57b3163fb66b3335115bfcc7d3607311459eea73
[alexxy/gromacs.git] / src / gromacs / modularsimulator / computeglobalselement.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2019,2020,2021, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*! \internal \file
36  * \brief Defines the global reduction element for the modular simulator
37  *
38  * \author Pascal Merz <pascal.merz@me.com>
39  * \ingroup module_modularsimulator
40  */
41
42 #include "gmxpre.h"
43
44 #include "computeglobalselement.h"
45
46 #include "gromacs/domdec/domdec.h"
47 #include "gromacs/gmxlib/network.h"
48 #include "gromacs/gmxlib/nrnb.h"
49 #include "gromacs/math/vec.h"
50 #include "gromacs/mdlib/constr.h"
51 #include "gromacs/mdlib/md_support.h"
52 #include "gromacs/mdlib/mdatoms.h"
53 #include "gromacs/mdlib/stat.h"
54 #include "gromacs/mdlib/update.h"
55 #include "gromacs/mdlib/vcm.h"
56 #include "gromacs/mdtypes/commrec.h"
57 #include "gromacs/mdtypes/group.h"
58 #include "gromacs/mdtypes/inputrec.h"
59 #include "gromacs/mdtypes/mdatom.h"
60 #include "gromacs/topology/topology.h"
61
62 #include "freeenergyperturbationdata.h"
63 #include "modularsimulator.h"
64 #include "simulatoralgorithm.h"
65
66 namespace gmx
67 {
68 template<ComputeGlobalsAlgorithm algorithm>
69 ComputeGlobalsElement<algorithm>::ComputeGlobalsElement(StatePropagatorData* statePropagatorData,
70                                                         EnergyData*          energyData,
71                                                         FreeEnergyPerturbationData* freeEnergyPerturbationData,
72                                                         SimulationSignals* signals,
73                                                         int                nstglobalcomm,
74                                                         FILE*              fplog,
75                                                         const MDLogger&    mdlog,
76                                                         t_commrec*         cr,
77                                                         const t_inputrec*  inputrec,
78                                                         const MDAtoms*     mdAtoms,
79                                                         t_nrnb*            nrnb,
80                                                         gmx_wallcycle*     wcycle,
81                                                         t_forcerec*        fr,
82                                                         const gmx_mtop_t&  global_top,
83                                                         Constraints*       constr) :
84     energyReductionStep_(-1),
85     virialReductionStep_(-1),
86     vvSchedulingStep_(-1),
87     doStopCM_(inputrec->comm_mode != ComRemovalAlgorithm::No),
88     nstcomm_(inputrec->nstcomm),
89     nstglobalcomm_(nstglobalcomm),
90     lastStep_(inputrec->nsteps + inputrec->init_step),
91     initStep_(inputrec->init_step),
92     nullSignaller_(std::make_unique<SimulationSignaller>(nullptr, nullptr, nullptr, false, false)),
93     statePropagatorData_(statePropagatorData),
94     energyData_(energyData),
95     localTopology_(nullptr),
96     freeEnergyPerturbationData_(freeEnergyPerturbationData),
97     vcm_(global_top.groups, *inputrec),
98     signals_(signals),
99     fplog_(fplog),
100     mdlog_(mdlog),
101     cr_(cr),
102     inputrec_(inputrec),
103     top_global_(global_top),
104     mdAtoms_(mdAtoms),
105     constr_(constr),
106     nrnb_(nrnb),
107     wcycle_(wcycle),
108     fr_(fr)
109 {
110     reportComRemovalInfo(fplog, vcm_);
111     gstat_ = global_stat_init(inputrec_);
112 }
113
114 template<ComputeGlobalsAlgorithm algorithm>
115 ComputeGlobalsElement<algorithm>::~ComputeGlobalsElement()
116 {
117     global_stat_destroy(gstat_);
118 }
119
120 template<ComputeGlobalsAlgorithm algorithm>
121 void ComputeGlobalsElement<algorithm>::elementSetup()
122 {
123     GMX_ASSERT(localTopology_, "Setup called before local topology was set.");
124
125     if (doStopCM_ && !inputrec_->bContinuation)
126     {
127         // To minimize communication, compute_globals computes the COM velocity
128         // and the kinetic energy for the velocities without COM motion removed.
129         // Thus to get the kinetic energy without the COM contribution, we need
130         // to call compute_globals twice.
131
132         compute(-1, CGLO_GSTAT | CGLO_STOPCM, nullSignaller_.get(), false, true);
133
134         auto v = statePropagatorData_->velocitiesView();
135         // At initialization, do not pass x with acceleration-correction mode
136         // to avoid (incorrect) correction of the initial coordinates.
137         auto x = vcm_.mode == ComRemovalAlgorithm::LinearAccelerationCorrection
138                          ? ArrayRefWithPadding<RVec>()
139                          : statePropagatorData_->positionsView();
140         process_and_stopcm_grp(
141                 fplog_, &vcm_, *mdAtoms_->mdatoms(), x.unpaddedArrayRef(), v.unpaddedArrayRef());
142         inc_nrnb(nrnb_, eNR_STOPCM, mdAtoms_->mdatoms()->homenr);
143     }
144
145     unsigned int cglo_flags = (CGLO_TEMPERATURE | CGLO_GSTAT
146                                | (energyData_->hasReadEkinFromCheckpoint() ? CGLO_READEKIN : 0));
147
148     if (algorithm == ComputeGlobalsAlgorithm::VelocityVerlet)
149     {
150         cglo_flags |= CGLO_PRESSURE | CGLO_CONSTRAINT;
151     }
152
153     compute(-1, cglo_flags, nullSignaller_.get(), false, true);
154
155     // Calculate the initial half step temperature, and save the ekinh_old
156     for (int i = 0; (i < inputrec_->opts.ngtc); i++)
157     {
158         copy_mat(energyData_->ekindata()->tcstat[i].ekinh, energyData_->ekindata()->tcstat[i].ekinh_old);
159     }
160 }
161
162 template<ComputeGlobalsAlgorithm algorithm>
163 void ComputeGlobalsElement<algorithm>::scheduleTask(Step                       step,
164                                                     Time gmx_unused            time,
165                                                     const RegisterRunFunction& registerRunFunction)
166 {
167     const bool needComReduction    = doStopCM_ && do_per_step(step, nstcomm_);
168     const bool needGlobalReduction = step == energyReductionStep_ || step == virialReductionStep_
169                                      || needComReduction || do_per_step(step, nstglobalcomm_);
170
171     // TODO: CGLO_GSTAT is only used for needToSumEkinhOld_, i.e. to signal that we do or do not
172     //       sum the previous kinetic energy. We should simplify / clarify this.
173
174     if (algorithm == ComputeGlobalsAlgorithm::LeapFrog)
175     {
176         // With Leap-Frog we can skip compute_globals at
177         // non-communication steps, but we need to calculate
178         // the kinetic energy one step before communication.
179
180         // With leap-frog we also need to compute the half-step
181         // kinetic energy at the step before we need to write
182         // the full-step kinetic energy
183         const bool needEkinAtNextStep = (do_per_step(step + 1, nstglobalcomm_) || step + 1 == lastStep_);
184
185         if (!needGlobalReduction && !needEkinAtNextStep)
186         {
187             return;
188         }
189
190         const bool doEnergy = step == energyReductionStep_;
191         int        flags    = (needGlobalReduction ? CGLO_GSTAT : 0) | (doEnergy ? CGLO_ENERGY : 0)
192                     | (needComReduction ? CGLO_STOPCM : 0) | CGLO_TEMPERATURE | CGLO_PRESSURE
193                     | CGLO_CONSTRAINT;
194
195         // Since we're already communicating at this step, we
196         // can propagate intra-simulation signals. Note that
197         // check_nstglobalcomm has the responsibility for
198         // choosing the value of nstglobalcomm which satisfies
199         // the need of the different signallers.
200         const bool doIntraSimSignal = true;
201         // Disable functionality
202         const bool doInterSimSignal = false;
203
204         // Make signaller to signal stop / reset / checkpointing signals
205         auto signaller = std::make_shared<SimulationSignaller>(
206                 signals_, cr_, nullptr, doInterSimSignal, doIntraSimSignal);
207
208         registerRunFunction([this, step, flags, signaller = std::move(signaller)]() {
209             compute(step, flags, signaller.get(), true);
210         });
211     }
212     else if (algorithm == ComputeGlobalsAlgorithm::VelocityVerlet)
213     {
214         // For VV, we schedule two calls to compute globals per step.
215         if (step != vvSchedulingStep_)
216         {
217             // This is the first scheduling call for this step (positions & velocities at full time
218             // step) Set this as the current scheduling step
219             vvSchedulingStep_ = step;
220
221             // For vv, the state at the beginning of the step is positions at time t, velocities at time t - dt/2
222             // The first velocity propagation (+dt/2) therefore actually corresponds to the previous step.
223             // So we need information from the last step in the first half of the integration
224             if (!needGlobalReduction && !do_per_step(step - 1, nstglobalcomm_))
225             {
226                 return;
227             }
228
229             const bool doTemperature = step != initStep_ || inputrec_->bContinuation;
230             const bool doEnergy      = step == energyReductionStep_;
231
232             int flags = (needGlobalReduction ? CGLO_GSTAT : 0) | (doEnergy ? CGLO_ENERGY : 0)
233                         | (doTemperature ? CGLO_TEMPERATURE : 0) | CGLO_PRESSURE | CGLO_CONSTRAINT
234                         | (needComReduction ? CGLO_STOPCM : 0) | CGLO_SCALEEKIN;
235
236             registerRunFunction(
237                     [this, step, flags]() { compute(step, flags, nullSignaller_.get(), false); });
238         }
239         else
240         {
241             // second call to compute_globals for this step
242             // Reset the scheduling step to avoid confusion if scheduling needs
243             // to be repeated (in case of unexpected simulation termination)
244             vvSchedulingStep_ = -1;
245
246             if (!needGlobalReduction)
247             {
248                 return;
249             }
250             int flags = CGLO_GSTAT | CGLO_CONSTRAINT;
251
252             // Since we're already communicating at this step, we
253             // can propagate intra-simulation signals. Note that
254             // check_nstglobalcomm has the responsibility for
255             // choosing the value of nstglobalcomm which satisfies
256             // the need of the different signallers.
257             const bool doIntraSimSignal = true;
258             // Disable functionality
259             const bool doInterSimSignal = false;
260
261             auto signaller = std::make_shared<SimulationSignaller>(
262                     signals_, cr_, nullptr, doInterSimSignal, doIntraSimSignal);
263
264             registerRunFunction([this, step, flags, signaller = std::move(signaller)]() {
265                 compute(step, flags, signaller.get(), true);
266             });
267         }
268     }
269 }
270
271 template<ComputeGlobalsAlgorithm algorithm>
272 void ComputeGlobalsElement<algorithm>::compute(gmx::Step            step,
273                                                unsigned int         flags,
274                                                SimulationSignaller* signaller,
275                                                bool                 useLastBox,
276                                                bool                 isInit)
277 {
278     auto        x       = statePropagatorData_->positionsView().unpaddedArrayRef();
279     auto        v       = statePropagatorData_->velocitiesView().unpaddedArrayRef();
280     const auto* box     = statePropagatorData_->constBox();
281     const auto* lastbox = useLastBox ? statePropagatorData_->constPreviousBox()
282                                      : statePropagatorData_->constBox();
283
284     if (DOMAINDECOMP(cr_) && shouldCheckNumberOfBondedInteractions(*cr_->dd))
285     {
286         flags |= CGLO_CHECK_NUMBER_OF_BONDED_INTERACTIONS;
287     }
288     compute_globals(gstat_,
289                     cr_,
290                     inputrec_,
291                     fr_,
292                     energyData_->ekindata(),
293                     x,
294                     v,
295                     box,
296                     mdAtoms_->mdatoms(),
297                     nrnb_,
298                     &vcm_,
299                     step != -1 ? wcycle_ : nullptr,
300                     energyData_->enerdata(),
301                     energyData_->forceVirial(step),
302                     energyData_->constraintVirial(step),
303                     energyData_->totalVirial(step),
304                     energyData_->pressure(step),
305                     (((flags & CGLO_ENERGY) != 0) && constr_ != nullptr) ? constr_->rmsdData()
306                                                                          : gmx::ArrayRef<real>{},
307                     signaller,
308                     lastbox,
309                     energyData_->needToSumEkinhOld(),
310                     flags);
311     if (DOMAINDECOMP(cr_))
312     {
313         checkNumberOfBondedInteractions(mdlog_, cr_, top_global_, localTopology_, x, box);
314     }
315     if (flags & CGLO_STOPCM && !isInit)
316     {
317         process_and_stopcm_grp(fplog_, &vcm_, *mdAtoms_->mdatoms(), x, v);
318         inc_nrnb(nrnb_, eNR_STOPCM, mdAtoms_->mdatoms()->homenr);
319     }
320 }
321
322 template<ComputeGlobalsAlgorithm algorithm>
323 void ComputeGlobalsElement<algorithm>::setTopology(const gmx_localtop_t* top)
324 {
325     localTopology_ = top;
326 }
327
328 template<ComputeGlobalsAlgorithm algorithm>
329 std::optional<SignallerCallback> ComputeGlobalsElement<algorithm>::registerEnergyCallback(EnergySignallerEvent event)
330 {
331     if (event == EnergySignallerEvent::EnergyCalculationStep)
332     {
333         return [this](Step step, Time /*unused*/) { energyReductionStep_ = step; };
334     }
335     if (event == EnergySignallerEvent::VirialCalculationStep)
336     {
337         return [this](Step step, Time /*unused*/) { virialReductionStep_ = step; };
338     }
339     return std::nullopt;
340 }
341
342 template<ComputeGlobalsAlgorithm algorithm>
343 std::optional<SignallerCallback>
344 ComputeGlobalsElement<algorithm>::registerTrajectorySignallerCallback(TrajectoryEvent event)
345 {
346     if (event == TrajectoryEvent::EnergyWritingStep)
347     {
348         return [this](Step step, Time /*unused*/) { energyReductionStep_ = step; };
349     }
350     return std::nullopt;
351 }
352
353 //! Explicit template instantiation
354 //! \{
355 template class ComputeGlobalsElement<ComputeGlobalsAlgorithm::LeapFrog>;
356 template class ComputeGlobalsElement<ComputeGlobalsAlgorithm::VelocityVerlet>;
357 //! \}
358
359 template<>
360 ISimulatorElement* ComputeGlobalsElement<ComputeGlobalsAlgorithm::LeapFrog>::getElementPointerImpl(
361         LegacySimulatorData*                    legacySimulatorData,
362         ModularSimulatorAlgorithmBuilderHelper* builderHelper,
363         StatePropagatorData*                    statePropagatorData,
364         EnergyData*                             energyData,
365         FreeEnergyPerturbationData*             freeEnergyPerturbationData,
366         GlobalCommunicationHelper*              globalCommunicationHelper)
367 {
368     auto* element = builderHelper->storeElement(
369             std::make_unique<ComputeGlobalsElement<ComputeGlobalsAlgorithm::LeapFrog>>(
370                     statePropagatorData,
371                     energyData,
372                     freeEnergyPerturbationData,
373                     globalCommunicationHelper->simulationSignals(),
374                     globalCommunicationHelper->nstglobalcomm(),
375                     legacySimulatorData->fplog,
376                     legacySimulatorData->mdlog,
377                     legacySimulatorData->cr,
378                     legacySimulatorData->inputrec,
379                     legacySimulatorData->mdAtoms,
380                     legacySimulatorData->nrnb,
381                     legacySimulatorData->wcycle,
382                     legacySimulatorData->fr,
383                     legacySimulatorData->top_global,
384                     legacySimulatorData->constr));
385
386     return element;
387 }
388
389 template<>
390 ISimulatorElement* ComputeGlobalsElement<ComputeGlobalsAlgorithm::VelocityVerlet>::getElementPointerImpl(
391         LegacySimulatorData*                    simulator,
392         ModularSimulatorAlgorithmBuilderHelper* builderHelper,
393         StatePropagatorData*                    statePropagatorData,
394         EnergyData*                             energyData,
395         FreeEnergyPerturbationData*             freeEnergyPerturbationData,
396         GlobalCommunicationHelper*              globalCommunicationHelper)
397 {
398     // We allow this element to be added multiple times to the call list, but we only want one
399     // actual element built
400     static const std::string key("vvComputeGlobalsElement");
401
402     const std::optional<std::any> cachedValue = builderHelper->builderData(key);
403
404     if (cachedValue)
405     {
406         return std::any_cast<ISimulatorElement*>(cachedValue.value());
407     }
408     else
409     {
410         ISimulatorElement* vvComputeGlobalsElement = builderHelper->storeElement(
411                 std::make_unique<ComputeGlobalsElement<ComputeGlobalsAlgorithm::VelocityVerlet>>(
412                         statePropagatorData,
413                         energyData,
414                         freeEnergyPerturbationData,
415                         globalCommunicationHelper->simulationSignals(),
416                         globalCommunicationHelper->nstglobalcomm(),
417                         simulator->fplog,
418                         simulator->mdlog,
419                         simulator->cr,
420                         simulator->inputrec,
421                         simulator->mdAtoms,
422                         simulator->nrnb,
423                         simulator->wcycle,
424                         simulator->fr,
425                         simulator->top_global,
426                         simulator->constr));
427         builderHelper->storeBuilderData(key, vvComputeGlobalsElement);
428         return vvComputeGlobalsElement;
429     }
430 }
431 } // namespace gmx