88383cc0f329621b94afa8fe5427318d1e44d158
[alexxy/gromacs.git] / src / gromacs / modularsimulator / energydata.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2019,2020, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*! \internal \file
36  * \brief Defines the microstate for the modular simulator
37  *
38  * \author Pascal Merz <pascal.merz@me.com>
39  * \ingroup module_modularsimulator
40  */
41
42 #include "gmxpre.h"
43
44 #include "energydata.h"
45
46 #include "gromacs/math/vec.h"
47 #include "gromacs/mdlib/compute_io.h"
48 #include "gromacs/mdlib/coupling.h"
49 #include "gromacs/mdlib/enerdata_utils.h"
50 #include "gromacs/mdlib/energyoutput.h"
51 #include "gromacs/mdlib/mdatoms.h"
52 #include "gromacs/mdlib/mdoutf.h"
53 #include "gromacs/mdlib/stat.h"
54 #include "gromacs/mdlib/update.h"
55 #include "gromacs/mdrunutility/handlerestart.h"
56 #include "gromacs/mdtypes/commrec.h"
57 #include "gromacs/mdtypes/enerdata.h"
58 #include "gromacs/mdtypes/energyhistory.h"
59 #include "gromacs/mdtypes/inputrec.h"
60 #include "gromacs/mdtypes/mdatom.h"
61 #include "gromacs/mdtypes/observableshistory.h"
62 #include "gromacs/mdtypes/pullhistory.h"
63 #include "gromacs/mdtypes/state.h"
64 #include "gromacs/topology/topology.h"
65
66 #include "freeenergyperturbationdata.h"
67 #include "modularsimulator.h"
68 #include "parrinellorahmanbarostat.h"
69 #include "simulatoralgorithm.h"
70 #include "statepropagatordata.h"
71 #include "vrescalethermostat.h"
72
73 struct pull_t;
74 class t_state;
75
76 namespace gmx
77 {
78 class Awh;
79
80 EnergyData::EnergyData(StatePropagatorData*        statePropagatorData,
81                        FreeEnergyPerturbationData* freeEnergyPerturbationData,
82                        const gmx_mtop_t*           globalTopology,
83                        const t_inputrec*           inputrec,
84                        const MDAtoms*              mdAtoms,
85                        gmx_enerdata_t*             enerd,
86                        gmx_ekindata_t*             ekind,
87                        const Constraints*          constr,
88                        FILE*                       fplog,
89                        t_fcdata*                   fcd,
90                        const MdModulesNotifier&    mdModulesNotifier,
91                        bool                        isMasterRank,
92                        ObservablesHistory*         observablesHistory,
93                        StartingBehavior            startingBehavior) :
94     element_(std::make_unique<Element>(this, isMasterRank)),
95     isMasterRank_(isMasterRank),
96     forceVirialStep_(-1),
97     shakeVirialStep_(-1),
98     totalVirialStep_(-1),
99     pressureStep_(-1),
100     needToSumEkinhOld_(false),
101     startingBehavior_(startingBehavior),
102     statePropagatorData_(statePropagatorData),
103     freeEnergyPerturbationData_(freeEnergyPerturbationData),
104     vRescaleThermostat_(nullptr),
105     parrinelloRahmanBarostat_(nullptr),
106     inputrec_(inputrec),
107     top_global_(globalTopology),
108     mdAtoms_(mdAtoms),
109     enerd_(enerd),
110     ekind_(ekind),
111     constr_(constr),
112     fplog_(fplog),
113     fcd_(fcd),
114     mdModulesNotifier_(mdModulesNotifier),
115     groups_(&globalTopology->groups),
116     observablesHistory_(observablesHistory)
117 {
118     clear_mat(forceVirial_);
119     clear_mat(shakeVirial_);
120     clear_mat(totalVirial_);
121     clear_mat(pressure_);
122     clear_rvec(muTot_);
123
124     if (freeEnergyPerturbationData_)
125     {
126         dummyLegacyState_.flags = (1U << estFEPSTATE);
127     }
128 }
129
130 void EnergyData::Element::scheduleTask(Step step, Time time, const RegisterRunFunction& registerRunFunction)
131 {
132     if (!isMasterRank_)
133     {
134         return;
135     }
136     auto writeEnergy                 = energyWritingStep_ == step;
137     auto isEnergyCalculationStep     = energyCalculationStep_ == step;
138     auto isFreeEnergyCalculationStep = freeEnergyCalculationStep_ == step;
139     if (isEnergyCalculationStep || writeEnergy)
140     {
141         registerRunFunction([this, time, isEnergyCalculationStep, isFreeEnergyCalculationStep]() {
142             energyData_->doStep(time, isEnergyCalculationStep, isFreeEnergyCalculationStep);
143         });
144     }
145     else
146     {
147         registerRunFunction([this]() { energyData_->energyOutput_->recordNonEnergyStep(); });
148     }
149 }
150
151 void EnergyData::teardown()
152 {
153     if (inputrec_->nstcalcenergy > 0 && isMasterRank_)
154     {
155         energyOutput_->printAverages(fplog_, groups_);
156     }
157 }
158
159 void EnergyData::Element::trajectoryWriterSetup(gmx_mdoutf* outf)
160 {
161     energyData_->setup(outf);
162 }
163
164 void EnergyData::setup(gmx_mdoutf* outf)
165 {
166     pull_t* pull_work = nullptr;
167     energyOutput_ = std::make_unique<EnergyOutput>(mdoutf_get_fp_ene(outf), top_global_, inputrec_,
168                                                    pull_work, mdoutf_get_fp_dhdl(outf), false,
169                                                    startingBehavior_, mdModulesNotifier_);
170
171     if (!isMasterRank_)
172     {
173         return;
174     }
175
176     initializeEnergyHistory(startingBehavior_, observablesHistory_, energyOutput_.get());
177
178     // TODO: This probably doesn't really belong here...
179     //       but we have all we need in this element,
180     //       so we'll leave it here for now!
181     double io = compute_io(inputrec_, top_global_->natoms, *groups_, energyOutput_->numEnergyTerms(), 1);
182     if ((io > 2000) && isMasterRank_)
183     {
184         fprintf(stderr, "\nWARNING: This run will generate roughly %.0f Mb of data\n\n", io);
185     }
186     if (!inputrec_->bContinuation)
187     {
188         real temp = enerd_->term[F_TEMP];
189         if (inputrec_->eI != eiVV)
190         {
191             /* Result of Ekin averaged over velocities of -half
192              * and +half step, while we only have -half step here.
193              */
194             temp *= 2;
195         }
196         fprintf(fplog_, "Initial temperature: %g K\n", temp);
197     }
198 }
199
200 std::optional<ITrajectoryWriterCallback> EnergyData::Element::registerTrajectoryWriterCallback(TrajectoryEvent event)
201 {
202     if (event == TrajectoryEvent::EnergyWritingStep && isMasterRank_)
203     {
204         return [this](gmx_mdoutf* mdoutf, Step step, Time time, bool writeTrajectory, bool writeLog) {
205             energyData_->write(mdoutf, step, time, writeTrajectory, writeLog);
206         };
207     }
208     return std::nullopt;
209 }
210
211 std::optional<SignallerCallback> EnergyData::Element::registerTrajectorySignallerCallback(gmx::TrajectoryEvent event)
212 {
213     if (event == TrajectoryEvent::EnergyWritingStep && isMasterRank_)
214     {
215         return [this](Step step, Time /*unused*/) { energyWritingStep_ = step; };
216     }
217     return std::nullopt;
218 }
219
220 std::optional<SignallerCallback> EnergyData::Element::registerEnergyCallback(EnergySignallerEvent event)
221 {
222     if (event == EnergySignallerEvent::EnergyCalculationStep && isMasterRank_)
223     {
224         return [this](Step step, Time /*unused*/) { energyCalculationStep_ = step; };
225     }
226     if (event == EnergySignallerEvent::FreeEnergyCalculationStep && isMasterRank_)
227     {
228         return [this](Step step, Time /*unused*/) { freeEnergyCalculationStep_ = step; };
229     }
230     return std::nullopt;
231 }
232
233 void EnergyData::doStep(Time time, bool isEnergyCalculationStep, bool isFreeEnergyCalculationStep)
234 {
235     enerd_->term[F_ETOT] = enerd_->term[F_EPOT] + enerd_->term[F_EKIN];
236     if (vRescaleThermostat_)
237     {
238         dummyLegacyState_.therm_integral = vRescaleThermostat_->thermostatIntegral();
239     }
240     if (freeEnergyPerturbationData_)
241     {
242         accumulateKineticLambdaComponents(enerd_, freeEnergyPerturbationData_->constLambdaView(),
243                                           *inputrec_->fepvals);
244         dummyLegacyState_.fep_state = freeEnergyPerturbationData_->currentFEPState();
245     }
246     if (parrinelloRahmanBarostat_)
247     {
248         copy_mat(parrinelloRahmanBarostat_->boxVelocities(), dummyLegacyState_.boxv);
249         copy_mat(statePropagatorData_->constBox(), dummyLegacyState_.box);
250     }
251     if (integratorHasConservedEnergyQuantity(inputrec_))
252     {
253         enerd_->term[F_ECONSERVED] =
254                 enerd_->term[F_ETOT] + NPT_energy(inputrec_, &dummyLegacyState_, nullptr);
255     }
256     energyOutput_->addDataAtEnergyStep(isFreeEnergyCalculationStep, isEnergyCalculationStep, time,
257                                        mdAtoms_->mdatoms()->tmass, enerd_, &dummyLegacyState_,
258                                        inputrec_->fepvals, inputrec_->expandedvals,
259                                        statePropagatorData_->constPreviousBox(), shakeVirial_,
260                                        forceVirial_, totalVirial_, pressure_, ekind_, muTot_, constr_);
261 }
262
263 void EnergyData::write(gmx_mdoutf* outf, Step step, Time time, bool writeTrajectory, bool writeLog)
264 {
265     if (writeLog)
266     {
267         energyOutput_->printHeader(fplog_, step, time);
268     }
269
270     bool do_dr = do_per_step(step, inputrec_->nstdisreout);
271     bool do_or = do_per_step(step, inputrec_->nstorireout);
272
273     // energyOutput_->printAnnealingTemperatures(writeLog ? fplog_ : nullptr, groups_, &(inputrec_->opts));
274     Awh* awh = nullptr;
275     energyOutput_->printStepToEnergyFile(mdoutf_get_fp_ene(outf), writeTrajectory, do_dr, do_or,
276                                          writeLog ? fplog_ : nullptr, step, time, fcd_, awh);
277 }
278
279 void EnergyData::addToForceVirial(const tensor virial, Step step)
280 {
281     if (step > forceVirialStep_)
282     {
283         forceVirialStep_ = step;
284         clear_mat(forceVirial_);
285     }
286     m_add(forceVirial_, virial, forceVirial_);
287 }
288
289 void EnergyData::addToConstraintVirial(const tensor virial, Step step)
290 {
291     if (step > shakeVirialStep_)
292     {
293         shakeVirialStep_ = step;
294         clear_mat(shakeVirial_);
295     }
296     m_add(shakeVirial_, virial, shakeVirial_);
297 }
298
299 rvec* EnergyData::forceVirial(Step gmx_unused step)
300 {
301     if (step > forceVirialStep_)
302     {
303         forceVirialStep_ = step;
304         clear_mat(forceVirial_);
305     }
306     GMX_ASSERT(step >= forceVirialStep_ || forceVirialStep_ == -1,
307                "Asked for force virial of previous step.");
308     return forceVirial_;
309 }
310
311 rvec* EnergyData::constraintVirial(Step gmx_unused step)
312 {
313     if (step > shakeVirialStep_)
314     {
315         shakeVirialStep_ = step;
316         clear_mat(shakeVirial_);
317     }
318     GMX_ASSERT(step >= shakeVirialStep_ || shakeVirialStep_ == -1,
319                "Asked for constraint virial of previous step.");
320     return shakeVirial_;
321 }
322
323 rvec* EnergyData::totalVirial(Step gmx_unused step)
324 {
325     if (step > totalVirialStep_)
326     {
327         totalVirialStep_ = step;
328         clear_mat(totalVirial_);
329     }
330     GMX_ASSERT(step >= totalVirialStep_ || totalVirialStep_ == -1,
331                "Asked for total virial of previous step.");
332     return totalVirial_;
333 }
334
335 rvec* EnergyData::pressure(Step gmx_unused step)
336 {
337     if (step > pressureStep_)
338     {
339         pressureStep_ = step;
340         clear_mat(pressure_);
341     }
342     GMX_ASSERT(step >= pressureStep_ || pressureStep_ == -1,
343                "Asked for pressure of previous step.");
344     return pressure_;
345 }
346
347 real* EnergyData::muTot()
348 {
349     return muTot_;
350 }
351
352 gmx_enerdata_t* EnergyData::enerdata()
353 {
354     return enerd_;
355 }
356
357 gmx_ekindata_t* EnergyData::ekindata()
358 {
359     return ekind_;
360 }
361
362 bool* EnergyData::needToSumEkinhOld()
363 {
364     return &needToSumEkinhOld_;
365 }
366
367 void EnergyData::Element::writeCheckpoint(t_state gmx_unused* localState, t_state* globalState)
368 {
369     if (isMasterRank_)
370     {
371         if (energyData_->needToSumEkinhOld_)
372         {
373             globalState->ekinstate.bUpToDate = false;
374         }
375         else
376         {
377             update_ekinstate(&globalState->ekinstate, energyData_->ekind_);
378             globalState->ekinstate.bUpToDate = true;
379         }
380         energyData_->energyOutput_->fillEnergyHistory(
381                 energyData_->observablesHistory_->energyHistory.get());
382     }
383 }
384
385 void EnergyData::initializeEnergyHistory(StartingBehavior    startingBehavior,
386                                          ObservablesHistory* observablesHistory,
387                                          EnergyOutput*       energyOutput)
388 {
389     if (startingBehavior != StartingBehavior::NewSimulation)
390     {
391         /* Restore from energy history if appending to output files */
392         if (startingBehavior == StartingBehavior::RestartWithAppending)
393         {
394             /* If no history is available (because a checkpoint is from before
395              * it was written) make a new one later, otherwise restore it.
396              */
397             if (observablesHistory->energyHistory)
398             {
399                 energyOutput->restoreFromEnergyHistory(*observablesHistory->energyHistory);
400             }
401         }
402         else if (observablesHistory->energyHistory)
403         {
404             /* We might have read an energy history from checkpoint.
405              * As we are not appending, we want to restart the statistics.
406              * Free the allocated memory and reset the counts.
407              */
408             observablesHistory->energyHistory = {};
409             /* We might have read a pull history from checkpoint.
410              * We will still want to keep the statistics, so that the files
411              * can be joined and still be meaningful.
412              * This means that observablesHistory_->pullHistory
413              * should not be reset.
414              */
415         }
416     }
417     if (!observablesHistory->energyHistory)
418     {
419         observablesHistory->energyHistory = std::make_unique<energyhistory_t>();
420     }
421     if (!observablesHistory->pullHistory)
422     {
423         observablesHistory->pullHistory = std::make_unique<PullHistory>();
424     }
425     /* Set the initial energy history */
426     energyOutput->fillEnergyHistory(observablesHistory->energyHistory.get());
427 }
428
429 void EnergyData::setVRescaleThermostat(const gmx::VRescaleThermostat* vRescaleThermostat)
430 {
431     vRescaleThermostat_ = vRescaleThermostat;
432     if (vRescaleThermostat_)
433     {
434         dummyLegacyState_.flags |= (1U << estTHERM_INT);
435     }
436 }
437
438 void EnergyData::setParrinelloRahamnBarostat(const gmx::ParrinelloRahmanBarostat* parrinelloRahmanBarostat)
439 {
440     parrinelloRahmanBarostat_ = parrinelloRahmanBarostat;
441     if (parrinelloRahmanBarostat_)
442     {
443         dummyLegacyState_.flags |= (1U << estBOX) | (1U << estBOXV);
444     }
445 }
446
447 EnergyData::Element* EnergyData::element()
448 {
449     return element_.get();
450 }
451
452 EnergyData::Element::Element(EnergyData* energyData, bool isMasterRank) :
453     energyData_(energyData),
454     isMasterRank_(isMasterRank),
455     energyWritingStep_(-1),
456     energyCalculationStep_(-1),
457     freeEnergyCalculationStep_(-1)
458 {
459 }
460
461 ISimulatorElement* EnergyData::Element::getElementPointerImpl(
462         LegacySimulatorData gmx_unused*        legacySimulatorData,
463         ModularSimulatorAlgorithmBuilderHelper gmx_unused* builderHelper,
464         StatePropagatorData gmx_unused* statePropagatorData,
465         EnergyData*                     energyData,
466         FreeEnergyPerturbationData gmx_unused* freeEnergyPerturbationData,
467         GlobalCommunicationHelper gmx_unused* globalCommunicationHelper)
468 {
469     return energyData->element();
470 }
471
472 } // namespace gmx