Remove obsolete mdp option ns-type
[alexxy/gromacs.git] / src / gromacs / mdtypes / md_enums.h
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5  * Copyright (c) 2001-2004, The GROMACS development team.
6  * Copyright (c) 2013,2014,2015,2016,2017,2018,2019, by the GROMACS development team, led by
7  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8  * and including many others, as listed in the AUTHORS file in the
9  * top-level source directory and at http://www.gromacs.org.
10  *
11  * GROMACS is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU Lesser General Public License
13  * as published by the Free Software Foundation; either version 2.1
14  * of the License, or (at your option) any later version.
15  *
16  * GROMACS is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * Lesser General Public License for more details.
20  *
21  * You should have received a copy of the GNU Lesser General Public
22  * License along with GROMACS; if not, see
23  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
25  *
26  * If you want to redistribute modifications to GROMACS, please
27  * consider that scientific software is very special. Version
28  * control is crucial - bugs must be traceable. We will be happy to
29  * consider code for inclusion in the official distribution, but
30  * derived work must not be called official GROMACS. Details are found
31  * in the README & COPYING files - if they are missing, get the
32  * official version at http://www.gromacs.org.
33  *
34  * To help us fund GROMACS development, we humbly ask that you cite
35  * the research papers on the package. Check out http://www.gromacs.org.
36  */
37 /*! \file
38  * \brief
39  * Declares enumerated types used throughout the code.
40  *
41  * \author David van der Spoel <david.vanderspoel@icm.uu.se>
42  * \inpublicapi
43  * \ingroup module_mdtypes
44  */
45 #ifndef GMX_MDTYPES_MD_ENUMS_H
46 #define GMX_MDTYPES_MD_ENUMS_H
47
48 #include "gromacs/utility/basedefinitions.h"
49
50 /*! \brief Return a string from a list of strings
51  *
52  * If index if within 0 .. max_index-1 returns the corresponding string
53  * or "no name defined" otherwise, in other words this is a range-check that does
54  * not crash.
55  * \param[in] index     The index in the array
56  * \param[in] max_index The length of the array
57  * \param[in] names     The array
58  * \return the correct string or "no name defined"
59  */
60 const char *enum_name(int index, int max_index, const char *names[]);
61
62 //! Boolean strings no or yes
63 extern const char *yesno_names[BOOL_NR+1];
64
65 //! \brief The two compartments for CompEL setups.
66 enum eCompartment {
67     eCompA, eCompB, eCompNR
68 };
69
70 /*! \brief The channels that define with their COM the compartment boundaries in CompEL setups.
71  *
72  * In principle one could also use modified setups with more than two channels.
73  */
74 enum eChannel {
75     eChan0, eChan1, eChanNR
76 };
77
78 /*! \brief Temperature coupling type
79  *
80  * yes is an alias for berendsen
81  */
82 enum {
83     etcNO, etcBERENDSEN, etcNOSEHOOVER, etcYES, etcANDERSEN, etcANDERSENMASSIVE, etcVRESCALE, etcNR
84 };
85 //! Strings corresponding to temperatyre coupling types
86 extern const char *etcoupl_names[etcNR+1];
87 //! Macro for selecting t coupling string
88 #define ETCOUPLTYPE(e) enum_name(e, etcNR, etcoupl_names)
89 //! Return whether this is andersen coupling
90 #define ETC_ANDERSEN(e) (((e) == etcANDERSENMASSIVE) || ((e) == etcANDERSEN))
91
92 /*! \brief Pressure coupling types
93  *
94  * isotropic is an alias for berendsen
95  */
96 enum {
97     epcNO, epcBERENDSEN, epcPARRINELLORAHMAN, epcISOTROPIC, epcMTTK, epcNR
98 };
99 //! String corresponding to pressure coupling algorithm
100 extern const char *epcoupl_names[epcNR+1];
101 //! Macro to return the correct pcoupling string
102 #define EPCOUPLTYPE(e) enum_name(e, epcNR, epcoupl_names)
103
104 //! Flat-bottom posres geometries
105 enum {
106     efbposresZERO, efbposresSPHERE, efbposresCYLINDER, efbposresX, efbposresY, efbposresZ,
107     efbposresCYLINDERX, efbposresCYLINDERY, efbposresCYLINDERZ, efbposresNR
108 };
109
110 //! Relative coordinate scaling type for position restraints.
111 enum {
112     erscNO, erscALL, erscCOM, erscNR
113 };
114 //! String corresponding to relativ coordinate scaling.
115 extern const char *erefscaling_names[erscNR+1];
116 //! Macro to select correct coordinate scaling string.
117 #define EREFSCALINGTYPE(e) enum_name(e, erscNR, erefscaling_names)
118
119 //! Trotter decomposition extended variable parts.
120 enum {
121     etrtNONE, etrtNHC, etrtBAROV, etrtBARONHC, etrtNHC2, etrtBAROV2, etrtBARONHC2,
122     etrtVELOCITY1, etrtVELOCITY2, etrtPOSITION, etrtSKIPALL, etrtNR
123 };
124
125 //! Sequenced parts of the trotter decomposition.
126 enum {
127     ettTSEQ0,  ettTSEQ1,  ettTSEQ2,  ettTSEQ3,  ettTSEQ4, ettTSEQMAX
128 };
129
130 //! Pressure coupling type
131 enum {
132     epctISOTROPIC, epctSEMIISOTROPIC, epctANISOTROPIC,
133     epctSURFACETENSION, epctNR
134 };
135 //! String corresponding to pressure coupling type
136 extern const char *epcoupltype_names[epctNR+1];
137 //! Macro to select the right string for pcoupl type
138 #define EPCOUPLTYPETYPE(e) enum_name(e, epctNR, epcoupltype_names)
139
140 //! \\brief Cutoff scheme
141 enum {
142     ecutsVERLET, ecutsGROUP, ecutsNR
143 };
144 //! String corresponding to cutoff scheme
145 extern const char *ecutscheme_names[ecutsNR+1];
146 //! Macro to select the right string for cutoff scheme
147 #define ECUTSCHEME(e)  enum_name(e, ecutsNR, ecutscheme_names)
148
149 /*! \brief Coulomb / VdW interaction modifiers.
150  *
151  * grompp replaces eintmodPOTSHIFT_VERLET_UNSUPPORTED by eintmodPOTSHIFT.
152  * Exactcutoff is only used by Reaction-field-zero, and is not user-selectable.
153  */
154 enum eintmod {
155     eintmodPOTSHIFT_VERLET_UNSUPPORTED, eintmodPOTSHIFT, eintmodNONE, eintmodPOTSWITCH, eintmodEXACTCUTOFF, eintmodFORCESWITCH, eintmodNR
156 };
157 //! String corresponding to interaction modifiers
158 extern const char *eintmod_names[eintmodNR+1];
159 //! Macro to select the correct string for modifiers
160 #define INTMODIFIER(e) enum_name(e, eintmodNR, eintmod_names)
161
162 /*! \brief Cut-off treatment for Coulomb */
163 enum {
164     eelCUT,     eelRF,     eelGRF_NOTUSED,   eelPME,  eelEWALD,  eelP3M_AD,
165     eelPOISSON, eelSWITCH, eelSHIFT, eelUSER, eelGB_NOTUSED, eelRF_NEC_UNSUPPORTED, eelENCADSHIFT,
166     eelPMEUSER, eelPMESWITCH, eelPMEUSERSWITCH, eelRF_ZERO, eelNR
167 };
168 //! String corresponding to Coulomb treatment
169 extern const char *eel_names[eelNR+1];
170 //! Macro for correct string for Coulomb treatment
171 #define EELTYPE(e)     enum_name(e, eelNR, eel_names)
172
173 //! Ewald geometry.
174 enum {
175     eewg3D, eewg3DC, eewgNR
176 };
177 //! String corresponding to Ewald geometry
178 extern const char *eewg_names[eewgNR+1];
179
180 //! Macro telling us whether we use reaction field
181 #define EEL_RF(e) ((e) == eelRF || (e) == eelGRF_NOTUSED || (e) == eelRF_NEC_UNSUPPORTED || (e) == eelRF_ZERO )
182
183 //! Macro telling us whether we use PME
184 #define EEL_PME(e)  ((e) == eelPME || (e) == eelPMESWITCH || (e) == eelPMEUSER || (e) == eelPMEUSERSWITCH || (e) == eelP3M_AD)
185 //! Macro telling us whether we use PME or full Ewald
186 #define EEL_PME_EWALD(e) (EEL_PME(e) || (e) == eelEWALD)
187 //! Macro telling us whether we use full electrostatics of any sort
188 #define EEL_FULL(e) (EEL_PME_EWALD(e) || (e) == eelPOISSON)
189 //! Macro telling us whether we use user defined electrostatics
190 #define EEL_USER(e) ((e) == eelUSER || (e) == eelPMEUSER || (e) == (eelPMEUSERSWITCH))
191
192 //! Van der Waals interaction treatment
193 enum {
194     evdwCUT, evdwSWITCH, evdwSHIFT, evdwUSER, evdwENCADSHIFT,
195     evdwPME, evdwNR
196 };
197 //! String corresponding to Van der Waals treatment
198 extern const char *evdw_names[evdwNR+1];
199 //! Macro for selecting correct string for VdW treatment
200 #define EVDWTYPE(e)    enum_name(e, evdwNR, evdw_names)
201
202 //! Type of long-range VdW treatment of combination rules
203 enum {
204     eljpmeGEOM, eljpmeLB, eljpmeNR
205 };
206 //! String for LJPME combination rule treatment
207 extern const char *eljpme_names[eljpmeNR+1];
208 //! Macro for correct LJPME comb rule name
209 #define ELJPMECOMBNAMES(e) enum_name(e, eljpmeNR, eljpme_names)
210
211 //! Macro to tell us whether we use LJPME
212 #define EVDW_PME(e) ((e) == evdwPME)
213
214 /*! \brief Integrator algorithm
215  *
216  * eiSD2 has been removed, but we keep a renamed enum entry,
217  * so we can refuse to do MD with such .tpr files.
218  * eiVV is normal velocity verlet
219  * eiVVAK uses 1/2*(KE(t-dt/2)+KE(t+dt/2)) as the kinetic energy,
220  * and the half step kinetic energy for temperature control
221  */
222 enum {
223     eiMD, eiSteep, eiCG, eiBD, eiSD2_REMOVED, eiNM, eiLBFGS, eiTPI, eiTPIC, eiSD1, eiVV, eiVVAK, eiMimic, eiNR
224 };
225 //! Name of the integrator algorithm
226 extern const char *ei_names[eiNR+1];
227 //! Macro returning integrator string
228 #define EI(e)          enum_name(e, eiNR, ei_names)
229 //! Do we use MiMiC QM/MM?
230 #define EI_MIMIC(e) ((e) == eiMimic)
231 //! Do we use velocity Verlet
232 #define EI_VV(e) ((e) == eiVV || (e) == eiVVAK)
233 //! Do we use molecular dynamics
234 #define EI_MD(e) ((e) == eiMD || EI_VV(e) || EI_MIMIC(e))
235 //! Do we use stochastic dynamics
236 #define EI_SD(e) ((e) == eiSD1)
237 //! Do we use any stochastic integrator
238 #define EI_RANDOM(e) (EI_SD(e) || (e) == eiBD)
239 /*above integrators may not conserve momenta*/
240 //! Do we use any type of dynamics
241 #define EI_DYNAMICS(e) (EI_MD(e) || EI_RANDOM(e))
242 //! Or do we use minimization
243 #define EI_ENERGY_MINIMIZATION(e) ((e) == eiSteep || (e) == eiCG || (e) == eiLBFGS)
244 //! Do we apply test particle insertion
245 #define EI_TPI(e) ((e) == eiTPI || (e) == eiTPIC)
246 //! Do we deal with particle velocities
247 #define EI_STATE_VELOCITY(e) (EI_MD(e) || EI_SD(e))
248
249 //! Constraint algorithm
250 enum {
251     econtLINCS, econtSHAKE, econtNR
252 };
253 //! String corresponding to constraint algorithm
254 extern const char *econstr_names[econtNR+1];
255 //! Macro to select the correct string
256 #define ECONSTRTYPE(e) enum_name(e, econtNR, econstr_names)
257
258 //! Distance restraint refinement algorithm
259 enum {
260     edrNone, edrSimple, edrEnsemble, edrNR
261 };
262 //! String corresponding to distance restraint algorithm
263 extern const char *edisre_names[edrNR+1];
264 //! Macro to select the right disre algorithm string
265 #define EDISRETYPE(e)  enum_name(e, edrNR, edisre_names)
266
267 //! Distance restraints weighting type
268 enum {
269     edrwConservative, edrwEqual, edrwNR
270 };
271 //! String corresponding to distance restraint weighting
272 extern const char *edisreweighting_names[edrwNR+1];
273 //! Macro corresponding to dr weighting
274 #define EDISREWEIGHTING(e)  enum_name(e, edrwNR, edisreweighting_names)
275
276 //! Combination rule algorithm.
277 enum {
278     eCOMB_NONE, eCOMB_GEOMETRIC, eCOMB_ARITHMETIC, eCOMB_GEOM_SIG_EPS, eCOMB_NR
279 };
280 //! String for combination rule algorithm
281 extern const char *ecomb_names[eCOMB_NR+1];
282 //! Macro to select the comb rule string
283 #define ECOMBNAME(e)   enum_name(e, eCOMB_NR, ecomb_names)
284
285 //! Van der Waals potential.
286 enum {
287     eNBF_NONE, eNBF_LJ, eNBF_BHAM, eNBF_NR
288 };
289 //! String corresponding to Van der Waals potential
290 extern const char *enbf_names[eNBF_NR+1];
291 //! Macro for correct VdW potential string
292 #define ENBFNAME(e)    enum_name(e, eNBF_NR, enbf_names)
293
294 //! Simulated tempering methods.
295 enum {
296     esimtempGEOMETRIC, esimtempEXPONENTIAL, esimtempLINEAR, esimtempNR
297 };
298 //! String corresponding to simulated tempering
299 extern const char *esimtemp_names[esimtempNR+1];
300 //! Macro for correct tempering string
301 #define ESIMTEMP(e)    enum_name(e, esimtempNR, esimtemp_names)
302
303 /*! \brief Free energy perturbation type
304  *
305  * efepNO, there are no evaluations at other states.
306  * efepYES, treated equivalently to efepSTATIC.
307  * efepSTATIC, then lambdas do not change during the simulation.
308  * efepSLOWGROWTH, then the states change monotonically
309  * throughout the simulation.
310  * efepEXPANDED, then expanded ensemble simulations are occuring.
311  */
312 enum {
313     efepNO, efepYES, efepSTATIC, efepSLOWGROWTH, efepEXPANDED, efepNR
314 };
315 //! String corresponding to FEP type.
316 extern const char *efep_names[efepNR+1];
317 //! Macro corresponding to FEP string.
318 #define EFEPTYPE(e)    enum_name(e, efepNR, efep_names)
319
320 //! Free energy pertubation coupling types.
321 enum {
322     efptFEP, efptMASS, efptCOUL, efptVDW, efptBONDED, efptRESTRAINT, efptTEMPERATURE, efptNR
323 };
324 //! String for FEP coupling type
325 extern const char *efpt_names[efptNR+1];
326 //! Long names for FEP coupling type
327 extern const char *efpt_singular_names[efptNR+1];
328
329 /*! \brief What to print for free energy calculations
330  *
331  * Printing the energy to the free energy dhdl file.
332  * YES is an alias to TOTAL, and
333  * will be converted in readir, so we never have to account for it in code.
334  */
335 enum {
336     edHdLPrintEnergyNO, edHdLPrintEnergyTOTAL, edHdLPrintEnergyPOTENTIAL, edHdLPrintEnergyYES, edHdLPrintEnergyNR
337 };
338 //! String corresponding to printing of free energy
339 extern const char *edHdLPrintEnergy_names[edHdLPrintEnergyNR+1];
340
341 /*! \brief How the lambda weights are calculated
342  *
343  * elamstatsMETROPOLIS - using the metropolis criteria
344  * elamstatsBARKER     - using the Barker critera for transition weights,
345  *                       also called unoptimized Bennett
346  * elamstatsMINVAR     - using Barker + minimum variance for weights
347  * elamstatsWL         - Wang-Landu (using visitation counts)
348  * elamstatsWWL        - Weighted Wang-Landau (using optimized Gibbs
349  *                       weighted visitation counts)
350  */
351 enum {
352     elamstatsNO, elamstatsMETROPOLIS, elamstatsBARKER, elamstatsMINVAR, elamstatsWL, elamstatsWWL, elamstatsNR
353 };
354 //! String corresponding to lambda weights
355 extern const char *elamstats_names[elamstatsNR+1];
356 //! Macro telling us whether we use expanded ensemble
357 #define ELAMSTATS_EXPANDED(e) ((e) > elamstatsNO)
358 //! Macro telling us whether we use some kind of Wang-Landau
359 #define EWL(e) ((e) == elamstatsWL || (e) == elamstatsWWL)
360
361 /*! \brief How moves in lambda are calculated
362  *
363  * elmovemcMETROPOLIS - using the Metropolis criteria, and 50% up and down
364  * elmovemcBARKER     - using the Barker criteria, and 50% up and down
365  * elmovemcGIBBS      - computing the transition using the marginalized
366  *                      probabilities of the lambdas
367  * elmovemcMETGIBBS   - computing the transition using the metropolized
368  *                      version of Gibbs (Monte Carlo Strategies in
369  *                      Scientific computing, Liu, p. 134)
370  */
371 enum {
372     elmcmoveNO, elmcmoveMETROPOLIS, elmcmoveBARKER, elmcmoveGIBBS, elmcmoveMETGIBBS, elmcmoveNR
373 };
374 //! String corresponding to lambda moves
375 extern const char *elmcmove_names[elmcmoveNR+1];
376
377 /*! \brief How we decide whether weights have reached equilibrium
378  *
379  * elmceqNO       - never stop, weights keep going
380  * elmceqYES      - fix the weights from the beginning; no movement
381  * elmceqWLDELTA  - stop when the WL-delta falls below a certain level
382  * elmceqNUMATLAM - stop when we have a certain number of samples at
383  *                  every step
384  * elmceqSTEPS    - stop when we've run a certain total number of steps
385  * elmceqSAMPLES  - stop when we've run a certain total number of samples
386  * elmceqRATIO    - stop when the ratio of samples (lowest to highest)
387  *                  is sufficiently large
388  */
389 enum {
390     elmceqNO, elmceqYES, elmceqWLDELTA, elmceqNUMATLAM, elmceqSTEPS, elmceqSAMPLES, elmceqRATIO, elmceqNR
391 };
392 //! String corresponding to equilibrium algorithm
393 extern const char *elmceq_names[elmceqNR+1];
394
395 /*! \brief separate_dhdl_file selection
396  *
397  * NOTE: YES is the first one. Do NOT interpret this one as a gmx_bool
398  */
399 enum
400 {
401     esepdhdlfileYES, esepdhdlfileNO, esepdhdlfileNR
402 };
403 //! String corresponding to separate DHDL file selection
404 extern const char *separate_dhdl_file_names[esepdhdlfileNR+1];
405 //! Monster macro for DHDL file selection
406 #define SEPDHDLFILETYPE(e) enum_name(e, esepdhdlfileNR, separate_dhdl_file_names)
407
408 /*! \brief dhdl_derivatives selection \
409  *
410  * NOTE: YES is the first one. Do NOT interpret this one as a gmx_bool
411  */
412 enum
413 {
414     edhdlderivativesYES, edhdlderivativesNO, edhdlderivativesNR
415 };
416 //! String for DHDL derivatives
417 extern const char *dhdl_derivatives_names[edhdlderivativesNR+1];
418 //! YAMM (Yet another monster macro)
419 #define DHDLDERIVATIVESTYPE(e) enum_name(e, edhdlderivativesNR, dhdl_derivatives_names)
420
421 /*! \brief Solvent model
422  *
423  * Distinguishes classical water types with 3 or 4 particles
424  */
425 enum {
426     esolNO, esolSPC, esolTIP4P, esolNR
427 };
428 //! String corresponding to solvent type
429 extern const char *esol_names[esolNR+1];
430 //! Macro lest we print the wrong solvent model string
431 #define ESOLTYPE(e)    enum_name(e, esolNR, esol_names)
432
433 //! Dispersion correction.
434 enum {
435     edispcNO, edispcEnerPres, edispcEner, edispcAllEnerPres, edispcAllEner, edispcNR
436 };
437 //! String corresponding to dispersion corrections
438 extern const char *edispc_names[edispcNR+1];
439 //! Macro for dispcorr string
440 #define EDISPCORR(e)   enum_name(e, edispcNR, edispc_names)
441
442 //! Center of mass motion removal algorithm.
443 enum {
444     ecmLINEAR, ecmANGULAR, ecmNO, ecmLINEAR_ACCELERATION_CORRECTION, ecmNR
445 };
446 //! String corresponding to COM removal
447 extern const char *ecm_names[ecmNR+1];
448 //! Macro for COM removal string
449 #define ECOM(e)        enum_name(e, ecmNR, ecm_names)
450
451 //! Algorithm for simulated annealing.
452 enum {
453     eannNO, eannSINGLE, eannPERIODIC, eannNR
454 };
455 //! String for simulated annealing
456 extern const char *eann_names[eannNR+1];
457 //! And macro for simulated annealing string
458 #define EANNEAL(e)      enum_name(e, eannNR, eann_names)
459
460 //! Wall types.
461 enum {
462     ewt93, ewt104, ewtTABLE, ewt126, ewtNR
463 };
464 //! String corresponding to wall type
465 extern const char *ewt_names[ewtNR+1];
466 //! Macro for wall type string
467 #define EWALLTYPE(e)   enum_name(e, ewtNR, ewt_names)
468
469 //! Pulling algorithm.
470 enum {
471     epullUMBRELLA, epullCONSTRAINT, epullCONST_F, epullFLATBOTTOM, epullFLATBOTTOMHIGH, epullEXTERNAL, epullNR
472 };
473 //! String for pulling algorithm
474 extern const char *epull_names[epullNR+1];
475 //! Macro for pulling string
476 #define EPULLTYPE(e)   enum_name(e, epullNR, epull_names)
477
478 //! Control of pull groups
479 enum {
480     epullgDIST, epullgDIR, epullgCYL, epullgDIRPBC, epullgDIRRELATIVE, epullgANGLE, epullgDIHEDRAL, epullgANGLEAXIS, epullgNR
481 };
482 //! String for pull groups
483 extern const char *epullg_names[epullgNR+1];
484 //! Macro for pull group string
485 #define EPULLGEOM(e)   enum_name(e, epullgNR, epullg_names)
486
487 //! Enforced rotation groups.
488 enum {
489     erotgISO, erotgISOPF,
490     erotgPM, erotgPMPF,
491     erotgRM, erotgRMPF,
492     erotgRM2, erotgRM2PF,
493     erotgFLEX, erotgFLEXT,
494     erotgFLEX2, erotgFLEX2T,
495     erotgNR
496 };
497 //! Rotation group names
498 extern const char *erotg_names[erotgNR+1];
499 //! Macro for rot group names
500 #define EROTGEOM(e)    enum_name(e, erotgNR, erotg_names)
501 //! String for rotation group origin names
502 extern const char *erotg_originnames[erotgNR+1];
503 //! Macro for rot group origin names
504 #define EROTORIGIN(e)  enum_name(e, erotgOriginNR, erotg_originnames)
505
506 //! Rotation group fitting type
507 enum {
508     erotgFitRMSD, erotgFitNORM, erotgFitPOT, erotgFitNR
509 };
510 //! String corresponding to rotation group fitting
511 extern const char *erotg_fitnames[erotgFitNR+1];
512 //! Macro for rot group fit names
513 #define EROTFIT(e)     enum_name(e, erotgFitNR, erotg_fitnames)
514
515 /*! \brief Direction along which ion/water swaps happen
516  *
517  * Part of "Computational Electrophysiology" (CompEL) setups
518  */
519 enum eSwaptype {
520     eswapNO, eswapX, eswapY, eswapZ, eSwapTypesNR
521 };
522 //! Names for swapping
523 extern const char *eSwapTypes_names[eSwapTypesNR+1];
524 //! Macro for swapping string
525 #define ESWAPTYPE(e)   enum_name(e, eSwapTypesNR, eSwapTypes_names)
526
527 /*! \brief Swap group splitting type
528  *
529  * These are just the fixed groups we need for any setup. In t_swap's grp
530  * entry after that follows the variable number of swap groups.
531  */
532 enum {
533     eGrpSplit0, eGrpSplit1, eGrpSolvent, eSwapFixedGrpNR
534 };
535 //! String for swap group splitting
536 extern const char *eSwapFixedGrp_names[eSwapFixedGrpNR+1];
537
538 //! QMMM methods.
539 enum {
540     eQMmethodAM1, eQMmethodPM3, eQMmethodRHF,
541     eQMmethodUHF, eQMmethodDFT, eQMmethodB3LYP, eQMmethodMP2, eQMmethodCASSCF, eQMmethodB3LYPLAN,
542     eQMmethodDIRECT, eQMmethodNR
543 };
544 //! String corresponding to QMMM methods
545 extern const char *eQMmethod_names[eQMmethodNR+1];
546 //! Macro to pick QMMM method name
547 #define EQMMETHOD(e)   enum_name(e, eQMmethodNR, eQMmethod_names)
548
549 //! QMMM basis function for QM part
550 enum {
551     eQMbasisSTO3G, eQMbasisSTO3G2, eQMbasis321G,
552     eQMbasis321Gp, eQMbasis321dGp, eQMbasis621G,
553     eQMbasis631G, eQMbasis631Gp, eQMbasis631dGp,
554     eQMbasis6311G, eQMbasisNR
555 };
556 //! Name for QMMM basis function
557 extern const char *eQMbasis_names[eQMbasisNR+1];
558 //! Macro to pick right basis function string
559 #define EQMBASIS(e)    enum_name(e, eQMbasisNR, eQMbasis_names)
560
561 //! QMMM scheme
562 enum {
563     eQMMMschemenormal, eQMMMschemeoniom, eQMMMschemeNR
564 };
565 //! QMMMM scheme names
566 extern const char *eQMMMscheme_names[eQMMMschemeNR+1];
567 //! Macro to pick QMMMM scheme name
568 #define EQMMMSCHEME(e) enum_name(e, eQMMMschemeNR, eQMMMscheme_names)
569
570 /*! \brief Neighborlist geometry type.
571  *
572  * Kernels will compute interactions between two particles,
573  * 3-center water, 4-center water or coarse-grained beads.
574  */
575 enum gmx_nblist_kernel_geometry
576 {
577     GMX_NBLIST_GEOMETRY_PARTICLE_PARTICLE,
578     GMX_NBLIST_GEOMETRY_WATER3_PARTICLE,
579     GMX_NBLIST_GEOMETRY_WATER3_WATER3,
580     GMX_NBLIST_GEOMETRY_WATER4_PARTICLE,
581     GMX_NBLIST_GEOMETRY_WATER4_WATER4,
582     GMX_NBLIST_GEOMETRY_CG_CG,
583     GMX_NBLIST_GEOMETRY_NR
584 };
585 //! String corresponding to nblist geometry names
586 extern const char *gmx_nblist_geometry_names[GMX_NBLIST_GEOMETRY_NR+1];
587
588 /*! \brief Types of electrostatics calculations
589  *
590  * Types of electrostatics calculations available inside nonbonded kernels.
591  * Note that these do NOT necessarily correspond to the user selections
592  * in the MDP file; many interactions for instance map to tabulated kernels.
593  */
594 enum gmx_nbkernel_elec
595 {
596     GMX_NBKERNEL_ELEC_NONE,
597     GMX_NBKERNEL_ELEC_COULOMB,
598     GMX_NBKERNEL_ELEC_REACTIONFIELD,
599     GMX_NBKERNEL_ELEC_CUBICSPLINETABLE,
600     GMX_NBKERNEL_ELEC_EWALD,
601     GMX_NBKERNEL_ELEC_NR
602 };
603 //! String corresponding to electrostatics kernels
604 extern const char *gmx_nbkernel_elec_names[GMX_NBKERNEL_ELEC_NR+1];
605
606 /*! \brief Types of vdw calculations available
607  *
608  * Types of vdw calculations available inside nonbonded kernels.
609  * Note that these do NOT necessarily correspond to the user selections
610  * in the MDP file; many interactions for instance map to tabulated kernels.
611  */
612 enum gmx_nbkernel_vdw
613 {
614     GMX_NBKERNEL_VDW_NONE,
615     GMX_NBKERNEL_VDW_LENNARDJONES,
616     GMX_NBKERNEL_VDW_BUCKINGHAM,
617     GMX_NBKERNEL_VDW_CUBICSPLINETABLE,
618     GMX_NBKERNEL_VDW_LJEWALD,
619     GMX_NBKERNEL_VDW_NR
620 };
621 //! String corresponding to VdW kernels
622 extern const char *gmx_nbkernel_vdw_names[GMX_NBKERNEL_VDW_NR+1];
623
624 //! \brief Types of interactions inside the neighborlist
625 enum gmx_nblist_interaction_type
626 {
627     GMX_NBLIST_INTERACTION_STANDARD,
628     GMX_NBLIST_INTERACTION_FREE_ENERGY,
629     GMX_NBLIST_INTERACTION_NR
630 };
631 //! String corresponding to interactions in neighborlist code
632 extern const char *gmx_nblist_interaction_names[GMX_NBLIST_INTERACTION_NR+1];
633
634
635 //! \brief QM/MM mode
636 enum struct GmxQmmmMode {
637     GMX_QMMM_ORIGINAL,
638     GMX_QMMM_MIMIC
639 };
640 #endif /* GMX_MDTYPES_MD_ENUMS_H */