Apply re-formatting to C++ in src/ tree.
[alexxy/gromacs.git] / src / gromacs / modularsimulator / energydata.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2019,2020, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*! \internal \file
36  * \brief Defines the microstate for the modular simulator
37  *
38  * \author Pascal Merz <pascal.merz@me.com>
39  * \ingroup module_modularsimulator
40  */
41
42 #include "gmxpre.h"
43
44 #include "energydata.h"
45
46 #include "gromacs/gmxlib/network.h"
47 #include "gromacs/math/vec.h"
48 #include "gromacs/mdlib/compute_io.h"
49 #include "gromacs/mdlib/coupling.h"
50 #include "gromacs/mdlib/enerdata_utils.h"
51 #include "gromacs/mdlib/energyoutput.h"
52 #include "gromacs/mdlib/mdatoms.h"
53 #include "gromacs/mdlib/mdoutf.h"
54 #include "gromacs/mdlib/stat.h"
55 #include "gromacs/mdlib/update.h"
56 #include "gromacs/mdrunutility/handlerestart.h"
57 #include "gromacs/mdtypes/checkpointdata.h"
58 #include "gromacs/mdtypes/commrec.h"
59 #include "gromacs/mdtypes/enerdata.h"
60 #include "gromacs/mdtypes/energyhistory.h"
61 #include "gromacs/mdtypes/inputrec.h"
62 #include "gromacs/mdtypes/mdatom.h"
63 #include "gromacs/mdtypes/observableshistory.h"
64 #include "gromacs/mdtypes/pullhistory.h"
65 #include "gromacs/topology/topology.h"
66
67 #include "freeenergyperturbationdata.h"
68 #include "modularsimulator.h"
69 #include "parrinellorahmanbarostat.h"
70 #include "simulatoralgorithm.h"
71 #include "statepropagatordata.h"
72 #include "velocityscalingtemperaturecoupling.h"
73
74 struct pull_t;
75 class t_state;
76
77 namespace gmx
78 {
79 class Awh;
80
81 EnergyData::EnergyData(StatePropagatorData*        statePropagatorData,
82                        FreeEnergyPerturbationData* freeEnergyPerturbationData,
83                        const gmx_mtop_t*           globalTopology,
84                        const t_inputrec*           inputrec,
85                        const MDAtoms*              mdAtoms,
86                        gmx_enerdata_t*             enerd,
87                        gmx_ekindata_t*             ekind,
88                        const Constraints*          constr,
89                        FILE*                       fplog,
90                        t_fcdata*                   fcd,
91                        const MdModulesNotifier&    mdModulesNotifier,
92                        bool                        isMasterRank,
93                        ObservablesHistory*         observablesHistory,
94                        StartingBehavior            startingBehavior,
95                        bool                        simulationsShareState) :
96     element_(std::make_unique<Element>(this, isMasterRank)),
97     isMasterRank_(isMasterRank),
98     forceVirialStep_(-1),
99     shakeVirialStep_(-1),
100     totalVirialStep_(-1),
101     pressureStep_(-1),
102     needToSumEkinhOld_(false),
103     hasReadEkinFromCheckpoint_(false),
104     startingBehavior_(startingBehavior),
105     statePropagatorData_(statePropagatorData),
106     freeEnergyPerturbationData_(freeEnergyPerturbationData),
107     velocityScalingTemperatureCoupling_(nullptr),
108     parrinelloRahmanBarostat_(nullptr),
109     inputrec_(inputrec),
110     top_global_(globalTopology),
111     mdAtoms_(mdAtoms),
112     enerd_(enerd),
113     ekind_(ekind),
114     constr_(constr),
115     fplog_(fplog),
116     fcd_(fcd),
117     mdModulesNotifier_(mdModulesNotifier),
118     groups_(&globalTopology->groups),
119     observablesHistory_(observablesHistory),
120     simulationsShareState_(simulationsShareState)
121 {
122     clear_mat(forceVirial_);
123     clear_mat(shakeVirial_);
124     clear_mat(totalVirial_);
125     clear_mat(pressure_);
126     clear_rvec(muTot_);
127
128     init_ekinstate(&ekinstate_, inputrec_);
129     observablesHistory_->energyHistory = std::make_unique<energyhistory_t>();
130 }
131
132 void EnergyData::Element::scheduleTask(Step step, Time time, const RegisterRunFunction& registerRunFunction)
133 {
134     if (!isMasterRank_)
135     {
136         return;
137     }
138     auto writeEnergy                 = energyWritingStep_ == step;
139     auto isEnergyCalculationStep     = energyCalculationStep_ == step;
140     auto isFreeEnergyCalculationStep = freeEnergyCalculationStep_ == step;
141     if (isEnergyCalculationStep || writeEnergy)
142     {
143         registerRunFunction([this, time, isEnergyCalculationStep, isFreeEnergyCalculationStep]() {
144             energyData_->doStep(time, isEnergyCalculationStep, isFreeEnergyCalculationStep);
145         });
146     }
147     else
148     {
149         registerRunFunction([this]() { energyData_->energyOutput_->recordNonEnergyStep(); });
150     }
151 }
152
153 void EnergyData::teardown()
154 {
155     if (inputrec_->nstcalcenergy > 0 && isMasterRank_)
156     {
157         energyOutput_->printAverages(fplog_, groups_);
158     }
159 }
160
161 void EnergyData::Element::trajectoryWriterSetup(gmx_mdoutf* outf)
162 {
163     energyData_->setup(outf);
164 }
165
166 void EnergyData::setup(gmx_mdoutf* outf)
167 {
168     pull_t* pull_work = nullptr;
169     energyOutput_     = std::make_unique<EnergyOutput>(mdoutf_get_fp_ene(outf),
170                                                    top_global_,
171                                                    inputrec_,
172                                                    pull_work,
173                                                    mdoutf_get_fp_dhdl(outf),
174                                                    false,
175                                                    startingBehavior_,
176                                                    simulationsShareState_,
177                                                    mdModulesNotifier_);
178
179     if (!isMasterRank_)
180     {
181         return;
182     }
183
184     initializeEnergyHistory(startingBehavior_, observablesHistory_, energyOutput_.get());
185
186     // TODO: This probably doesn't really belong here...
187     //       but we have all we need in this element,
188     //       so we'll leave it here for now!
189     double io = compute_io(inputrec_, top_global_->natoms, *groups_, energyOutput_->numEnergyTerms(), 1);
190     if ((io > 2000) && isMasterRank_)
191     {
192         fprintf(stderr, "\nWARNING: This run will generate roughly %.0f Mb of data\n\n", io);
193     }
194     if (!inputrec_->bContinuation)
195     {
196         real temp = enerd_->term[F_TEMP];
197         if (inputrec_->eI != eiVV)
198         {
199             /* Result of Ekin averaged over velocities of -half
200              * and +half step, while we only have -half step here.
201              */
202             temp *= 2;
203         }
204         fprintf(fplog_, "Initial temperature: %g K\n", temp);
205     }
206 }
207
208 std::optional<ITrajectoryWriterCallback> EnergyData::Element::registerTrajectoryWriterCallback(TrajectoryEvent event)
209 {
210     if (event == TrajectoryEvent::EnergyWritingStep && isMasterRank_)
211     {
212         return [this](gmx_mdoutf* mdoutf, Step step, Time time, bool writeTrajectory, bool writeLog) {
213             energyData_->write(mdoutf, step, time, writeTrajectory, writeLog);
214         };
215     }
216     return std::nullopt;
217 }
218
219 std::optional<SignallerCallback> EnergyData::Element::registerTrajectorySignallerCallback(gmx::TrajectoryEvent event)
220 {
221     if (event == TrajectoryEvent::EnergyWritingStep && isMasterRank_)
222     {
223         return [this](Step step, Time /*unused*/) { energyWritingStep_ = step; };
224     }
225     return std::nullopt;
226 }
227
228 std::optional<SignallerCallback> EnergyData::Element::registerEnergyCallback(EnergySignallerEvent event)
229 {
230     if (event == EnergySignallerEvent::EnergyCalculationStep && isMasterRank_)
231     {
232         return [this](Step step, Time /*unused*/) { energyCalculationStep_ = step; };
233     }
234     if (event == EnergySignallerEvent::FreeEnergyCalculationStep && isMasterRank_)
235     {
236         return [this](Step step, Time /*unused*/) { freeEnergyCalculationStep_ = step; };
237     }
238     return std::nullopt;
239 }
240
241 void EnergyData::doStep(Time time, bool isEnergyCalculationStep, bool isFreeEnergyCalculationStep)
242 {
243     enerd_->term[F_ETOT] = enerd_->term[F_EPOT] + enerd_->term[F_EKIN];
244     if (freeEnergyPerturbationData_)
245     {
246         accumulateKineticLambdaComponents(
247                 enerd_, freeEnergyPerturbationData_->constLambdaView(), *inputrec_->fepvals);
248     }
249     if (integratorHasConservedEnergyQuantity(inputrec_))
250     {
251         enerd_->term[F_ECONSERVED] =
252                 enerd_->term[F_ETOT]
253                 + (velocityScalingTemperatureCoupling_
254                            ? velocityScalingTemperatureCoupling_->conservedEnergyContribution()
255                            : 0)
256                 + (parrinelloRahmanBarostat_ ? parrinelloRahmanBarostat_->conservedEnergyContribution() : 0);
257     }
258     matrix nullMatrix = {};
259     energyOutput_->addDataAtEnergyStep(
260             isFreeEnergyCalculationStep,
261             isEnergyCalculationStep,
262             time,
263             mdAtoms_->mdatoms()->tmass,
264             enerd_,
265             inputrec_->fepvals,
266             inputrec_->expandedvals,
267             statePropagatorData_->constPreviousBox(),
268             PTCouplingArrays({ parrinelloRahmanBarostat_ ? parrinelloRahmanBarostat_->boxVelocities() : nullMatrix,
269                                {},
270                                {},
271                                {},
272                                {} }),
273             freeEnergyPerturbationData_ ? freeEnergyPerturbationData_->currentFEPState() : 0,
274             shakeVirial_,
275             forceVirial_,
276             totalVirial_,
277             pressure_,
278             ekind_,
279             muTot_,
280             constr_);
281 }
282
283 void EnergyData::write(gmx_mdoutf* outf, Step step, Time time, bool writeTrajectory, bool writeLog)
284 {
285     if (writeLog)
286     {
287         energyOutput_->printHeader(fplog_, step, time);
288     }
289
290     bool do_dr = do_per_step(step, inputrec_->nstdisreout);
291     bool do_or = do_per_step(step, inputrec_->nstorireout);
292
293     // energyOutput_->printAnnealingTemperatures(writeLog ? fplog_ : nullptr, groups_, &(inputrec_->opts));
294     Awh* awh = nullptr;
295     energyOutput_->printStepToEnergyFile(
296             mdoutf_get_fp_ene(outf), writeTrajectory, do_dr, do_or, writeLog ? fplog_ : nullptr, step, time, fcd_, awh);
297 }
298
299 void EnergyData::addToForceVirial(const tensor virial, Step step)
300 {
301     if (step > forceVirialStep_)
302     {
303         forceVirialStep_ = step;
304         clear_mat(forceVirial_);
305     }
306     m_add(forceVirial_, virial, forceVirial_);
307 }
308
309 void EnergyData::addToConstraintVirial(const tensor virial, Step step)
310 {
311     if (step > shakeVirialStep_)
312     {
313         shakeVirialStep_ = step;
314         clear_mat(shakeVirial_);
315     }
316     m_add(shakeVirial_, virial, shakeVirial_);
317 }
318
319 rvec* EnergyData::forceVirial(Step gmx_unused step)
320 {
321     if (step > forceVirialStep_)
322     {
323         forceVirialStep_ = step;
324         clear_mat(forceVirial_);
325     }
326     GMX_ASSERT(step >= forceVirialStep_ || forceVirialStep_ == -1,
327                "Asked for force virial of previous step.");
328     return forceVirial_;
329 }
330
331 rvec* EnergyData::constraintVirial(Step gmx_unused step)
332 {
333     if (step > shakeVirialStep_)
334     {
335         shakeVirialStep_ = step;
336         clear_mat(shakeVirial_);
337     }
338     GMX_ASSERT(step >= shakeVirialStep_ || shakeVirialStep_ == -1,
339                "Asked for constraint virial of previous step.");
340     return shakeVirial_;
341 }
342
343 rvec* EnergyData::totalVirial(Step gmx_unused step)
344 {
345     if (step > totalVirialStep_)
346     {
347         totalVirialStep_ = step;
348         clear_mat(totalVirial_);
349     }
350     GMX_ASSERT(step >= totalVirialStep_ || totalVirialStep_ == -1,
351                "Asked for total virial of previous step.");
352     return totalVirial_;
353 }
354
355 rvec* EnergyData::pressure(Step gmx_unused step)
356 {
357     if (step > pressureStep_)
358     {
359         pressureStep_ = step;
360         clear_mat(pressure_);
361     }
362     GMX_ASSERT(step >= pressureStep_ || pressureStep_ == -1, "Asked for pressure of previous step.");
363     return pressure_;
364 }
365
366 real* EnergyData::muTot()
367 {
368     return muTot_;
369 }
370
371 gmx_enerdata_t* EnergyData::enerdata()
372 {
373     return enerd_;
374 }
375
376 gmx_ekindata_t* EnergyData::ekindata()
377 {
378     return ekind_;
379 }
380
381 bool* EnergyData::needToSumEkinhOld()
382 {
383     return &needToSumEkinhOld_;
384 }
385
386 bool EnergyData::hasReadEkinFromCheckpoint() const
387 {
388     return hasReadEkinFromCheckpoint_;
389 }
390
391 namespace
392 {
393 /*!
394  * \brief Enum describing the contents EnergyData::Element writes to modular checkpoint
395  *
396  * When changing the checkpoint content, add a new element just above Count, and adjust the
397  * checkpoint functionality.
398  */
399 enum class CheckpointVersion
400 {
401     Base, //!< First version of modular checkpointing
402     Count //!< Number of entries. Add new versions right above this!
403 };
404 constexpr auto c_currentVersion = CheckpointVersion(int(CheckpointVersion::Count) - 1);
405 } // namespace
406
407 template<CheckpointDataOperation operation>
408 void EnergyData::Element::doCheckpointData(CheckpointData<operation>* checkpointData)
409 {
410     checkpointVersion(checkpointData, "EnergyData version", c_currentVersion);
411
412     energyData_->observablesHistory_->energyHistory->doCheckpoint<operation>(
413             checkpointData->subCheckpointData("energy history"));
414     energyData_->ekinstate_.doCheckpoint<operation>(checkpointData->subCheckpointData("ekinstate"));
415 }
416
417 void EnergyData::Element::saveCheckpointState(std::optional<WriteCheckpointData> checkpointData,
418                                               const t_commrec*                   cr)
419 {
420     if (MASTER(cr))
421     {
422         if (energyData_->needToSumEkinhOld_)
423         {
424             energyData_->ekinstate_.bUpToDate = false;
425         }
426         else
427         {
428             update_ekinstate(&energyData_->ekinstate_, energyData_->ekind_);
429             energyData_->ekinstate_.bUpToDate = true;
430         }
431         energyData_->energyOutput_->fillEnergyHistory(
432                 energyData_->observablesHistory_->energyHistory.get());
433         doCheckpointData<CheckpointDataOperation::Write>(&checkpointData.value());
434     }
435 }
436
437 void EnergyData::Element::restoreCheckpointState(std::optional<ReadCheckpointData> checkpointData,
438                                                  const t_commrec*                  cr)
439 {
440     if (MASTER(cr))
441     {
442         doCheckpointData<CheckpointDataOperation::Read>(&checkpointData.value());
443     }
444     energyData_->hasReadEkinFromCheckpoint_ = MASTER(cr) ? energyData_->ekinstate_.bUpToDate : false;
445     if (PAR(cr))
446     {
447         gmx_bcast(sizeof(hasReadEkinFromCheckpoint_),
448                   &energyData_->hasReadEkinFromCheckpoint_,
449                   cr->mpi_comm_mygroup);
450     }
451     if (energyData_->hasReadEkinFromCheckpoint_)
452     {
453         // this takes care of broadcasting from master to agents
454         restore_ekinstate_from_state(cr, energyData_->ekind_, &energyData_->ekinstate_);
455     }
456 }
457
458 const std::string& EnergyData::Element::clientID()
459 {
460     return identifier_;
461 }
462
463 void EnergyData::initializeEnergyHistory(StartingBehavior    startingBehavior,
464                                          ObservablesHistory* observablesHistory,
465                                          EnergyOutput*       energyOutput)
466 {
467     if (startingBehavior != StartingBehavior::NewSimulation)
468     {
469         /* Restore from energy history if appending to output files */
470         if (startingBehavior == StartingBehavior::RestartWithAppending)
471         {
472             /* If no history is available (because a checkpoint is from before
473              * it was written) make a new one later, otherwise restore it.
474              */
475             if (observablesHistory->energyHistory)
476             {
477                 energyOutput->restoreFromEnergyHistory(*observablesHistory->energyHistory);
478             }
479         }
480         else if (observablesHistory->energyHistory)
481         {
482             /* We might have read an energy history from checkpoint.
483              * As we are not appending, we want to restart the statistics.
484              * Free the allocated memory and reset the counts.
485              */
486             observablesHistory->energyHistory = {};
487             /* We might have read a pull history from checkpoint.
488              * We will still want to keep the statistics, so that the files
489              * can be joined and still be meaningful.
490              * This means that observablesHistory_->pullHistory
491              * should not be reset.
492              */
493         }
494     }
495     if (!observablesHistory->energyHistory)
496     {
497         observablesHistory->energyHistory = std::make_unique<energyhistory_t>();
498     }
499     if (!observablesHistory->pullHistory)
500     {
501         observablesHistory->pullHistory = std::make_unique<PullHistory>();
502     }
503     /* Set the initial energy history */
504     energyOutput->fillEnergyHistory(observablesHistory->energyHistory.get());
505 }
506
507 void EnergyData::setVelocityScalingTemperatureCoupling(const VelocityScalingTemperatureCoupling* velocityScalingTemperatureCoupling)
508 {
509     velocityScalingTemperatureCoupling_ = velocityScalingTemperatureCoupling;
510 }
511
512 void EnergyData::setParrinelloRahamnBarostat(const gmx::ParrinelloRahmanBarostat* parrinelloRahmanBarostat)
513 {
514     parrinelloRahmanBarostat_ = parrinelloRahmanBarostat;
515 }
516
517 EnergyData::Element* EnergyData::element()
518 {
519     return element_.get();
520 }
521
522 EnergyData::Element::Element(EnergyData* energyData, bool isMasterRank) :
523     energyData_(energyData),
524     isMasterRank_(isMasterRank),
525     energyWritingStep_(-1),
526     energyCalculationStep_(-1),
527     freeEnergyCalculationStep_(-1)
528 {
529 }
530
531 ISimulatorElement* EnergyData::Element::getElementPointerImpl(
532         LegacySimulatorData gmx_unused*        legacySimulatorData,
533         ModularSimulatorAlgorithmBuilderHelper gmx_unused* builderHelper,
534         StatePropagatorData gmx_unused* statePropagatorData,
535         EnergyData*                     energyData,
536         FreeEnergyPerturbationData gmx_unused* freeEnergyPerturbationData,
537         GlobalCommunicationHelper gmx_unused* globalCommunicationHelper)
538 {
539     return energyData->element();
540 }
541
542 } // namespace gmx