
58  *    -
59  *
60  */
61 #include "gmxpre.h"
62
63 #include <assert.h>
64 #include <stdlib.h>
65
66 #if defined(_MSVC)
67 #include <limits>
68 #endif
69
70 #include "thread_mpi/atomic.h"
71
72 #include "gromacs/gpu_utils/gputraits_ocl.h"
73 #include "gromacs/gpu_utils/oclutils.h"
74 #include "gromacs/hardware/hw_info.h"
75 #include "gromacs/mdlib/force_flags.h"
76 #include "gromacs/nbnxm/atomdata.h"
77 #include "gromacs/nbnxm/gpu_common.h"
78 #include "gromacs/nbnxm/gpu_common_utils.h"
79 #include "gromacs/nbnxm/gpu_data_mgmt.h"
80 #include "gromacs/nbnxm/nbnxm.h"
81 #include "gromacs/nbnxm/nbnxm_gpu.h"
82 #include "gromacs/nbnxm/pairlist.h"
83 #include "gromacs/pbcutil/ishift.h"
84 #include "gromacs/timing/gpu_timing.h"
85 #include "gromacs/utility/cstringutil.h"
86 #include "gromacs/utility/fatalerror.h"
87 #include "gromacs/utility/gmxassert.h"
88
89 #include "nbnxm_ocl_internal.h"
90 #include "nbnxm_ocl_types.h"
91
92 namespace Nbnxm
93 {
94
95 /*! \brief Convenience constants */
96 //@{
97 static const int c_numClPerSupercl = c_nbnxnGpuNumClusterPerSupercluster;
98 static const int c_clSize          = c_nbnxnGpuClusterSize;
99 //@}
100
101
102 /*! \brief Validates the input global work size parameter.
103  */
104 static inline void validate_global_work_size(const KernelLaunchConfig &config, int work_dim, const gmx_device_info_t *dinfo)
105 {
106     cl_uint device_size_t_size_bits;
107     cl_uint host_size_t_size_bits;
108
109     assert(dinfo);
110
111     size_t global_work_size[3];
112     GMX_ASSERT(work_dim <= 3, "Not supporting hyper-grids just yet");
113     for (int i = 0; i < work_dim; i++)
114     {
115         global_work_size[i] = config.blockSize[i] * config.gridSize[i];
116     }
117
118     /* Each component of a global_work_size must not exceed the range given by the
119        sizeof(device size_t) for the device on which the kernel execution will
120        be enqueued. See:
121        https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clEnqueueNDRangeKernel.html
122      */
123     device_size_t_size_bits = dinfo->adress_bits;
124     host_size_t_size_bits   = static_cast<cl_uint>(sizeof(size_t) * 8);
125
126     /* If sizeof(host size_t) <= sizeof(device size_t)
127             => global_work_size components will always be valid
128        else
129             => get device limit for global work size and
130             compare it against each component of global_work_size.
131      */
132     if (host_size_t_size_bits > device_size_t_size_bits)
133     {
134         size_t device_limit;
135
136         device_limit = (1ull << device_size_t_size_bits) - 1;
137
138         for (int i = 0; i < work_dim; i++)
139         {
140             if (global_work_size[i] > device_limit)
141             {
142                 gmx_fatal(FARGS, "Watch out, the input system is too large to simulate!\n"
143                           "The number of nonbonded work units (=number of super-clusters) exceeds the"
144                           "device capabilities. Global work size limit exceeded (%zu > %zu)!",
145                           global_work_size[i], device_limit);
146             }
147         }
148     }
149 }
150
151 /* Constant arrays listing non-bonded kernel function names. The arrays are
152  * organized in 2-dim arrays by: electrostatics and VDW type.
153  *
154  *  Note that the row- and column-order of function pointers has to match the
155  *  order of corresponding enumerated electrostatics and vdw types, resp.,
156  *  defined in nbnxm_ocl_types.h.
157  */
158
159 /*! \brief Force-only kernel function names. */
160 static const char* nb_kfunc_noener_noprune_ptr[eelOclNR][evdwOclNR] =
161 {
162     { "nbnxn_kernel_ElecCut_VdwLJ_F_opencl",            "nbnxn_kernel_ElecCut_VdwLJCombGeom_F_opencl",            "nbnxn_kernel_ElecCut_VdwLJCombLB_F_opencl",            "nbnxn_kernel_ElecCut_VdwLJFsw_F_opencl",            "nbnxn_kernel_ElecCut_VdwLJPsw_F_opencl",            "nbnxn_kernel_ElecCut_VdwLJEwCombGeom_F_opencl",            "nbnxn_kernel_ElecCut_VdwLJEwCombLB_F_opencl"            },
163     { "nbnxn_kernel_ElecRF_VdwLJ_F_opencl",             "nbnxn_kernel_ElecRF_VdwLJCombGeom_F_opencl",             "nbnxn_kernel_ElecRF_VdwLJCombLB_F_opencl",             "nbnxn_kernel_ElecRF_VdwLJFsw_F_opencl",             "nbnxn_kernel_ElecRF_VdwLJPsw_F_opencl",             "nbnxn_kernel_ElecRF_VdwLJEwCombGeom_F_opencl",             "nbnxn_kernel_ElecRF_VdwLJEwCombLB_F_opencl"             },
164     { "nbnxn_kernel_ElecEwQSTab_VdwLJ_F_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJCombGeom_F_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJCombLB_F_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJFsw_F_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJPsw_F_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJEwCombGeom_F_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJEwCombLB_F_opencl"        },
165     { "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJ_F_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJCombGeom_F_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJCombLB_F_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJFsw_F_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJPsw_F_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJEwCombGeom_F_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJEwCombLB_F_opencl" },
166     { "nbnxn_kernel_ElecEw_VdwLJ_F_opencl",             "nbnxn_kernel_ElecEw_VdwLJCombGeom_F_opencl",             "nbnxn_kernel_ElecEw_VdwLJCombLB_F_opencl",             "nbnxn_kernel_ElecEw_VdwLJFsw_F_opencl",             "nbnxn_kernel_ElecEw_VdwLJPsw_F_opencl",             "nbnxn_kernel_ElecEw_VdwLJEwCombGeom_F_opencl",             "nbnxn_kernel_ElecEw_VdwLJEwCombLB_F_opencl"             },
167     { "nbnxn_kernel_ElecEwTwinCut_VdwLJ_F_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJCombGeom_F_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJCombLB_F_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJFsw_F_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJPsw_F_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJEwCombGeom_F_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJEwCombLB_F_opencl"      }
168 };
169
170 /*! \brief Force + energy kernel function pointers. */
171 static const char* nb_kfunc_ener_noprune_ptr[eelOclNR][evdwOclNR] =
172 {
173     { "nbnxn_kernel_ElecCut_VdwLJ_VF_opencl",            "nbnxn_kernel_ElecCut_VdwLJCombGeom_VF_opencl",            "nbnxn_kernel_ElecCut_VdwLJCombLB_VF_opencl",            "nbnxn_kernel_ElecCut_VdwLJFsw_VF_opencl",            "nbnxn_kernel_ElecCut_VdwLJPsw_VF_opencl",            "nbnxn_kernel_ElecCut_VdwLJEwCombGeom_VF_opencl",            "nbnxn_kernel_ElecCut_VdwLJEwCombLB_VF_opencl"            },
174     { "nbnxn_kernel_ElecRF_VdwLJ_VF_opencl",             "nbnxn_kernel_ElecRF_VdwLJCombGeom_VF_opencl",             "nbnxn_kernel_ElecRF_VdwLJCombLB_VF_opencl",             "nbnxn_kernel_ElecRF_VdwLJFsw_VF_opencl",             "nbnxn_kernel_ElecRF_VdwLJPsw_VF_opencl",             "nbnxn_kernel_ElecRF_VdwLJEwCombGeom_VF_opencl",             "nbnxn_kernel_ElecRF_VdwLJEwCombLB_VF_opencl"             },
175     { "nbnxn_kernel_ElecEwQSTab_VdwLJ_VF_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJCombGeom_VF_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJCombLB_VF_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJFsw_VF_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJPsw_VF_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJEwCombGeom_VF_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJEwCombLB_VF_opencl"        },
176     { "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJ_VF_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJCombGeom_VF_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJCombLB_VF_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJFsw_VF_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJPsw_VF_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJEwCombGeom_VF_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJEwCombLB_VF_opencl" },
177     { "nbnxn_kernel_ElecEw_VdwLJ_VF_opencl",             "nbnxn_kernel_ElecEw_VdwLJCombGeom_VF_opencl",             "nbnxn_kernel_ElecEw_VdwLJCombLB_VF_opencl",             "nbnxn_kernel_ElecEw_VdwLJFsw_VF_opencl",             "nbnxn_kernel_ElecEw_VdwLJPsw_VF_opencl",             "nbnxn_kernel_ElecEw_VdwLJEwCombGeom_VF_opencl",             "nbnxn_kernel_ElecEw_VdwLJEwCombLB_VF_opencl"             },
178     { "nbnxn_kernel_ElecEwTwinCut_VdwLJ_VF_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJCombGeom_VF_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJCombLB_VF_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJFsw_VF_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJPsw_VF_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJEwCombGeom_VF_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJEwCombLB_VF_opencl"      }
179 };
180
181 /*! \brief Force + pruning kernel function pointers. */
182 static const char* nb_kfunc_noener_prune_ptr[eelOclNR][evdwOclNR] =
183 {
184     { "nbnxn_kernel_ElecCut_VdwLJ_F_prune_opencl",            "nbnxn_kernel_ElecCut_VdwLJCombGeom_F_prune_opencl",            "nbnxn_kernel_ElecCut_VdwLJCombLB_F_prune_opencl",            "nbnxn_kernel_ElecCut_VdwLJFsw_F_prune_opencl",            "nbnxn_kernel_ElecCut_VdwLJPsw_F_prune_opencl",            "nbnxn_kernel_ElecCut_VdwLJEwCombGeom_F_prune_opencl",            "nbnxn_kernel_ElecCut_VdwLJEwCombLB_F_prune_opencl"             },
185     { "nbnxn_kernel_ElecRF_VdwLJ_F_prune_opencl",             "nbnxn_kernel_ElecRF_VdwLJCombGeom_F_prune_opencl",             "nbnxn_kernel_ElecRF_VdwLJCombLB_F_prune_opencl",             "nbnxn_kernel_ElecRF_VdwLJFsw_F_prune_opencl",             "nbnxn_kernel_ElecRF_VdwLJPsw_F_prune_opencl",             "nbnxn_kernel_ElecRF_VdwLJEwCombGeom_F_prune_opencl",             "nbnxn_kernel_ElecRF_VdwLJEwCombLB_F_prune_opencl"              },
186     { "nbnxn_kernel_ElecEwQSTab_VdwLJ_F_prune_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJCombGeom_F_prune_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJCombLB_F_prune_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJFsw_F_prune_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJPsw_F_prune_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJEwCombGeom_F_prune_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJEwCombLB_F_prune_opencl"         },
187     { "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJ_F_prune_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJCombGeom_F_prune_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJCombLB_F_prune_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJFsw_F_prune_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJPsw_F_prune_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJEwCombGeom_F_prune_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJEwCombLB_F_prune_opencl"  },
188     { "nbnxn_kernel_ElecEw_VdwLJ_F_prune_opencl",             "nbnxn_kernel_ElecEw_VdwLJCombGeom_F_prune_opencl",             "nbnxn_kernel_ElecEw_VdwLJCombLB_F_prune_opencl",             "nbnxn_kernel_ElecEw_VdwLJFsw_F_prune_opencl",             "nbnxn_kernel_ElecEw_VdwLJPsw_F_prune_opencl",             "nbnxn_kernel_ElecEw_VdwLJEwCombGeom_F_prune_opencl",             "nbnxn_kernel_ElecEw_VdwLJEwCombLB_F_prune_opencl"              },
189     { "nbnxn_kernel_ElecEwTwinCut_VdwLJ_F_prune_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJCombGeom_F_prune_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJCombLB_F_prune_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJFsw_F_prune_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJPsw_F_prune_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJEwCombGeom_F_prune_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJEwCombLB_F_prune_opencl"       }
190 };
191
192 /*! \brief Force + energy + pruning kernel function pointers. */
193 static const char* nb_kfunc_ener_prune_ptr[eelOclNR][evdwOclNR] =
194 {
195     { "nbnxn_kernel_ElecCut_VdwLJ_VF_prune_opencl",            "nbnxn_kernel_ElecCut_VdwLJCombGeom_VF_prune_opencl",            "nbnxn_kernel_ElecCut_VdwLJCombLB_VF_prune_opencl",            "nbnxn_kernel_ElecCut_VdwLJFsw_VF_prune_opencl",            "nbnxn_kernel_ElecCut_VdwLJPsw_VF_prune_opencl",            "nbnxn_kernel_ElecCut_VdwLJEwCombGeom_VF_prune_opencl",            "nbnxn_kernel_ElecCut_VdwLJEwCombLB_VF_prune_opencl"            },
196     { "nbnxn_kernel_ElecRF_VdwLJ_VF_prune_opencl",             "nbnxn_kernel_ElecRF_VdwLJCombGeom_VF_prune_opencl",             "nbnxn_kernel_ElecRF_VdwLJCombLB_VF_prune_opencl",             "nbnxn_kernel_ElecRF_VdwLJFsw_VF_prune_opencl",             "nbnxn_kernel_ElecRF_VdwLJPsw_VF_prune_opencl",             "nbnxn_kernel_ElecRF_VdwLJEwCombGeom_VF_prune_opencl",             "nbnxn_kernel_ElecRF_VdwLJEwCombLB_VF_prune_opencl"             },
197     { "nbnxn_kernel_ElecEwQSTab_VdwLJ_VF_prune_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJCombGeom_VF_prune_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJCombLB_VF_prune_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJFsw_VF_prune_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJPsw_VF_prune_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJEwCombGeom_VF_prune_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJEwCombLB_VF_prune_opencl"        },
198     { "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJ_VF_prune_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJCombGeom_VF_prune_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJCombLB_VF_prune_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJFsw_VF_prune_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJPsw_VF_prune_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJEwCombGeom_VF_prune_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJEwCombLB_VF_prune_opencl" },
199     { "nbnxn_kernel_ElecEw_VdwLJ_VF_prune_opencl",             "nbnxn_kernel_ElecEw_VdwLJCombGeom_VF_prune_opencl",             "nbnxn_kernel_ElecEw_VdwLJCombLB_VF_prune_opencl",             "nbnxn_kernel_ElecEw_VdwLJFsw_VF_prune_opencl",             "nbnxn_kernel_ElecEw_VdwLJPsw_VF_prune_opencl",             "nbnxn_kernel_ElecEw_VdwLJEwCombGeom_VF_prune_opencl",             "nbnxn_kernel_ElecEw_VdwLJEwCombLB_VF_prune_opencl"             },
200     { "nbnxn_kernel_ElecEwTwinCut_VdwLJ_VF_prune_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJCombGeom_VF_prune_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJCombLB_VF_prune_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJFsw_VF_prune_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJPsw_VF_prune_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJEwCombGeom_VF_prune_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJEwCombLB_VF_prune_opencl"      }
201 };
202
203 /*! \brief Return a pointer to the prune kernel version to be executed at the current invocation.
204  *
205  * \param[in] kernel_pruneonly  array of prune kernel objects
206  * \param[in] firstPrunePass    true if the first pruning pass is being executed
207  */
208 static inline cl_kernel selectPruneKernel(cl_kernel kernel_pruneonly[],
209                                           bool      firstPrunePass)
210 {
211     cl_kernel  *kernelPtr;
212
213     if (firstPrunePass)
214     {
215         kernelPtr = &(kernel_pruneonly[epruneFirst]);
216     }
217     else
218     {
219         kernelPtr = &(kernel_pruneonly[epruneRolling]);
220     }
221     // TODO: consider creating the prune kernel object here to avoid a
222     // clCreateKernel for the rolling prune kernel if this is not needed.
223     return *kernelPtr;
224 }
225
226 /*! \brief Return a pointer to the kernel version to be executed at the current step.
227  *  OpenCL kernel objects are cached in nb. If the requested kernel is not
228  *  found in the cache, it will be created and the cache will be updated.
229  */
230 static inline cl_kernel select_nbnxn_kernel(gmx_nbnxn_ocl_t   *nb,
231                                             int                eeltype,
232                                             int                evdwtype,
233                                             bool               bDoEne,
234                                             bool               bDoPrune)
235 {
236     const char* kernel_name_to_run;
237     cl_kernel  *kernel_ptr;
238     cl_int      cl_error;
239
240     assert(eeltype  < eelOclNR);
241     assert(evdwtype < evdwOclNR);
242
243     if (bDoEne)
244     {
245         if (bDoPrune)
246         {
247             kernel_name_to_run = nb_kfunc_ener_prune_ptr[eeltype][evdwtype];
248             kernel_ptr         = &(nb->kernel_ener_prune_ptr[eeltype][evdwtype]);
249         }
250         else
251         {
252             kernel_name_to_run = nb_kfunc_ener_noprune_ptr[eeltype][evdwtype];
253             kernel_ptr         = &(nb->kernel_ener_noprune_ptr[eeltype][evdwtype]);
254         }
255     }
256     else
257     {
258         if (bDoPrune)
259         {
260             kernel_name_to_run = nb_kfunc_noener_prune_ptr[eeltype][evdwtype];
261             kernel_ptr         = &(nb->kernel_noener_prune_ptr[eeltype][evdwtype]);
262         }
263         else
264         {
265             kernel_name_to_run = nb_kfunc_noener_noprune_ptr[eeltype][evdwtype];
266             kernel_ptr         = &(nb->kernel_noener_noprune_ptr[eeltype][evdwtype]);
267         }
268     }
269
270     if (nullptr == kernel_ptr[0])
271     {
272         *kernel_ptr = clCreateKernel(nb->dev_rundata->program, kernel_name_to_run, &cl_error);
273         assert(cl_error == CL_SUCCESS);
274     }
275     // TODO: handle errors
276
277     return *kernel_ptr;
278 }
279
280 /*! \brief Calculates the amount of shared memory required by the nonbonded kernel in use.
281  */
282 static inline int calc_shmem_required_nonbonded(int  vdwType,
283                                                 bool bPrefetchLjParam)
284 {
285     int shmem;
286
287     /* size of shmem (force-buffers/xq/atom type preloading) */
288     /* NOTE: with the default kernel on sm3.0 we need shmem only for pre-loading */
289     /* i-atom x+q in shared memory */
290     shmem  = c_numClPerSupercl * c_clSize * sizeof(float) * 4; /* xqib */
291     /* cj in shared memory, for both warps separately
292      * TODO: in the "nowarp kernels we load cj only once  so the factor 2 is not needed.
293      */
294     shmem += 2 * c_nbnxnGpuJgroupSize * sizeof(int);           /* cjs  */
295     if (bPrefetchLjParam)
296     {
297         if (useLjCombRule(vdwType))
298         {
299             /* i-atom LJ combination parameters in shared memory */
300             shmem += c_numClPerSupercl * c_clSize * 2*sizeof(float); /* atib abused for ljcp, float2 */
301         }
302         else
303         {
304             /* i-atom types in shared memory */
305             shmem += c_numClPerSupercl * c_clSize * sizeof(int); /* atib */
306         }
307     }
308     /* force reduction buffers in shared memory */
309     shmem += c_clSize * c_clSize * 3 * sizeof(float);    /* f_buf */
310     /* Warp vote. In fact it must be * number of warps in block.. */
311     shmem += sizeof(cl_uint) * 2;                        /* warp_any */
312     return shmem;
313 }
314
315 /*! \brief Initializes data structures that are going to be sent to the OpenCL device.
316  *
317  *  The device can't use the same data structures as the host for two main reasons:
318  *  - OpenCL restrictions (pointers are not accepted inside data structures)
319  *  - some host side fields are not needed for the OpenCL kernels.
320  *
321  *  This function is called before the launch of both nbnxn and prune kernels.
322  */
323 static void fillin_ocl_structures(cl_nbparam_t        *nbp,
324                                   cl_nbparam_params_t *nbparams_params)
325 {
326     nbparams_params->coulomb_tab_scale = nbp->coulomb_tab_scale;
327     nbparams_params->c_rf              = nbp->c_rf;
328     nbparams_params->dispersion_shift  = nbp->dispersion_shift;
329     nbparams_params->eeltype           = nbp->eeltype;
330     nbparams_params->epsfac            = nbp->epsfac;
331     nbparams_params->ewaldcoeff_lj     = nbp->ewaldcoeff_lj;
332     nbparams_params->ewald_beta        = nbp->ewald_beta;
333     nbparams_params->rcoulomb_sq       = nbp->rcoulomb_sq;
334     nbparams_params->repulsion_shift   = nbp->repulsion_shift;
335     nbparams_params->rlistOuter_sq     = nbp->rlistOuter_sq;
336     nbparams_params->rvdw_sq           = nbp->rvdw_sq;
337     nbparams_params->rlistInner_sq     = nbp->rlistInner_sq;
338     nbparams_params->rvdw_switch       = nbp->rvdw_switch;
339     nbparams_params->sh_ewald          = nbp->sh_ewald;
340     nbparams_params->sh_lj_ewald       = nbp->sh_lj_ewald;
341     nbparams_params->two_k_rf          = nbp->two_k_rf;
342     nbparams_params->vdwtype           = nbp->vdwtype;
343     nbparams_params->vdw_switch        = nbp->vdw_switch;
344 }
345
346 /*! \brief Enqueues a wait for event completion.
347  *
348  * Then it releases the event and sets it to 0.
349  * Don't use this function when more than one wait will be issued for the event.
350  * Equivalent to Cuda Stream Sync. */
351 static void sync_ocl_event(cl_command_queue stream, cl_event *ocl_event)
352 {
353     cl_int gmx_unused cl_error;
354
355     /* Enqueue wait */
356     cl_error = clEnqueueBarrierWithWaitList(stream, 1, ocl_event, nullptr);
357     GMX_RELEASE_ASSERT(CL_SUCCESS == cl_error, ocl_get_error_string(cl_error).c_str());
358
359     /* Release event and reset it to 0. It is ok to release it as enqueuewaitforevents performs implicit retain for events. */
360     cl_error = clReleaseEvent(*ocl_event);
361     assert(CL_SUCCESS == cl_error);
362     *ocl_event = nullptr;
363 }
364
365 /*! \brief Launch asynchronously the xq buffer host to device copy. */
366 void gpu_copy_xq_to_gpu(gmx_nbnxn_ocl_t        *nb,
367                         const nbnxn_atomdata_t *nbatom,
368                         const AtomLocality      atomLocality,
369                         const bool              haveOtherWork)
370 {
371     const InteractionLocality iloc = gpuAtomToInteractionLocality(atomLocality);
372
373     /* local/nonlocal offset and length used for xq and f */
374     int                  adat_begin, adat_len;
375
376     cl_atomdata_t       *adat    = nb->atdat;
377     cl_plist_t          *plist   = nb->plist[iloc];
378     cl_timers_t         *t       = nb->timers;
379     cl_command_queue     stream  = nb->stream[iloc];
380
381     bool                 bDoTime = (nb->bDoTime) != 0;
382
383     /* Don't launch the non-local H2D copy if there is no dependent
384        work to do: neither non-local nor other (e.g. bonded) work
385        to do that has as input the nbnxn coordinates.
386        Doing the same for the local kernel is more complicated, since the
387        local part of the force array also depends on the non-local kernel.
388        So to avoid complicating the code and to reduce the risk of bugs,
389        we always call the local local x+q copy (and the rest of the local
390        work in nbnxn_gpu_launch_kernel().
391      */
392     if (!haveOtherWork && canSkipWork(*nb, iloc))
393     {
394         plist->haveFreshList = false;
395
396         return;
397     }
398
399     /* calculate the atom data index range based on locality */
400     if (atomLocality == AtomLocality::Local)
401     {
402         adat_begin  = 0;
403         adat_len    = adat->natoms_local;
404     }
405     else
406     {
407         adat_begin  = adat->natoms_local;
408         adat_len    = adat->natoms - adat->natoms_local;
409     }
410
411     /* beginning of timed HtoD section */
412     if (bDoTime)
413     {
414         t->xf[atomLocality].nb_h2d.openTimingRegion(stream);
415     }
416
417     /* HtoD x, q */
418     ocl_copy_H2D_async(adat->xq, nbatom->x().data() + adat_begin * 4, adat_begin*sizeof(float)*4,
419                        adat_len * sizeof(float) * 4, stream, bDoTime ? t->xf[atomLocality].nb_h2d.fetchNextEvent() : nullptr);
420
421     if (bDoTime)
422     {
423         t->xf[atomLocality].nb_h2d.closeTimingRegion(stream);
424     }
425
426     /* When we get here all misc operations issues in the local stream as well as
427        the local xq H2D are done,
428        so we record that in the local stream and wait for it in the nonlocal one. */
429     if (nb->bUseTwoStreams)
430     {
431         if (iloc == InteractionLocality::Local)
432         {
433             cl_int gmx_used_in_debug cl_error = clEnqueueMarkerWithWaitList(stream, 0, nullptr, &(nb->misc_ops_and_local_H2D_done));
434             assert(CL_SUCCESS == cl_error);
435
436             /* Based on the v1.2 section 5.13 of the OpenCL spec, a flush is needed
437              * in the local stream in order to be able to sync with the above event
438              * from the non-local stream.
439              */
440             cl_error = clFlush(stream);
441             assert(CL_SUCCESS == cl_error);
442         }
443         else
444         {
445             sync_ocl_event(stream, &(nb->misc_ops_and_local_H2D_done));
446         }
447     }
448 }
449
450
451 /*! \brief Launch GPU kernel
452
453    As we execute nonbonded workload in separate queues, before launching
454    the kernel we need to make sure that he following operations have completed:
455    - atomdata allocation and related H2D transfers (every nstlist step);
456    - pair list H2D transfer (every nstlist step);
457    - shift vector H2D transfer (every nstlist step);
458    - force (+shift force and energy) output clearing (every step).
459
460    These operations are issued in the local queue at the beginning of the step
461    and therefore always complete before the local kernel launch. The non-local
462    kernel is launched after the local on the same device/context, so this is
463    inherently scheduled after the operations in the local stream (including the
464    above "misc_ops").
465    However, for the sake of having a future-proof implementation, we use the
466    misc_ops_done event to record the point in time when the above  operations
467    are finished and synchronize with this event in the non-local stream.
468  */
469 void gpu_launch_kernel(gmx_nbnxn_ocl_t                  *nb,
470                        const int                         flags,
471                        const Nbnxm::InteractionLocality  iloc)
472 {
473     cl_atomdata_t       *adat    = nb->atdat;
474     cl_nbparam_t        *nbp     = nb->nbparam;
475     cl_plist_t          *plist   = nb->plist[iloc];
476     cl_timers_t         *t       = nb->timers;
477     cl_command_queue     stream  = nb->stream[iloc];
478
479     bool                 bCalcEner   = (flags & GMX_FORCE_ENERGY) != 0;
480     int                  bCalcFshift = flags & GMX_FORCE_VIRIAL;
481     bool                 bDoTime     = (nb->bDoTime) != 0;
482
483     cl_nbparam_params_t  nbparams_params;
484
485     /* Don't launch the non-local kernel if there is no work to do.
486        Doing the same for the local kernel is more complicated, since the
487        local part of the force array also depends on the non-local kernel.
488        So to avoid complicating the code and to reduce the risk of bugs,
489        we always call the local kernel and later (not in
490        this function) the stream wait, local f copyback and the f buffer
491        clearing. All these operations, except for the local interaction kernel,
492        are needed for the non-local interactions. The skip of the local kernel
493        call is taken care of later in this function. */
494     if (canSkipWork(*nb, iloc))
495     {
496         plist->haveFreshList = false;
497
498         return;
499     }
500
501     if (nbp->useDynamicPruning && plist->haveFreshList)
502     {
503         /* Prunes for rlistOuter and rlistInner, sets plist->haveFreshList=false
504            (that's the way the timing accounting can distinguish between
505            separate prune kernel and combined force+prune).
506          */
507         Nbnxm::gpu_launch_kernel_pruneonly(nb, iloc, 1);
508     }
509
510     if (plist->nsci == 0)
511     {
512         /* Don't launch an empty local kernel (is not allowed with OpenCL).
513          */
514         return;
515     }
516
517     /* beginning of timed nonbonded calculation section */
518     if (bDoTime)
519     {
520         t->interaction[iloc].nb_k.openTimingRegion(stream);
521     }
522
523     /* kernel launch config */
524
525     KernelLaunchConfig config;
526     config.sharedMemorySize = calc_shmem_required_nonbonded(nbp->vdwtype, nb->bPrefetchLjParam);
527     config.stream           = stream;
528     config.blockSize[0]     = c_clSize;
529     config.blockSize[1]     = c_clSize;
530     config.gridSize[0]      = plist->nsci;
531
532     validate_global_work_size(config, 3, nb->dev_info);
533
534     if (debug)
535     {
536         fprintf(debug, "Non-bonded GPU launch configuration:\n\tLocal work size: %zux%zux%zu\n\t"
537                 "Global work size : %zux%zu\n\t#Super-clusters/clusters: %d/%d (%d)\n",
538                 config.blockSize[0], config.blockSize[1], config.blockSize[2],
539                 config.blockSize[0] * config.gridSize[0], config.blockSize[1] * config.gridSize[1], plist->nsci*c_numClPerSupercl,
540                 c_numClPerSupercl, plist->na_c);
541     }
542
543     fillin_ocl_structures(nbp, &nbparams_params);
544
545     auto          *timingEvent  = bDoTime ? t->interaction[iloc].nb_k.fetchNextEvent() : nullptr;
546     constexpr char kernelName[] = "k_calc_nb";
547     const auto     kernel       = select_nbnxn_kernel(nb,
548                                                       nbp->eeltype,
549                                                       nbp->vdwtype,
550                                                       bCalcEner,
551                                                       (plist->haveFreshList && !nb->timers->interaction[iloc].didPrune));
552
553
554     if (useLjCombRule(nb->nbparam->vdwtype))
555     {
556         const auto kernelArgs = prepareGpuKernelArguments(kernel, config,
557                                                           &nbparams_params, &adat->xq, &adat->f, &adat->e_lj, &adat->e_el, &adat->fshift,
558                                                           &adat->lj_comb,
559                                                           &adat->shift_vec, &nbp->nbfp_climg2d, &nbp->nbfp_comb_climg2d, &nbp->coulomb_tab_climg2d,
560                                                           &plist->sci, &plist->cj4, &plist->excl, &bCalcFshift);
561
562         launchGpuKernel(kernel, config, timingEvent, kernelName, kernelArgs);
563     }
564     else
565     {
566         const auto kernelArgs = prepareGpuKernelArguments(kernel, config,
567                                                           &adat->ntypes,
568                                                           &nbparams_params, &adat->xq, &adat->f, &adat->e_lj, &adat->e_el, &adat->fshift,
569                                                           &adat->atom_types,
570                                                           &adat->shift_vec, &nbp->nbfp_climg2d, &nbp->nbfp_comb_climg2d, &nbp->coulomb_tab_climg2d,
571                                                           &plist->sci, &plist->cj4, &plist->excl, &bCalcFshift);
572         launchGpuKernel(kernel, config, timingEvent, kernelName, kernelArgs);
573     }
574
575     if (bDoTime)
576     {
577         t->interaction[iloc].nb_k.closeTimingRegion(stream);
578     }
579 }
580
581
582 /*! \brief Calculates the amount of shared memory required by the prune kernel.
583  *
584  *  Note that for the sake of simplicity we use the CUDA terminology "shared memory"
585  *  for OpenCL local memory.
586  *
587  * \param[in] num_threads_z cj4 concurrency equal to the number of threads/work items in the 3-rd dimension.
588  * \returns   the amount of local memory in bytes required by the pruning kernel
589  */
590 static inline int calc_shmem_required_prune(const int num_threads_z)
591 {
592     int shmem;
593
594     /* i-atom x in shared memory (for convenience we load all 4 components including q) */
595     shmem  = c_numClPerSupercl * c_clSize * sizeof(float)*4;
596     /* cj in shared memory, for each warp separately
597      * Note: only need to load once per wavefront, but to keep the code simple,
598      * for now we load twice on AMD.
599      */
600     shmem += num_threads_z * c_nbnxnGpuClusterpairSplit * c_nbnxnGpuJgroupSize * sizeof(int);
601     /* Warp vote, requires one uint per warp/32 threads per block. */
602     shmem += sizeof(cl_uint) * 2*num_threads_z;
603
604     return shmem;
605 }
606
607 void gpu_launch_kernel_pruneonly(gmx_nbnxn_gpu_t           *nb,
608                                  const InteractionLocality  iloc,
609                                  const int                  numParts)
610 {
611     cl_atomdata_t       *adat    = nb->atdat;
612     cl_nbparam_t        *nbp     = nb->nbparam;
613     cl_plist_t          *plist   = nb->plist[iloc];
614     cl_timers_t         *t       = nb->timers;
615     cl_command_queue     stream  = nb->stream[iloc];
616     bool                 bDoTime = nb->bDoTime == CL_TRUE;
617
618     if (plist->haveFreshList)
619     {
620         GMX_ASSERT(numParts == 1, "With first pruning we expect 1 part");
621
622         /* Set rollingPruningNumParts to signal that it is not set */
623         plist->rollingPruningNumParts = 0;
624         plist->rollingPruningPart     = 0;
625     }
626     else
627     {
628         if (plist->rollingPruningNumParts == 0)
629         {
630             plist->rollingPruningNumParts = numParts;
631         }
632         else
633         {
634             GMX_ASSERT(numParts == plist->rollingPruningNumParts, "It is not allowed to change numParts in between list generation steps");
635         }
636     }
637
638     /* Use a local variable for part and update in plist, so we can return here
639      * without duplicating the part increment code.
640      */
641     int part = plist->rollingPruningPart;
642
643     plist->rollingPruningPart++;
644     if (plist->rollingPruningPart >= plist->rollingPruningNumParts)
645     {
646         plist->rollingPruningPart = 0;
647     }
648
649     /* Compute the number of list entries to prune in this pass */
650     int numSciInPart = (plist->nsci - part)/numParts;
651
652     /* Don't launch the kernel if there is no work to do. */
653     if (numSciInPart <= 0)
654     {
655         plist->haveFreshList = false;
656
657         return;
658     }
659
660     GpuRegionTimer *timer = nullptr;
661     if (bDoTime)
662     {
663         timer = &(plist->haveFreshList ? t->interaction[iloc].prune_k : t->interaction[iloc].rollingPrune_k);
664     }
665
666     /* beginning of timed prune calculation section */
667     if (bDoTime)
668     {
669         timer->openTimingRegion(stream);
670     }
671
672     /* Kernel launch config:
673      * - The thread block dimensions match the size of i-clusters, j-clusters,
674      *   and j-cluster concurrency, in x, y, and z, respectively.
675      * - The 1D block-grid contains as many blocks as super-clusters.
676      */
677     int       num_threads_z = getOclPruneKernelJ4Concurrency(nb->dev_info->vendor_e);
678
679     /* kernel launch config */
680     KernelLaunchConfig config;
681     config.sharedMemorySize = calc_shmem_required_prune(num_threads_z);
682     config.stream           = stream;
683     config.blockSize[0]     = c_clSize;
684     config.blockSize[1]     = c_clSize;
685     config.blockSize[2]     = num_threads_z;
686     config.gridSize[0]      = numSciInPart;
687
688     validate_global_work_size(config, 3, nb->dev_info);
689
690     if (debug)
691     {
692         fprintf(debug, "Pruning GPU kernel launch configuration:\n\tLocal work size: %zux%zux%zu\n\t"
693                 "\tGlobal work size: %zux%zu\n\t#Super-clusters/clusters: %d/%d (%d)\n"
694                 "\tShMem: %zu\n",
695                 config.blockSize[0], config.blockSize[1], config.blockSize[2],
696                 config.blockSize[0] * config.gridSize[0], config.blockSize[1] * config.gridSize[1], plist->nsci*c_numClPerSupercl,
697                 c_numClPerSupercl, plist->na_c, config.sharedMemorySize);
698     }
699
700     cl_nbparam_params_t  nbparams_params;
701     fillin_ocl_structures(nbp, &nbparams_params);
702
703     auto          *timingEvent  = bDoTime ? timer->fetchNextEvent() : nullptr;
704     constexpr char kernelName[] = "k_pruneonly";
705     const auto     pruneKernel  = selectPruneKernel(nb->kernel_pruneonly, plist->haveFreshList);
706     const auto     kernelArgs   = prepareGpuKernelArguments(pruneKernel, config,
707                                                             &nbparams_params, &adat->xq, &adat->shift_vec,
708                                                             &plist->sci, &plist->cj4, &plist->imask, &numParts, &part);
709     launchGpuKernel(pruneKernel, config, timingEvent, kernelName, kernelArgs);
710
711     if (plist->haveFreshList)
712     {
713         plist->haveFreshList         = false;
714         /* Mark that pruning has been done */
715         nb->timers->interaction[iloc].didPrune = true;
716     }
717     else
718     {
719         /* Mark that rolling pruning has been done */
720         nb->timers->interaction[iloc].didRollingPrune = true;
721     }
722
723     if (bDoTime)
724     {
725         timer->closeTimingRegion(stream);
726     }
727 }
728
729 /*! \brief
730  * Launch asynchronously the download of nonbonded forces from the GPU
731  * (and energies/shift forces if required).
732  */
733 void gpu_launch_cpyback(gmx_nbnxn_ocl_t               *nb,
734                         struct nbnxn_atomdata_t       *nbatom,
735                         const int                      flags,
736                         const AtomLocality             aloc,
737                         const bool                     haveOtherWork)
738 {
739     cl_int gmx_unused cl_error;
740     int               adat_begin, adat_len; /* local/nonlocal offset and length used for xq and f */
741
742     /* determine interaction locality from atom locality */
743     const InteractionLocality iloc = gpuAtomToInteractionLocality(aloc);
744
745     cl_atomdata_t            *adat    = nb->atdat;
746     cl_timers_t              *t       = nb->timers;
747     bool                      bDoTime = nb->bDoTime == CL_TRUE;
748     cl_command_queue          stream  = nb->stream[iloc];
749
750     bool                      bCalcEner   = (flags & GMX_FORCE_ENERGY) != 0;
751     int                       bCalcFshift = flags & GMX_FORCE_VIRIAL;
752
753
754     /* don't launch non-local copy-back if there was no non-local work to do */
755     if (!haveOtherWork && canSkipWork(*nb, iloc))
756     {
757         /* TODO An alternative way to signal that non-local work is
758            complete is to use a clEnqueueMarker+clEnqueueBarrier
759            pair. However, the use of bNonLocalStreamActive has the
760            advantage of being local to the host, so probably minimizes
761            overhead. Curiously, for NVIDIA OpenCL with an empty-domain
762            test case, overall simulation performance was higher with
763            the API calls, but this has not been tested on AMD OpenCL,
764            so could be worth considering in future. */
765         nb->bNonLocalStreamActive = CL_FALSE;
766         return;
767     }
768
769     getGpuAtomRange(adat, aloc, &adat_begin, &adat_len);
770
771     /* beginning of timed D2H section */
772     if (bDoTime)
773     {
774         t->xf[aloc].nb_d2h.openTimingRegion(stream);
775     }
776
777     /* With DD the local D2H transfer can only start after the non-local
778        has been launched. */
779     if (iloc == InteractionLocality::Local && nb->bNonLocalStreamActive)
780     {
781         sync_ocl_event(stream, &(nb->nonlocal_done));
782     }
783
784     /* DtoH f */
785     ocl_copy_D2H_async(nbatom->out[0].f.data() + adat_begin * 3, adat->f, adat_begin*3*sizeof(float),
786                        (adat_len)* adat->f_elem_size, stream, bDoTime ? t->xf[aloc].nb_d2h.fetchNextEvent() : nullptr);
787
788     /* kick off work */
789     cl_error = clFlush(stream);
790     assert(CL_SUCCESS == cl_error);
791
792     /* After the non-local D2H is launched the nonlocal_done event can be
793        recorded which signals that the local D2H can proceed. This event is not
794        placed after the non-local kernel because we first need the non-local
795        data back first. */
796     if (iloc == InteractionLocality::NonLocal)
797     {
798         cl_error = clEnqueueMarkerWithWaitList(stream, 0, nullptr, &(nb->nonlocal_done));
799         assert(CL_SUCCESS == cl_error);
800         nb->bNonLocalStreamActive = CL_TRUE;
801     }
802
803     /* only transfer energies in the local stream */
804     if (iloc == InteractionLocality::Local)
805     {
806         /* DtoH fshift */
807         if (bCalcFshift)
808         {
809             ocl_copy_D2H_async(nb->nbst.fshift, adat->fshift, 0,
810                                SHIFTS * adat->fshift_elem_size, stream, bDoTime ? t->xf[aloc].nb_d2h.fetchNextEvent() : nullptr);
811         }
812
813         /* DtoH energies */
814         if (bCalcEner)
815         {
816             ocl_copy_D2H_async(nb->nbst.e_lj, adat->e_lj, 0,
817                                sizeof(float), stream, bDoTime ? t->xf[aloc].nb_d2h.fetchNextEvent() : nullptr);
818
819             ocl_copy_D2H_async(nb->nbst.e_el, adat->e_el, 0,
820                                sizeof(float), stream, bDoTime ? t->xf[aloc].nb_d2h.fetchNextEvent() : nullptr);
821         }
822     }
823
824     if (bDoTime)
825     {
826         t->xf[aloc].nb_d2h.closeTimingRegion(stream);
827     }
828 }
829
830
831 /*! \brief Selects the Ewald kernel type, analytical or tabulated, single or twin cut-off. */
832 int gpu_pick_ewald_kernel_type(const bool bTwinCut)
833 {
834     bool bUseAnalyticalEwald, bForceAnalyticalEwald, bForceTabulatedEwald;
835     int  kernel_type;
836
837     /* Benchmarking/development environment variables to force the use of
838        analytical or tabulated Ewald kernel. */
839     bForceAnalyticalEwald = (getenv("GMX_OCL_NB_ANA_EWALD") != nullptr);
840     bForceTabulatedEwald  = (getenv("GMX_OCL_NB_TAB_EWALD") != nullptr);
841
842     if (bForceAnalyticalEwald && bForceTabulatedEwald)
843     {
844         gmx_incons("Both analytical and tabulated Ewald OpenCL non-bonded kernels "
845                    "requested through environment variables.");
846     }
847
848     /* OpenCL: By default, use analytical Ewald
849      * TODO: tabulated does not work, it needs fixing, see init_nbparam() in nbnxn_ocl_data_mgmt.cpp
850      *
851      * TODO: decide if dev_info parameter should be added to recognize NVIDIA CC>=3.0 devices.
852      *
853      */
854     /* By default use analytical Ewald. */
855     bUseAnalyticalEwald = true;
856     if (bForceAnalyticalEwald)
857     {
858         if (debug)
859         {
860             fprintf(debug, "Using analytical Ewald OpenCL kernels\n");
861         }
862     }
863     else if (bForceTabulatedEwald)
864     {
865         bUseAnalyticalEwald = false;
866
867         if (debug)
868         {
869             fprintf(debug, "Using tabulated Ewald OpenCL kernels\n");
870         }
871     }
872
873     /* Use twin cut-off kernels if requested by bTwinCut or the env. var.
874        forces it (use it for debugging/benchmarking only). */
875     if (!bTwinCut && (getenv("GMX_OCL_NB_EWALD_TWINCUT") == nullptr))
876     {
877         kernel_type = bUseAnalyticalEwald ? eelOclEWALD_ANA : eelOclEWALD_TAB;
878     }
879     else
880     {
881         kernel_type = bUseAnalyticalEwald ? eelOclEWALD_ANA_TWIN : eelOclEWALD_TAB_TWIN;
882     }
883
884     return kernel_type;
885 }
886
887 } // namespace Nbnxm