69c380a73f3e9edfefd6dbbf8a249999b60352f6
[alexxy/gromacs.git] / src / gromacs / mdlib / sim_util.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5  * Copyright (c) 2001-2004, The GROMACS development team.
6  * Copyright (c) 2013-2019,2020,2021, by the GROMACS development team, led by
7  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8  * and including many others, as listed in the AUTHORS file in the
9  * top-level source directory and at http://www.gromacs.org.
10  *
11  * GROMACS is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU Lesser General Public License
13  * as published by the Free Software Foundation; either version 2.1
14  * of the License, or (at your option) any later version.
15  *
16  * GROMACS is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * Lesser General Public License for more details.
20  *
21  * You should have received a copy of the GNU Lesser General Public
22  * License along with GROMACS; if not, see
23  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
25  *
26  * If you want to redistribute modifications to GROMACS, please
27  * consider that scientific software is very special. Version
28  * control is crucial - bugs must be traceable. We will be happy to
29  * consider code for inclusion in the official distribution, but
30  * derived work must not be called official GROMACS. Details are found
31  * in the README & COPYING files - if they are missing, get the
32  * official version at http://www.gromacs.org.
33  *
34  * To help us fund GROMACS development, we humbly ask that you cite
35  * the research papers on the package. Check out http://www.gromacs.org.
36  */
37 #include "gmxpre.h"
38
39 #include "config.h"
40
41 #include <cmath>
42 #include <cstdint>
43 #include <cstdio>
44 #include <cstring>
45
46 #include <array>
47 #include <optional>
48
49 #include "gromacs/applied_forces/awh/awh.h"
50 #include "gromacs/domdec/dlbtiming.h"
51 #include "gromacs/domdec/domdec.h"
52 #include "gromacs/domdec/domdec_struct.h"
53 #include "gromacs/domdec/gpuhaloexchange.h"
54 #include "gromacs/domdec/partition.h"
55 #include "gromacs/essentialdynamics/edsam.h"
56 #include "gromacs/ewald/pme.h"
57 #include "gromacs/ewald/pme_pp.h"
58 #include "gromacs/ewald/pme_pp_comm_gpu.h"
59 #include "gromacs/gmxlib/network.h"
60 #include "gromacs/gmxlib/nonbonded/nb_free_energy.h"
61 #include "gromacs/gmxlib/nonbonded/nonbonded.h"
62 #include "gromacs/gmxlib/nrnb.h"
63 #include "gromacs/gpu_utils/gpu_utils.h"
64 #include "gromacs/imd/imd.h"
65 #include "gromacs/listed_forces/disre.h"
66 #include "gromacs/listed_forces/listed_forces_gpu.h"
67 #include "gromacs/listed_forces/listed_forces.h"
68 #include "gromacs/listed_forces/orires.h"
69 #include "gromacs/math/arrayrefwithpadding.h"
70 #include "gromacs/math/functions.h"
71 #include "gromacs/math/units.h"
72 #include "gromacs/math/vec.h"
73 #include "gromacs/math/vecdump.h"
74 #include "gromacs/mdlib/calcmu.h"
75 #include "gromacs/mdlib/calcvir.h"
76 #include "gromacs/mdlib/constr.h"
77 #include "gromacs/mdlib/dispersioncorrection.h"
78 #include "gromacs/mdlib/enerdata_utils.h"
79 #include "gromacs/mdlib/force.h"
80 #include "gromacs/mdlib/force_flags.h"
81 #include "gromacs/mdlib/forcerec.h"
82 #include "gromacs/mdlib/gmx_omp_nthreads.h"
83 #include "gromacs/mdlib/update.h"
84 #include "gromacs/mdlib/vsite.h"
85 #include "gromacs/mdlib/wall.h"
86 #include "gromacs/mdlib/wholemoleculetransform.h"
87 #include "gromacs/mdtypes/commrec.h"
88 #include "gromacs/mdtypes/enerdata.h"
89 #include "gromacs/mdtypes/forcebuffers.h"
90 #include "gromacs/mdtypes/forceoutput.h"
91 #include "gromacs/mdtypes/forcerec.h"
92 #include "gromacs/mdtypes/iforceprovider.h"
93 #include "gromacs/mdtypes/inputrec.h"
94 #include "gromacs/mdtypes/md_enums.h"
95 #include "gromacs/mdtypes/mdatom.h"
96 #include "gromacs/mdtypes/multipletimestepping.h"
97 #include "gromacs/mdtypes/simulation_workload.h"
98 #include "gromacs/mdtypes/state.h"
99 #include "gromacs/mdtypes/state_propagator_data_gpu.h"
100 #include "gromacs/nbnxm/gpu_data_mgmt.h"
101 #include "gromacs/nbnxm/nbnxm.h"
102 #include "gromacs/nbnxm/nbnxm_gpu.h"
103 #include "gromacs/pbcutil/ishift.h"
104 #include "gromacs/pbcutil/pbc.h"
105 #include "gromacs/pulling/pull.h"
106 #include "gromacs/pulling/pull_rotation.h"
107 #include "gromacs/timing/cyclecounter.h"
108 #include "gromacs/timing/gpu_timing.h"
109 #include "gromacs/timing/wallcycle.h"
110 #include "gromacs/timing/wallcyclereporting.h"
111 #include "gromacs/timing/walltime_accounting.h"
112 #include "gromacs/topology/topology.h"
113 #include "gromacs/utility/arrayref.h"
114 #include "gromacs/utility/basedefinitions.h"
115 #include "gromacs/utility/cstringutil.h"
116 #include "gromacs/utility/exceptions.h"
117 #include "gromacs/utility/fatalerror.h"
118 #include "gromacs/utility/fixedcapacityvector.h"
119 #include "gromacs/utility/gmxassert.h"
120 #include "gromacs/utility/gmxmpi.h"
121 #include "gromacs/utility/logger.h"
122 #include "gromacs/utility/smalloc.h"
123 #include "gromacs/utility/strconvert.h"
124 #include "gromacs/utility/sysinfo.h"
125
126 #include "gpuforcereduction.h"
127
128 using gmx::ArrayRef;
129 using gmx::AtomLocality;
130 using gmx::DomainLifetimeWorkload;
131 using gmx::ForceOutputs;
132 using gmx::ForceWithShiftForces;
133 using gmx::InteractionLocality;
134 using gmx::RVec;
135 using gmx::SimulationWorkload;
136 using gmx::StepWorkload;
137
138 // TODO: this environment variable allows us to verify before release
139 // that on less common architectures the total cost of polling is not larger than
140 // a blocking wait (so polling does not introduce overhead when the static
141 // PME-first ordering would suffice).
142 static const bool c_disableAlternatingWait = (getenv("GMX_DISABLE_ALTERNATING_GPU_WAIT") != nullptr);
143
144 static void sum_forces(ArrayRef<RVec> f, ArrayRef<const RVec> forceToAdd)
145 {
146     GMX_ASSERT(f.size() >= forceToAdd.size(), "Accumulation buffer should be sufficiently large");
147     const int end = forceToAdd.size();
148
149     int gmx_unused nt = gmx_omp_nthreads_get(ModuleMultiThread::Default);
150 #pragma omp parallel for num_threads(nt) schedule(static)
151     for (int i = 0; i < end; i++)
152     {
153         rvec_inc(f[i], forceToAdd[i]);
154     }
155 }
156
157 static void calc_virial(int                              start,
158                         int                              homenr,
159                         const rvec                       x[],
160                         const gmx::ForceWithShiftForces& forceWithShiftForces,
161                         tensor                           vir_part,
162                         const matrix                     box,
163                         t_nrnb*                          nrnb,
164                         const t_forcerec*                fr,
165                         PbcType                          pbcType)
166 {
167     /* The short-range virial from surrounding boxes */
168     const rvec* fshift          = as_rvec_array(forceWithShiftForces.shiftForces().data());
169     const rvec* shiftVecPointer = as_rvec_array(fr->shift_vec.data());
170     calc_vir(gmx::c_numShiftVectors, shiftVecPointer, fshift, vir_part, pbcType == PbcType::Screw, box);
171     inc_nrnb(nrnb, eNR_VIRIAL, gmx::c_numShiftVectors);
172
173     /* Calculate partial virial, for local atoms only, based on short range.
174      * Total virial is computed in global_stat, called from do_md
175      */
176     const rvec* f = as_rvec_array(forceWithShiftForces.force().data());
177     f_calc_vir(start, start + homenr, x, f, vir_part, box);
178     inc_nrnb(nrnb, eNR_VIRIAL, homenr);
179
180     if (debug)
181     {
182         pr_rvecs(debug, 0, "vir_part", vir_part, DIM);
183     }
184 }
185
186 static void pull_potential_wrapper(const t_commrec*               cr,
187                                    const t_inputrec&              ir,
188                                    const matrix                   box,
189                                    gmx::ArrayRef<const gmx::RVec> x,
190                                    gmx::ForceWithVirial*          force,
191                                    const t_mdatoms*               mdatoms,
192                                    gmx_enerdata_t*                enerd,
193                                    pull_t*                        pull_work,
194                                    const real*                    lambda,
195                                    double                         t,
196                                    gmx_wallcycle*                 wcycle)
197 {
198     t_pbc pbc;
199     real  dvdl;
200
201     /* Calculate the center of mass forces, this requires communication,
202      * which is why pull_potential is called close to other communication.
203      */
204     wallcycle_start(wcycle, WallCycleCounter::PullPot);
205     set_pbc(&pbc, ir.pbcType, box);
206     dvdl = 0;
207     enerd->term[F_COM_PULL] +=
208             pull_potential(pull_work,
209                            gmx::arrayRefFromArray(mdatoms->massT, mdatoms->nr),
210                            pbc,
211                            cr,
212                            t,
213                            lambda[static_cast<int>(FreeEnergyPerturbationCouplingType::Restraint)],
214                            x,
215                            force,
216                            &dvdl);
217     enerd->dvdl_lin[FreeEnergyPerturbationCouplingType::Restraint] += dvdl;
218     wallcycle_stop(wcycle, WallCycleCounter::PullPot);
219 }
220
221 static void pme_receive_force_ener(t_forcerec*           fr,
222                                    const t_commrec*      cr,
223                                    gmx::ForceWithVirial* forceWithVirial,
224                                    gmx_enerdata_t*       enerd,
225                                    bool                  useGpuPmePpComms,
226                                    bool                  receivePmeForceToGpu,
227                                    gmx_wallcycle*        wcycle)
228 {
229     real  e_q, e_lj, dvdl_q, dvdl_lj;
230     float cycles_ppdpme, cycles_seppme;
231
232     cycles_ppdpme = wallcycle_stop(wcycle, WallCycleCounter::PpDuringPme);
233     dd_cycles_add(cr->dd, cycles_ppdpme, ddCyclPPduringPME);
234
235     /* In case of node-splitting, the PP nodes receive the long-range
236      * forces, virial and energy from the PME nodes here.
237      */
238     wallcycle_start(wcycle, WallCycleCounter::PpPmeWaitRecvF);
239     dvdl_q  = 0;
240     dvdl_lj = 0;
241     gmx_pme_receive_f(fr->pmePpCommGpu.get(),
242                       cr,
243                       forceWithVirial,
244                       &e_q,
245                       &e_lj,
246                       &dvdl_q,
247                       &dvdl_lj,
248                       useGpuPmePpComms,
249                       receivePmeForceToGpu,
250                       &cycles_seppme);
251     enerd->term[F_COUL_RECIP] += e_q;
252     enerd->term[F_LJ_RECIP] += e_lj;
253     enerd->dvdl_lin[FreeEnergyPerturbationCouplingType::Coul] += dvdl_q;
254     enerd->dvdl_lin[FreeEnergyPerturbationCouplingType::Vdw] += dvdl_lj;
255
256     if (wcycle)
257     {
258         dd_cycles_add(cr->dd, cycles_seppme, ddCyclPME);
259     }
260     wallcycle_stop(wcycle, WallCycleCounter::PpPmeWaitRecvF);
261 }
262
263 static void print_large_forces(FILE*                fp,
264                                const t_mdatoms*     md,
265                                const t_commrec*     cr,
266                                int64_t              step,
267                                real                 forceTolerance,
268                                ArrayRef<const RVec> x,
269                                ArrayRef<const RVec> f)
270 {
271     real       force2Tolerance = gmx::square(forceTolerance);
272     gmx::index numNonFinite    = 0;
273     for (int i = 0; i < md->homenr; i++)
274     {
275         real force2    = norm2(f[i]);
276         bool nonFinite = !std::isfinite(force2);
277         if (force2 >= force2Tolerance || nonFinite)
278         {
279             fprintf(fp,
280                     "step %" PRId64 " atom %6d  x %8.3f %8.3f %8.3f  force %12.5e\n",
281                     step,
282                     ddglatnr(cr->dd, i),
283                     x[i][XX],
284                     x[i][YY],
285                     x[i][ZZ],
286                     std::sqrt(force2));
287         }
288         if (nonFinite)
289         {
290             numNonFinite++;
291         }
292     }
293     if (numNonFinite > 0)
294     {
295         /* Note that with MPI this fatal call on one rank might interrupt
296          * the printing on other ranks. But we can only avoid that with
297          * an expensive MPI barrier that we would need at each step.
298          */
299         gmx_fatal(FARGS, "At step %" PRId64 " detected non-finite forces on %td atoms", step, numNonFinite);
300     }
301 }
302
303 //! When necessary, spreads forces on vsites and computes the virial for \p forceOutputs->forceWithShiftForces()
304 static void postProcessForceWithShiftForces(t_nrnb*                   nrnb,
305                                             gmx_wallcycle*            wcycle,
306                                             const matrix              box,
307                                             ArrayRef<const RVec>      x,
308                                             ForceOutputs*             forceOutputs,
309                                             tensor                    vir_force,
310                                             const t_mdatoms&          mdatoms,
311                                             const t_forcerec&         fr,
312                                             gmx::VirtualSitesHandler* vsite,
313                                             const StepWorkload&       stepWork)
314 {
315     ForceWithShiftForces& forceWithShiftForces = forceOutputs->forceWithShiftForces();
316
317     /* If we have NoVirSum forces, but we do not calculate the virial,
318      * we later sum the forceWithShiftForces buffer together with
319      * the noVirSum buffer and spread the combined vsite forces at once.
320      */
321     if (vsite && (!forceOutputs->haveForceWithVirial() || stepWork.computeVirial))
322     {
323         using VirialHandling = gmx::VirtualSitesHandler::VirialHandling;
324
325         auto                 f      = forceWithShiftForces.force();
326         auto                 fshift = forceWithShiftForces.shiftForces();
327         const VirialHandling virialHandling =
328                 (stepWork.computeVirial ? VirialHandling::Pbc : VirialHandling::None);
329         vsite->spreadForces(x, f, virialHandling, fshift, nullptr, nrnb, box, wcycle);
330         forceWithShiftForces.haveSpreadVsiteForces() = true;
331     }
332
333     if (stepWork.computeVirial)
334     {
335         /* Calculation of the virial must be done after vsites! */
336         calc_virial(
337                 0, mdatoms.homenr, as_rvec_array(x.data()), forceWithShiftForces, vir_force, box, nrnb, &fr, fr.pbcType);
338     }
339 }
340
341 //! Spread, compute virial for and sum forces, when necessary
342 static void postProcessForces(const t_commrec*          cr,
343                               int64_t                   step,
344                               t_nrnb*                   nrnb,
345                               gmx_wallcycle*            wcycle,
346                               const matrix              box,
347                               ArrayRef<const RVec>      x,
348                               ForceOutputs*             forceOutputs,
349                               tensor                    vir_force,
350                               const t_mdatoms*          mdatoms,
351                               const t_forcerec*         fr,
352                               gmx::VirtualSitesHandler* vsite,
353                               const StepWorkload&       stepWork)
354 {
355     // Extract the final output force buffer, which is also the buffer for forces with shift forces
356     ArrayRef<RVec> f = forceOutputs->forceWithShiftForces().force();
357
358     if (forceOutputs->haveForceWithVirial())
359     {
360         auto& forceWithVirial = forceOutputs->forceWithVirial();
361
362         if (vsite)
363         {
364             /* Spread the mesh force on virtual sites to the other particles...
365              * This is parallellized. MPI communication is performed
366              * if the constructing atoms aren't local.
367              */
368             GMX_ASSERT(!stepWork.computeVirial || f.data() != forceWithVirial.force_.data(),
369                        "We need separate force buffers for shift and virial forces when "
370                        "computing the virial");
371             GMX_ASSERT(!stepWork.computeVirial
372                                || forceOutputs->forceWithShiftForces().haveSpreadVsiteForces(),
373                        "We should spread the force with shift forces separately when computing "
374                        "the virial");
375             const gmx::VirtualSitesHandler::VirialHandling virialHandling =
376                     (stepWork.computeVirial ? gmx::VirtualSitesHandler::VirialHandling::NonLinear
377                                             : gmx::VirtualSitesHandler::VirialHandling::None);
378             matrix virial = { { 0 } };
379             vsite->spreadForces(x, forceWithVirial.force_, virialHandling, {}, virial, nrnb, box, wcycle);
380             forceWithVirial.addVirialContribution(virial);
381         }
382
383         if (stepWork.computeVirial)
384         {
385             /* Now add the forces, this is local */
386             sum_forces(f, forceWithVirial.force_);
387
388             /* Add the direct virial contributions */
389             GMX_ASSERT(
390                     forceWithVirial.computeVirial_,
391                     "forceWithVirial should request virial computation when we request the virial");
392             m_add(vir_force, forceWithVirial.getVirial(), vir_force);
393
394             if (debug)
395             {
396                 pr_rvecs(debug, 0, "vir_force", vir_force, DIM);
397             }
398         }
399     }
400     else
401     {
402         GMX_ASSERT(vsite == nullptr || forceOutputs->forceWithShiftForces().haveSpreadVsiteForces(),
403                    "We should have spread the vsite forces (earlier)");
404     }
405
406     if (fr->print_force >= 0)
407     {
408         print_large_forces(stderr, mdatoms, cr, step, fr->print_force, x, f);
409     }
410 }
411
412 static void do_nb_verlet(t_forcerec*                fr,
413                          const interaction_const_t* ic,
414                          gmx_enerdata_t*            enerd,
415                          const StepWorkload&        stepWork,
416                          const InteractionLocality  ilocality,
417                          const int                  clearF,
418                          const int64_t              step,
419                          t_nrnb*                    nrnb,
420                          gmx_wallcycle*             wcycle)
421 {
422     if (!stepWork.computeNonbondedForces)
423     {
424         /* skip non-bonded calculation */
425         return;
426     }
427
428     nonbonded_verlet_t* nbv = fr->nbv.get();
429
430     /* GPU kernel launch overhead is already timed separately */
431     if (!nbv->useGpu())
432     {
433         /* When dynamic pair-list  pruning is requested, we need to prune
434          * at nstlistPrune steps.
435          */
436         if (nbv->isDynamicPruningStepCpu(step))
437         {
438             /* Prune the pair-list beyond fr->ic->rlistPrune using
439              * the current coordinates of the atoms.
440              */
441             wallcycle_sub_start(wcycle, WallCycleSubCounter::NonbondedPruning);
442             nbv->dispatchPruneKernelCpu(ilocality, fr->shift_vec);
443             wallcycle_sub_stop(wcycle, WallCycleSubCounter::NonbondedPruning);
444         }
445     }
446
447     nbv->dispatchNonbondedKernel(
448             ilocality,
449             *ic,
450             stepWork,
451             clearF,
452             fr->shift_vec,
453             enerd->grpp.energyGroupPairTerms[fr->haveBuckingham ? NonBondedEnergyTerms::BuckinghamSR
454                                                                 : NonBondedEnergyTerms::LJSR],
455             enerd->grpp.energyGroupPairTerms[NonBondedEnergyTerms::CoulombSR],
456             nrnb);
457 }
458
459 static inline void clearRVecs(ArrayRef<RVec> v, const bool useOpenmpThreading)
460 {
461     int nth = gmx_omp_nthreads_get_simple_rvec_task(ModuleMultiThread::Default, v.ssize());
462
463     /* Note that we would like to avoid this conditional by putting it
464      * into the omp pragma instead, but then we still take the full
465      * omp parallel for overhead (at least with gcc5).
466      */
467     if (!useOpenmpThreading || nth == 1)
468     {
469         for (RVec& elem : v)
470         {
471             clear_rvec(elem);
472         }
473     }
474     else
475     {
476 #pragma omp parallel for num_threads(nth) schedule(static)
477         for (gmx::index i = 0; i < v.ssize(); i++)
478         {
479             clear_rvec(v[i]);
480         }
481     }
482 }
483
484 /*! \brief Return an estimate of the average kinetic energy or 0 when unreliable
485  *
486  * \param groupOptions  Group options, containing T-coupling options
487  */
488 static real averageKineticEnergyEstimate(const t_grpopts& groupOptions)
489 {
490     real nrdfCoupled   = 0;
491     real nrdfUncoupled = 0;
492     real kineticEnergy = 0;
493     for (int g = 0; g < groupOptions.ngtc; g++)
494     {
495         if (groupOptions.tau_t[g] >= 0)
496         {
497             nrdfCoupled += groupOptions.nrdf[g];
498             kineticEnergy += groupOptions.nrdf[g] * 0.5 * groupOptions.ref_t[g] * gmx::c_boltz;
499         }
500         else
501         {
502             nrdfUncoupled += groupOptions.nrdf[g];
503         }
504     }
505
506     /* This conditional with > also catches nrdf=0 */
507     if (nrdfCoupled > nrdfUncoupled)
508     {
509         return kineticEnergy * (nrdfCoupled + nrdfUncoupled) / nrdfCoupled;
510     }
511     else
512     {
513         return 0;
514     }
515 }
516
517 /*! \brief This routine checks that the potential energy is finite.
518  *
519  * Always checks that the potential energy is finite. If step equals
520  * inputrec.init_step also checks that the magnitude of the potential energy
521  * is reasonable. Terminates with a fatal error when a check fails.
522  * Note that passing this check does not guarantee finite forces,
523  * since those use slightly different arithmetics. But in most cases
524  * there is just a narrow coordinate range where forces are not finite
525  * and energies are finite.
526  *
527  * \param[in] step      The step number, used for checking and printing
528  * \param[in] enerd     The energy data; the non-bonded group energies need to be added to
529  * enerd.term[F_EPOT] before calling this routine \param[in] inputrec  The input record
530  */
531 static void checkPotentialEnergyValidity(int64_t step, const gmx_enerdata_t& enerd, const t_inputrec& inputrec)
532 {
533     /* Threshold valid for comparing absolute potential energy against
534      * the kinetic energy. Normally one should not consider absolute
535      * potential energy values, but with a factor of one million
536      * we should never get false positives.
537      */
538     constexpr real c_thresholdFactor = 1e6;
539
540     bool energyIsNotFinite    = !std::isfinite(enerd.term[F_EPOT]);
541     real averageKineticEnergy = 0;
542     /* We only check for large potential energy at the initial step,
543      * because that is by far the most likely step for this too occur
544      * and because computing the average kinetic energy is not free.
545      * Note: nstcalcenergy >> 1 often does not allow to catch large energies
546      * before they become NaN.
547      */
548     if (step == inputrec.init_step && EI_DYNAMICS(inputrec.eI))
549     {
550         averageKineticEnergy = averageKineticEnergyEstimate(inputrec.opts);
551     }
552
553     if (energyIsNotFinite
554         || (averageKineticEnergy > 0 && enerd.term[F_EPOT] > c_thresholdFactor * averageKineticEnergy))
555     {
556         gmx_fatal(
557                 FARGS,
558                 "Step %" PRId64
559                 ": The total potential energy is %g, which is %s. The LJ and electrostatic "
560                 "contributions to the energy are %g and %g, respectively. A %s potential energy "
561                 "can be caused by overlapping interactions in bonded interactions or very large%s "
562                 "coordinate values. Usually this is caused by a badly- or non-equilibrated initial "
563                 "configuration, incorrect interactions or parameters in the topology.",
564                 step,
565                 enerd.term[F_EPOT],
566                 energyIsNotFinite ? "not finite" : "extremely high",
567                 enerd.term[F_LJ],
568                 enerd.term[F_COUL_SR],
569                 energyIsNotFinite ? "non-finite" : "very high",
570                 energyIsNotFinite ? " or Nan" : "");
571     }
572 }
573
574 /*! \brief Return true if there are special forces computed this step.
575  *
576  * The conditionals exactly correspond to those in computeSpecialForces().
577  */
578 static bool haveSpecialForces(const t_inputrec&          inputrec,
579                               const gmx::ForceProviders& forceProviders,
580                               const pull_t*              pull_work,
581                               const bool                 computeForces,
582                               const gmx_edsam*           ed)
583 {
584
585     return ((computeForces && forceProviders.hasForceProvider()) || // forceProviders
586             (inputrec.bPull && pull_have_potential(*pull_work)) ||  // pull
587             inputrec.bRot ||                                        // enforced rotation
588             (ed != nullptr) ||                                      // flooding
589             (inputrec.bIMD && computeForces));                      // IMD
590 }
591
592 /*! \brief Compute forces and/or energies for special algorithms
593  *
594  * The intention is to collect all calls to algorithms that compute
595  * forces on local atoms only and that do not contribute to the local
596  * virial sum (but add their virial contribution separately).
597  * Eventually these should likely all become ForceProviders.
598  * Within this function the intention is to have algorithms that do
599  * global communication at the end, so global barriers within the MD loop
600  * are as close together as possible.
601  *
602  * \param[in]     fplog            The log file
603  * \param[in]     cr               The communication record
604  * \param[in]     inputrec         The input record
605  * \param[in]     awh              The Awh module (nullptr if none in use).
606  * \param[in]     enforcedRotation Enforced rotation module.
607  * \param[in]     imdSession       The IMD session
608  * \param[in]     pull_work        The pull work structure.
609  * \param[in]     step             The current MD step
610  * \param[in]     t                The current time
611  * \param[in,out] wcycle           Wallcycle accounting struct
612  * \param[in,out] forceProviders   Pointer to a list of force providers
613  * \param[in]     box              The unit cell
614  * \param[in]     x                The coordinates
615  * \param[in]     mdatoms          Per atom properties
616  * \param[in]     lambda           Array of free-energy lambda values
617  * \param[in]     stepWork         Step schedule flags
618  * \param[in,out] forceWithVirialMtsLevel0  Force and virial for MTS level0 forces
619  * \param[in,out] forceWithVirialMtsLevel1  Force and virial for MTS level1 forces, can be nullptr
620  * \param[in,out] enerd            Energy buffer
621  * \param[in,out] ed               Essential dynamics pointer
622  * \param[in]     didNeighborSearch Tells if we did neighbor searching this step, used for ED sampling
623  *
624  * \todo Remove didNeighborSearch, which is used incorrectly.
625  * \todo Convert all other algorithms called here to ForceProviders.
626  */
627 static void computeSpecialForces(FILE*                          fplog,
628                                  const t_commrec*               cr,
629                                  const t_inputrec&              inputrec,
630                                  gmx::Awh*                      awh,
631                                  gmx_enfrot*                    enforcedRotation,
632                                  gmx::ImdSession*               imdSession,
633                                  pull_t*                        pull_work,
634                                  int64_t                        step,
635                                  double                         t,
636                                  gmx_wallcycle*                 wcycle,
637                                  gmx::ForceProviders*           forceProviders,
638                                  const matrix                   box,
639                                  gmx::ArrayRef<const gmx::RVec> x,
640                                  const t_mdatoms*               mdatoms,
641                                  gmx::ArrayRef<const real>      lambda,
642                                  const StepWorkload&            stepWork,
643                                  gmx::ForceWithVirial*          forceWithVirialMtsLevel0,
644                                  gmx::ForceWithVirial*          forceWithVirialMtsLevel1,
645                                  gmx_enerdata_t*                enerd,
646                                  gmx_edsam*                     ed,
647                                  bool                           didNeighborSearch)
648 {
649     /* NOTE: Currently all ForceProviders only provide forces.
650      *       When they also provide energies, remove this conditional.
651      */
652     if (stepWork.computeForces)
653     {
654         gmx::ForceProviderInput forceProviderInput(
655                 x,
656                 mdatoms->homenr,
657                 gmx::arrayRefFromArray(mdatoms->chargeA, mdatoms->homenr),
658                 gmx::arrayRefFromArray(mdatoms->massT, mdatoms->homenr),
659                 t,
660                 box,
661                 *cr);
662         gmx::ForceProviderOutput forceProviderOutput(forceWithVirialMtsLevel0, enerd);
663
664         /* Collect forces from modules */
665         forceProviders->calculateForces(forceProviderInput, &forceProviderOutput);
666     }
667
668     if (inputrec.bPull && pull_have_potential(*pull_work))
669     {
670         const int mtsLevel = forceGroupMtsLevel(inputrec.mtsLevels, gmx::MtsForceGroups::Pull);
671         if (mtsLevel == 0 || stepWork.computeSlowForces)
672         {
673             auto& forceWithVirial = (mtsLevel == 0) ? forceWithVirialMtsLevel0 : forceWithVirialMtsLevel1;
674             pull_potential_wrapper(
675                     cr, inputrec, box, x, forceWithVirial, mdatoms, enerd, pull_work, lambda.data(), t, wcycle);
676         }
677     }
678     if (awh)
679     {
680         const int mtsLevel = forceGroupMtsLevel(inputrec.mtsLevels, gmx::MtsForceGroups::Pull);
681         if (mtsLevel == 0 || stepWork.computeSlowForces)
682         {
683             const bool needForeignEnergyDifferences = awh->needForeignEnergyDifferences(step);
684             std::vector<double> foreignLambdaDeltaH, foreignLambdaDhDl;
685             if (needForeignEnergyDifferences)
686             {
687                 enerd->foreignLambdaTerms.finalizePotentialContributions(
688                         enerd->dvdl_lin, lambda, *inputrec.fepvals);
689                 std::tie(foreignLambdaDeltaH, foreignLambdaDhDl) = enerd->foreignLambdaTerms.getTerms(cr);
690             }
691
692             auto& forceWithVirial = (mtsLevel == 0) ? forceWithVirialMtsLevel0 : forceWithVirialMtsLevel1;
693             enerd->term[F_COM_PULL] += awh->applyBiasForcesAndUpdateBias(
694                     inputrec.pbcType,
695                     gmx::arrayRefFromArray(mdatoms->massT, mdatoms->nr),
696                     foreignLambdaDeltaH,
697                     foreignLambdaDhDl,
698                     box,
699                     forceWithVirial,
700                     t,
701                     step,
702                     wcycle,
703                     fplog);
704         }
705     }
706     /* Add the forces from enforced rotation potentials (if any) */
707     if (inputrec.bRot)
708     {
709         wallcycle_start(wcycle, WallCycleCounter::RotAdd);
710         enerd->term[F_COM_PULL] +=
711                 add_rot_forces(enforcedRotation, forceWithVirialMtsLevel0->force_, cr, step, t);
712         wallcycle_stop(wcycle, WallCycleCounter::RotAdd);
713     }
714
715     if (ed)
716     {
717         /* Note that since init_edsam() is called after the initialization
718          * of forcerec, edsam doesn't request the noVirSum force buffer.
719          * Thus if no other algorithm (e.g. PME) requires it, the forces
720          * here will contribute to the virial.
721          */
722         do_flood(cr, inputrec, x, forceWithVirialMtsLevel0->force_, ed, box, step, didNeighborSearch);
723     }
724
725     /* Add forces from interactive molecular dynamics (IMD), if any */
726     if (inputrec.bIMD && stepWork.computeForces)
727     {
728         imdSession->applyForces(forceWithVirialMtsLevel0->force_);
729     }
730 }
731
732 /*! \brief Launch the prepare_step and spread stages of PME GPU.
733  *
734  * \param[in]  pmedata              The PME structure
735  * \param[in]  box                  The box matrix
736  * \param[in]  stepWork             Step schedule flags
737  * \param[in]  xReadyOnDevice       Event synchronizer indicating that the coordinates are ready in the device memory.
738  * \param[in]  lambdaQ              The Coulomb lambda of the current state.
739  * \param[in]  wcycle               The wallcycle structure
740  */
741 static inline void launchPmeGpuSpread(gmx_pme_t*            pmedata,
742                                       const matrix          box,
743                                       const StepWorkload&   stepWork,
744                                       GpuEventSynchronizer* xReadyOnDevice,
745                                       const real            lambdaQ,
746                                       gmx_wallcycle*        wcycle)
747 {
748     pme_gpu_prepare_computation(pmedata, box, wcycle, stepWork);
749     pme_gpu_launch_spread(pmedata, xReadyOnDevice, wcycle, lambdaQ);
750 }
751
752 /*! \brief Launch the FFT and gather stages of PME GPU
753  *
754  * This function only implements setting the output forces (no accumulation).
755  *
756  * \param[in]  pmedata        The PME structure
757  * \param[in]  lambdaQ        The Coulomb lambda of the current system state.
758  * \param[in]  wcycle         The wallcycle structure
759  * \param[in]  stepWork       Step schedule flags
760  */
761 static void launchPmeGpuFftAndGather(gmx_pme_t*               pmedata,
762                                      const real               lambdaQ,
763                                      gmx_wallcycle*           wcycle,
764                                      const gmx::StepWorkload& stepWork)
765 {
766     pme_gpu_launch_complex_transforms(pmedata, wcycle, stepWork);
767     pme_gpu_launch_gather(pmedata, wcycle, lambdaQ);
768 }
769
770 /*! \brief
771  *  Polling wait for either of the PME or nonbonded GPU tasks.
772  *
773  * Instead of a static order in waiting for GPU tasks, this function
774  * polls checking which of the two tasks completes first, and does the
775  * associated force buffer reduction overlapped with the other task.
776  * By doing that, unlike static scheduling order, it can always overlap
777  * one of the reductions, regardless of the GPU task completion order.
778  *
779  * \param[in]     nbv              Nonbonded verlet structure
780  * \param[in,out] pmedata          PME module data
781  * \param[in,out] forceOutputsNonbonded  Force outputs for the non-bonded forces and shift forces
782  * \param[in,out] forceOutputsPme  Force outputs for the PME forces and virial
783  * \param[in,out] enerd            Energy data structure results are reduced into
784  * \param[in]     lambdaQ          The Coulomb lambda of the current system state.
785  * \param[in]     stepWork         Step schedule flags
786  * \param[in]     wcycle           The wallcycle structure
787  */
788 static void alternatePmeNbGpuWaitReduce(nonbonded_verlet_t* nbv,
789                                         gmx_pme_t*          pmedata,
790                                         gmx::ForceOutputs*  forceOutputsNonbonded,
791                                         gmx::ForceOutputs*  forceOutputsPme,
792                                         gmx_enerdata_t*     enerd,
793                                         const real          lambdaQ,
794                                         const StepWorkload& stepWork,
795                                         gmx_wallcycle*      wcycle)
796 {
797     bool isPmeGpuDone = false;
798     bool isNbGpuDone  = false;
799
800     gmx::ArrayRef<const gmx::RVec> pmeGpuForces;
801
802     while (!isPmeGpuDone || !isNbGpuDone)
803     {
804         if (!isPmeGpuDone)
805         {
806             GpuTaskCompletion completionType =
807                     (isNbGpuDone) ? GpuTaskCompletion::Wait : GpuTaskCompletion::Check;
808             isPmeGpuDone = pme_gpu_try_finish_task(
809                     pmedata, stepWork, wcycle, &forceOutputsPme->forceWithVirial(), enerd, lambdaQ, completionType);
810         }
811
812         if (!isNbGpuDone)
813         {
814             auto&             forceBuffersNonbonded = forceOutputsNonbonded->forceWithShiftForces();
815             GpuTaskCompletion completionType =
816                     (isPmeGpuDone) ? GpuTaskCompletion::Wait : GpuTaskCompletion::Check;
817             isNbGpuDone = Nbnxm::gpu_try_finish_task(
818                     nbv->gpu_nbv,
819                     stepWork,
820                     AtomLocality::Local,
821                     enerd->grpp.energyGroupPairTerms[NonBondedEnergyTerms::LJSR].data(),
822                     enerd->grpp.energyGroupPairTerms[NonBondedEnergyTerms::CoulombSR].data(),
823                     forceBuffersNonbonded.shiftForces(),
824                     completionType,
825                     wcycle);
826
827             if (isNbGpuDone)
828             {
829                 nbv->atomdata_add_nbat_f_to_f(AtomLocality::Local, forceBuffersNonbonded.force());
830             }
831         }
832     }
833 }
834
835 /*! \brief Set up the different force buffers; also does clearing.
836  *
837  * \param[in] forceHelperBuffers        Helper force buffers
838  * \param[in] force                     force array
839  * \param[in] domainWork                Domain lifetime workload flags
840  * \param[in] stepWork                  Step schedule flags
841  * \param[in] havePpDomainDecomposition Whether we have a PP domain decomposition
842  * \param[out] wcycle                   wallcycle recording structure
843  *
844  * \returns                             Cleared force output structure
845  */
846 static ForceOutputs setupForceOutputs(ForceHelperBuffers*                 forceHelperBuffers,
847                                       gmx::ArrayRefWithPadding<gmx::RVec> force,
848                                       const DomainLifetimeWorkload&       domainWork,
849                                       const StepWorkload&                 stepWork,
850                                       const bool                          havePpDomainDecomposition,
851                                       gmx_wallcycle*                      wcycle)
852 {
853     wallcycle_sub_start(wcycle, WallCycleSubCounter::ClearForceBuffer);
854
855     /* NOTE: We assume fr->shiftForces is all zeros here */
856     gmx::ForceWithShiftForces forceWithShiftForces(
857             force, stepWork.computeVirial, forceHelperBuffers->shiftForces());
858
859     if (stepWork.computeForces
860         && (domainWork.haveCpuLocalForceWork || !stepWork.useGpuFBufferOps
861             || (havePpDomainDecomposition && !stepWork.useGpuFHalo)))
862     {
863         /* Clear the short- and long-range forces */
864         clearRVecs(forceWithShiftForces.force(), true);
865
866         /* Clear the shift forces */
867         clearRVecs(forceWithShiftForces.shiftForces(), false);
868     }
869
870     /* If we need to compute the virial, we might need a separate
871      * force buffer for algorithms for which the virial is calculated
872      * directly, such as PME. Otherwise, forceWithVirial uses the
873      * the same force (f in legacy calls) buffer as other algorithms.
874      */
875     const bool useSeparateForceWithVirialBuffer =
876             (stepWork.computeForces
877              && (stepWork.computeVirial && forceHelperBuffers->haveDirectVirialContributions()));
878     /* forceWithVirial uses the local atom range only */
879     gmx::ForceWithVirial forceWithVirial(
880             useSeparateForceWithVirialBuffer ? forceHelperBuffers->forceBufferForDirectVirialContributions()
881                                              : force.unpaddedArrayRef(),
882             stepWork.computeVirial);
883
884     if (useSeparateForceWithVirialBuffer)
885     {
886         /* TODO: update comment
887          * We only compute forces on local atoms. Note that vsites can
888          * spread to non-local atoms, but that part of the buffer is
889          * cleared separately in the vsite spreading code.
890          */
891         clearRVecs(forceWithVirial.force_, true);
892     }
893
894     wallcycle_sub_stop(wcycle, WallCycleSubCounter::ClearForceBuffer);
895
896     return ForceOutputs(
897             forceWithShiftForces, forceHelperBuffers->haveDirectVirialContributions(), forceWithVirial);
898 }
899
900
901 /*! \brief Set up flags that have the lifetime of the domain indicating what type of work is there to compute.
902  */
903 static DomainLifetimeWorkload setupDomainLifetimeWorkload(const t_inputrec&         inputrec,
904                                                           const t_forcerec&         fr,
905                                                           const pull_t*             pull_work,
906                                                           const gmx_edsam*          ed,
907                                                           const t_mdatoms&          mdatoms,
908                                                           const SimulationWorkload& simulationWork,
909                                                           const StepWorkload&       stepWork)
910 {
911     DomainLifetimeWorkload domainWork;
912     // Note that haveSpecialForces is constant over the whole run
913     domainWork.haveSpecialForces =
914             haveSpecialForces(inputrec, *fr.forceProviders, pull_work, stepWork.computeForces, ed);
915     domainWork.haveCpuListedForceWork = false;
916     domainWork.haveCpuBondedWork      = false;
917     for (const auto& listedForces : fr.listedForces)
918     {
919         if (listedForces.haveCpuListedForces(*fr.fcdata))
920         {
921             domainWork.haveCpuListedForceWork = true;
922         }
923         if (listedForces.haveCpuBondeds())
924         {
925             domainWork.haveCpuBondedWork = true;
926         }
927     }
928     domainWork.haveGpuBondedWork =
929             ((fr.listedForcesGpu != nullptr) && fr.listedForcesGpu->haveInteractions());
930     // Note that haveFreeEnergyWork is constant over the whole run
931     domainWork.haveFreeEnergyWork =
932             (fr.efep != FreeEnergyPerturbationType::No && mdatoms.nPerturbed != 0);
933     // We assume we have local force work if there are CPU
934     // force tasks including PME or nonbondeds.
935     domainWork.haveCpuLocalForceWork =
936             domainWork.haveSpecialForces || domainWork.haveCpuListedForceWork
937             || domainWork.haveFreeEnergyWork || simulationWork.useCpuNonbonded || simulationWork.useCpuPme
938             || simulationWork.haveEwaldSurfaceContribution || inputrec.nwall > 0;
939     domainWork.haveLocalForceContribInCpuBuffer =
940             domainWork.haveCpuLocalForceWork || simulationWork.havePpDomainDecomposition;
941     domainWork.haveNonLocalForceContribInCpuBuffer =
942             domainWork.haveCpuBondedWork || domainWork.haveFreeEnergyWork;
943
944     return domainWork;
945 }
946
947 /*! \brief Set up force flag stuct from the force bitmask.
948  *
949  * \param[in]      legacyFlags          Force bitmask flags used to construct the new flags
950  * \param[in]      mtsLevels            The multiple time-stepping levels, either empty or 2 levels
951  * \param[in]      step                 The current MD step
952  * \param[in]      simulationWork       Simulation workload description.
953  *
954  * \returns New Stepworkload description.
955  */
956 static StepWorkload setupStepWorkload(const int                     legacyFlags,
957                                       ArrayRef<const gmx::MtsLevel> mtsLevels,
958                                       const int64_t                 step,
959                                       const SimulationWorkload&     simulationWork)
960 {
961     GMX_ASSERT(mtsLevels.empty() || mtsLevels.size() == 2, "Expect 0 or 2 MTS levels");
962     const bool computeSlowForces = (mtsLevels.empty() || step % mtsLevels[1].stepFactor == 0);
963
964     StepWorkload flags;
965     flags.stateChanged                  = ((legacyFlags & GMX_FORCE_STATECHANGED) != 0);
966     flags.haveDynamicBox                = ((legacyFlags & GMX_FORCE_DYNAMICBOX) != 0);
967     flags.doNeighborSearch              = ((legacyFlags & GMX_FORCE_NS) != 0);
968     flags.computeSlowForces             = computeSlowForces;
969     flags.computeVirial                 = ((legacyFlags & GMX_FORCE_VIRIAL) != 0);
970     flags.computeEnergy                 = ((legacyFlags & GMX_FORCE_ENERGY) != 0);
971     flags.computeForces                 = ((legacyFlags & GMX_FORCE_FORCES) != 0);
972     flags.useOnlyMtsCombinedForceBuffer = ((legacyFlags & GMX_FORCE_DO_NOT_NEED_NORMAL_FORCE) != 0);
973     flags.computeListedForces           = ((legacyFlags & GMX_FORCE_LISTED) != 0);
974     flags.computeNonbondedForces =
975             ((legacyFlags & GMX_FORCE_NONBONDED) != 0) && simulationWork.computeNonbonded
976             && !(simulationWork.computeNonbondedAtMtsLevel1 && !computeSlowForces);
977     flags.computeDhdl = ((legacyFlags & GMX_FORCE_DHDL) != 0);
978
979     if (simulationWork.useGpuBufferOps)
980     {
981         GMX_ASSERT(simulationWork.useGpuNonbonded,
982                    "Can only offload buffer ops if nonbonded computation is also offloaded");
983     }
984     flags.useGpuXBufferOps = simulationWork.useGpuBufferOps;
985     // on virial steps the CPU reduction path is taken
986     flags.useGpuFBufferOps       = simulationWork.useGpuBufferOps && !flags.computeVirial;
987     const bool rankHasGpuPmeTask = simulationWork.useGpuPme && !simulationWork.haveSeparatePmeRank;
988     flags.useGpuPmeFReduction    = flags.computeSlowForces && flags.useGpuFBufferOps
989                                 && (rankHasGpuPmeTask || simulationWork.useGpuPmePpCommunication);
990     flags.useGpuXHalo          = simulationWork.useGpuHaloExchange;
991     flags.useGpuFHalo          = simulationWork.useGpuHaloExchange && flags.useGpuFBufferOps;
992     flags.haveGpuPmeOnThisRank = rankHasGpuPmeTask && flags.computeSlowForces;
993     flags.combineMtsForcesBeforeHaloExchange =
994             (flags.computeForces && simulationWork.useMts && flags.computeSlowForces
995              && flags.useOnlyMtsCombinedForceBuffer
996              && !(flags.computeVirial || simulationWork.useGpuNonbonded || flags.haveGpuPmeOnThisRank));
997
998     return flags;
999 }
1000
1001
1002 /* \brief Launch end-of-step GPU tasks: buffer clearing and rolling pruning.
1003  *
1004  */
1005 static void launchGpuEndOfStepTasks(nonbonded_verlet_t*               nbv,
1006                                     gmx::ListedForcesGpu*             listedForcesGpu,
1007                                     gmx_pme_t*                        pmedata,
1008                                     gmx_enerdata_t*                   enerd,
1009                                     const gmx::MdrunScheduleWorkload& runScheduleWork,
1010                                     int64_t                           step,
1011                                     gmx_wallcycle*                    wcycle)
1012 {
1013     if (runScheduleWork.simulationWork.useGpuNonbonded && runScheduleWork.stepWork.computeNonbondedForces)
1014     {
1015         /* Launch pruning before buffer clearing because the API overhead of the
1016          * clear kernel launches can leave the GPU idle while it could be running
1017          * the prune kernel.
1018          */
1019         if (nbv->isDynamicPruningStepGpu(step))
1020         {
1021             nbv->dispatchPruneKernelGpu(step);
1022         }
1023
1024         /* now clear the GPU outputs while we finish the step on the CPU */
1025         wallcycle_start_nocount(wcycle, WallCycleCounter::LaunchGpu);
1026         wallcycle_sub_start_nocount(wcycle, WallCycleSubCounter::LaunchGpuNonBonded);
1027         Nbnxm::gpu_clear_outputs(nbv->gpu_nbv, runScheduleWork.stepWork.computeVirial);
1028         wallcycle_sub_stop(wcycle, WallCycleSubCounter::LaunchGpuNonBonded);
1029         wallcycle_stop(wcycle, WallCycleCounter::LaunchGpu);
1030     }
1031
1032     if (runScheduleWork.stepWork.haveGpuPmeOnThisRank)
1033     {
1034         pme_gpu_reinit_computation(pmedata, wcycle);
1035     }
1036
1037     if (runScheduleWork.domainWork.haveGpuBondedWork && runScheduleWork.stepWork.computeEnergy)
1038     {
1039         // in principle this should be included in the DD balancing region,
1040         // but generally it is infrequent so we'll omit it for the sake of
1041         // simpler code
1042         listedForcesGpu->waitAccumulateEnergyTerms(enerd);
1043
1044         listedForcesGpu->clearEnergies();
1045     }
1046 }
1047
1048 //! \brief Data structure to hold dipole-related data and staging arrays
1049 struct DipoleData
1050 {
1051     //! Dipole staging for fast summing over MPI
1052     gmx::DVec muStaging[2] = { { 0.0, 0.0, 0.0 } };
1053     //! Dipole staging for states A and B (index 0 and 1 resp.)
1054     gmx::RVec muStateAB[2] = { { 0.0_real, 0.0_real, 0.0_real } };
1055 };
1056
1057
1058 static void reduceAndUpdateMuTot(DipoleData*                   dipoleData,
1059                                  const t_commrec*              cr,
1060                                  const bool                    haveFreeEnergy,
1061                                  gmx::ArrayRef<const real>     lambda,
1062                                  rvec                          muTotal,
1063                                  const DDBalanceRegionHandler& ddBalanceRegionHandler)
1064 {
1065     if (PAR(cr))
1066     {
1067         gmx_sumd(2 * DIM, dipoleData->muStaging[0], cr);
1068         ddBalanceRegionHandler.reopenRegionCpu();
1069     }
1070     for (int i = 0; i < 2; i++)
1071     {
1072         for (int j = 0; j < DIM; j++)
1073         {
1074             dipoleData->muStateAB[i][j] = dipoleData->muStaging[i][j];
1075         }
1076     }
1077
1078     if (!haveFreeEnergy)
1079     {
1080         copy_rvec(dipoleData->muStateAB[0], muTotal);
1081     }
1082     else
1083     {
1084         for (int j = 0; j < DIM; j++)
1085         {
1086             muTotal[j] = (1.0 - lambda[static_cast<int>(FreeEnergyPerturbationCouplingType::Coul)])
1087                                  * dipoleData->muStateAB[0][j]
1088                          + lambda[static_cast<int>(FreeEnergyPerturbationCouplingType::Coul)]
1089                                    * dipoleData->muStateAB[1][j];
1090         }
1091     }
1092 }
1093
1094 /*! \brief Combines MTS level0 and level1 force buffers into a full and MTS-combined force buffer.
1095  *
1096  * \param[in]     numAtoms        The number of atoms to combine forces for
1097  * \param[in,out] forceMtsLevel0  Input: F_level0, output: F_level0 + F_level1
1098  * \param[in,out] forceMts        Input: F_level1, output: F_level0 + mtsFactor * F_level1
1099  * \param[in]     mtsFactor       The factor between the level0 and level1 time step
1100  */
1101 static void combineMtsForces(const int      numAtoms,
1102                              ArrayRef<RVec> forceMtsLevel0,
1103                              ArrayRef<RVec> forceMts,
1104                              const real     mtsFactor)
1105 {
1106     const int gmx_unused numThreads = gmx_omp_nthreads_get(ModuleMultiThread::Default);
1107 #pragma omp parallel for num_threads(numThreads) schedule(static)
1108     for (int i = 0; i < numAtoms; i++)
1109     {
1110         const RVec forceMtsLevel0Tmp = forceMtsLevel0[i];
1111         forceMtsLevel0[i] += forceMts[i];
1112         forceMts[i] = forceMtsLevel0Tmp + mtsFactor * forceMts[i];
1113     }
1114 }
1115
1116 /*! \brief Setup for the local and non-local GPU force reductions:
1117  * reinitialization plus the registration of forces and dependencies.
1118  *
1119  * \param [in] runScheduleWork               Schedule workload flag structure
1120  * \param [in] cr                            Communication record object
1121  * \param [in] fr                            Force record object
1122  */
1123 static void setupGpuForceReductions(gmx::MdrunScheduleWorkload* runScheduleWork,
1124                                     const t_commrec*            cr,
1125                                     t_forcerec*                 fr)
1126 {
1127
1128     nonbonded_verlet_t*          nbv      = fr->nbv.get();
1129     gmx::StatePropagatorDataGpu* stateGpu = fr->stateGpu;
1130
1131     // (re-)initialize local GPU force reduction
1132     const bool accumulate = runScheduleWork->domainWork.haveCpuLocalForceWork
1133                             || runScheduleWork->simulationWork.havePpDomainDecomposition;
1134     const int atomStart = 0;
1135     fr->gpuForceReduction[gmx::AtomLocality::Local]->reinit(stateGpu->getForces(),
1136                                                             nbv->getNumAtoms(AtomLocality::Local),
1137                                                             nbv->getGridIndices(),
1138                                                             atomStart,
1139                                                             accumulate,
1140                                                             stateGpu->fReducedOnDevice());
1141
1142     // register forces and add dependencies
1143     fr->gpuForceReduction[gmx::AtomLocality::Local]->registerNbnxmForce(Nbnxm::gpu_get_f(nbv->gpu_nbv));
1144
1145     if (runScheduleWork->simulationWork.useGpuPme
1146         && (!runScheduleWork->simulationWork.haveSeparatePmeRank
1147             || runScheduleWork->simulationWork.useGpuPmePpCommunication))
1148     {
1149         DeviceBuffer<gmx::RVec> forcePtr =
1150                 runScheduleWork->simulationWork.haveSeparatePmeRank
1151                         ? fr->pmePpCommGpu->getGpuForceStagingPtr() // buffer received from other GPU
1152                         : pme_gpu_get_device_f(fr->pmedata);        // PME force buffer on same GPU
1153         fr->gpuForceReduction[gmx::AtomLocality::Local]->registerRvecForce(forcePtr);
1154
1155         GpuEventSynchronizer* const pmeSynchronizer =
1156                 (runScheduleWork->simulationWork.haveSeparatePmeRank
1157                          ? fr->pmePpCommGpu->getForcesReadySynchronizer() // buffer received from other GPU
1158                          : pme_gpu_get_f_ready_synchronizer(fr->pmedata)); // PME force buffer on same GPU
1159         if (GMX_THREAD_MPI)
1160         {
1161             GMX_ASSERT(pmeSynchronizer != nullptr, "PME force ready cuda event should not be NULL");
1162             fr->gpuForceReduction[gmx::AtomLocality::Local]->addDependency(pmeSynchronizer);
1163         }
1164     }
1165
1166     if (runScheduleWork->domainWork.haveCpuLocalForceWork && !runScheduleWork->simulationWork.useGpuHaloExchange)
1167     {
1168         // in the DD case we use the same stream for H2D and reduction, hence no explicit dependency needed
1169         if (!runScheduleWork->simulationWork.havePpDomainDecomposition)
1170         {
1171             const bool useGpuForceBufferOps = true;
1172             fr->gpuForceReduction[gmx::AtomLocality::Local]->addDependency(
1173                     stateGpu->getForcesReadyOnDeviceEvent(AtomLocality::All, useGpuForceBufferOps));
1174         }
1175     }
1176
1177     if (runScheduleWork->simulationWork.useGpuHaloExchange)
1178     {
1179         fr->gpuForceReduction[gmx::AtomLocality::Local]->addDependency(
1180                 cr->dd->gpuHaloExchange[0][0]->getForcesReadyOnDeviceEvent());
1181     }
1182
1183     if (runScheduleWork->simulationWork.havePpDomainDecomposition)
1184     {
1185         // (re-)initialize non-local GPU force reduction
1186         const bool accumulate = runScheduleWork->domainWork.haveCpuBondedWork
1187                                 || runScheduleWork->domainWork.haveFreeEnergyWork;
1188         const int atomStart = dd_numHomeAtoms(*cr->dd);
1189         fr->gpuForceReduction[gmx::AtomLocality::NonLocal]->reinit(stateGpu->getForces(),
1190                                                                    nbv->getNumAtoms(AtomLocality::NonLocal),
1191                                                                    nbv->getGridIndices(),
1192                                                                    atomStart,
1193                                                                    accumulate);
1194
1195         // register forces and add dependencies
1196         // in the DD case we use the same stream for H2D and reduction, hence no explicit dependency needed
1197         fr->gpuForceReduction[gmx::AtomLocality::NonLocal]->registerNbnxmForce(
1198                 Nbnxm::gpu_get_f(nbv->gpu_nbv));
1199     }
1200 }
1201
1202
1203 /*! \brief Return the number of local atoms.
1204  */
1205 static int getLocalAtomCount(const gmx_domdec_t* dd, const t_mdatoms& mdatoms, bool havePPDomainDecomposition)
1206 {
1207     GMX_ASSERT(!(havePPDomainDecomposition && (dd == nullptr)),
1208                "Can't have PP decomposition with dd uninitialized!");
1209     return havePPDomainDecomposition ? dd_numAtomsZones(*dd) : mdatoms.homenr;
1210 }
1211
1212
1213 void do_force(FILE*                               fplog,
1214               const t_commrec*                    cr,
1215               const gmx_multisim_t*               ms,
1216               const t_inputrec&                   inputrec,
1217               gmx::Awh*                           awh,
1218               gmx_enfrot*                         enforcedRotation,
1219               gmx::ImdSession*                    imdSession,
1220               pull_t*                             pull_work,
1221               int64_t                             step,
1222               t_nrnb*                             nrnb,
1223               gmx_wallcycle*                      wcycle,
1224               const gmx_localtop_t*               top,
1225               const matrix                        box,
1226               gmx::ArrayRefWithPadding<gmx::RVec> x,
1227               const history_t*                    hist,
1228               gmx::ForceBuffersView*              forceView,
1229               tensor                              vir_force,
1230               const t_mdatoms*                    mdatoms,
1231               gmx_enerdata_t*                     enerd,
1232               gmx::ArrayRef<const real>           lambda,
1233               t_forcerec*                         fr,
1234               gmx::MdrunScheduleWorkload*         runScheduleWork,
1235               gmx::VirtualSitesHandler*           vsite,
1236               rvec                                muTotal,
1237               double                              t,
1238               gmx_edsam*                          ed,
1239               int                                 legacyFlags,
1240               const DDBalanceRegionHandler&       ddBalanceRegionHandler)
1241 {
1242     auto force = forceView->forceWithPadding();
1243     GMX_ASSERT(force.unpaddedArrayRef().ssize() >= fr->natoms_force_constr,
1244                "The size of the force buffer should be at least the number of atoms to compute "
1245                "forces for");
1246
1247     nonbonded_verlet_t*  nbv = fr->nbv.get();
1248     interaction_const_t* ic  = fr->ic.get();
1249
1250     gmx::StatePropagatorDataGpu* stateGpu = fr->stateGpu;
1251
1252     const SimulationWorkload& simulationWork = runScheduleWork->simulationWork;
1253
1254     runScheduleWork->stepWork = setupStepWorkload(legacyFlags, inputrec.mtsLevels, step, simulationWork);
1255     const StepWorkload& stepWork = runScheduleWork->stepWork;
1256
1257     /* At a search step we need to start the first balancing region
1258      * somewhere early inside the step after communication during domain
1259      * decomposition (and not during the previous step as usual).
1260      */
1261     if (stepWork.doNeighborSearch)
1262     {
1263         ddBalanceRegionHandler.openBeforeForceComputationCpu(DdAllowBalanceRegionReopen::yes);
1264     }
1265
1266     clear_mat(vir_force);
1267
1268     if (fr->pbcType != PbcType::No)
1269     {
1270         /* Compute shift vectors every step,
1271          * because of pressure coupling or box deformation!
1272          */
1273         if (stepWork.haveDynamicBox && stepWork.stateChanged)
1274         {
1275             calc_shifts(box, fr->shift_vec);
1276         }
1277
1278         const bool fillGrid = (stepWork.doNeighborSearch && stepWork.stateChanged);
1279         const bool calcCGCM = (fillGrid && !DOMAINDECOMP(cr));
1280         if (calcCGCM)
1281         {
1282             put_atoms_in_box_omp(fr->pbcType,
1283                                  box,
1284                                  x.unpaddedArrayRef().subArray(0, mdatoms->homenr),
1285                                  gmx_omp_nthreads_get(ModuleMultiThread::Default));
1286             inc_nrnb(nrnb, eNR_SHIFTX, mdatoms->homenr);
1287         }
1288     }
1289
1290     nbnxn_atomdata_copy_shiftvec(stepWork.haveDynamicBox, fr->shift_vec, nbv->nbat.get());
1291
1292     const bool pmeSendCoordinatesFromGpu =
1293             simulationWork.useGpuPmePpCommunication && !(stepWork.doNeighborSearch);
1294     const bool reinitGpuPmePpComms =
1295             simulationWork.useGpuPmePpCommunication && (stepWork.doNeighborSearch);
1296
1297     auto* localXReadyOnDevice = (stepWork.haveGpuPmeOnThisRank || simulationWork.useGpuBufferOps)
1298                                         ? stateGpu->getCoordinatesReadyOnDeviceEvent(
1299                                                 AtomLocality::Local, simulationWork, stepWork)
1300                                         : nullptr;
1301
1302     GMX_ASSERT(simulationWork.useGpuHaloExchange
1303                        == ((cr->dd != nullptr) && (!cr->dd->gpuHaloExchange[0].empty())),
1304                "The GPU halo exchange is active, but it has not been constructed.");
1305
1306     bool gmx_used_in_debug haveCopiedXFromGpu = false;
1307     // Copy coordinate from the GPU if update is on the GPU and there
1308     // are forces to be computed on the CPU, or for the computation of
1309     // virial, or if host-side data will be transferred from this task
1310     // to a remote task for halo exchange or PME-PP communication. At
1311     // search steps the current coordinates are already on the host,
1312     // hence copy is not needed.
1313     if (simulationWork.useGpuUpdate && !stepWork.doNeighborSearch
1314         && (runScheduleWork->domainWork.haveCpuLocalForceWork || stepWork.computeVirial
1315             || simulationWork.useCpuPmePpCommunication || simulationWork.useCpuHaloExchange
1316             || simulationWork.computeMuTot))
1317     {
1318         stateGpu->copyCoordinatesFromGpu(x.unpaddedArrayRef(), AtomLocality::Local);
1319         haveCopiedXFromGpu = true;
1320     }
1321
1322     // Coordinates on the device are needed if PME or BufferOps are offloaded.
1323     // The local coordinates can be copied right away.
1324     // NOTE: Consider moving this copy to right after they are updated and constrained,
1325     //       if the later is not offloaded.
1326     if (stepWork.haveGpuPmeOnThisRank || stepWork.useGpuXBufferOps)
1327     {
1328         if (stepWork.doNeighborSearch)
1329         {
1330             // TODO refactor this to do_md, after partitioning.
1331             stateGpu->reinit(mdatoms->homenr,
1332                              getLocalAtomCount(cr->dd, *mdatoms, simulationWork.havePpDomainDecomposition));
1333             if (stepWork.haveGpuPmeOnThisRank)
1334             {
1335                 // TODO: This should be moved into PME setup function ( pme_gpu_prepare_computation(...) )
1336                 pme_gpu_set_device_x(fr->pmedata, stateGpu->getCoordinates());
1337             }
1338         }
1339         // We need to copy coordinates when:
1340         // 1. Update is not offloaded
1341         // 2. The buffers were reinitialized on search step
1342         if (!simulationWork.useGpuUpdate || stepWork.doNeighborSearch)
1343         {
1344             GMX_ASSERT(stateGpu != nullptr, "stateGpu should not be null");
1345             stateGpu->copyCoordinatesToGpu(x.unpaddedArrayRef(), AtomLocality::Local);
1346         }
1347     }
1348
1349     if (simulationWork.haveSeparatePmeRank && stepWork.computeSlowForces)
1350     {
1351         /* Send particle coordinates to the pme nodes */
1352         if (!pmeSendCoordinatesFromGpu && !stepWork.doNeighborSearch && simulationWork.useGpuUpdate)
1353         {
1354             GMX_ASSERT(haveCopiedXFromGpu,
1355                        "a wait should only be triggered if copy has been scheduled");
1356             stateGpu->waitCoordinatesReadyOnHost(AtomLocality::Local);
1357         }
1358
1359         gmx_pme_send_coordinates(fr,
1360                                  cr,
1361                                  box,
1362                                  x.unpaddedArrayRef(),
1363                                  lambda[static_cast<int>(FreeEnergyPerturbationCouplingType::Coul)],
1364                                  lambda[static_cast<int>(FreeEnergyPerturbationCouplingType::Vdw)],
1365                                  (stepWork.computeVirial || stepWork.computeEnergy),
1366                                  step,
1367                                  simulationWork.useGpuPmePpCommunication,
1368                                  reinitGpuPmePpComms,
1369                                  pmeSendCoordinatesFromGpu,
1370                                  stepWork.useGpuPmeFReduction,
1371                                  localXReadyOnDevice,
1372                                  wcycle);
1373     }
1374
1375     if (stepWork.haveGpuPmeOnThisRank)
1376     {
1377         launchPmeGpuSpread(fr->pmedata,
1378                            box,
1379                            stepWork,
1380                            localXReadyOnDevice,
1381                            lambda[static_cast<int>(FreeEnergyPerturbationCouplingType::Coul)],
1382                            wcycle);
1383     }
1384
1385     const gmx::DomainLifetimeWorkload& domainWork = runScheduleWork->domainWork;
1386
1387     /* do gridding for pair search */
1388     if (stepWork.doNeighborSearch)
1389     {
1390         if (fr->wholeMoleculeTransform && stepWork.stateChanged)
1391         {
1392             fr->wholeMoleculeTransform->updateForAtomPbcJumps(x.unpaddedArrayRef(), box);
1393         }
1394
1395         wallcycle_start(wcycle, WallCycleCounter::NS);
1396         if (!DOMAINDECOMP(cr))
1397         {
1398             const rvec vzero       = { 0.0_real, 0.0_real, 0.0_real };
1399             const rvec boxDiagonal = { box[XX][XX], box[YY][YY], box[ZZ][ZZ] };
1400             wallcycle_sub_start(wcycle, WallCycleSubCounter::NBSGridLocal);
1401             nbnxn_put_on_grid(nbv,
1402                               box,
1403                               0,
1404                               vzero,
1405                               boxDiagonal,
1406                               nullptr,
1407                               { 0, mdatoms->homenr },
1408                               -1,
1409                               fr->atomInfo,
1410                               x.unpaddedArrayRef(),
1411                               0,
1412                               nullptr);
1413             wallcycle_sub_stop(wcycle, WallCycleSubCounter::NBSGridLocal);
1414         }
1415         else
1416         {
1417             wallcycle_sub_start(wcycle, WallCycleSubCounter::NBSGridNonLocal);
1418             nbnxn_put_on_grid_nonlocal(nbv, domdec_zones(cr->dd), fr->atomInfo, x.unpaddedArrayRef());
1419             wallcycle_sub_stop(wcycle, WallCycleSubCounter::NBSGridNonLocal);
1420         }
1421
1422         nbv->setAtomProperties(gmx::constArrayRefFromArray(mdatoms->typeA, mdatoms->nr),
1423                                gmx::constArrayRefFromArray(mdatoms->chargeA, mdatoms->nr),
1424                                fr->atomInfo);
1425
1426         wallcycle_stop(wcycle, WallCycleCounter::NS);
1427
1428         /* initialize the GPU nbnxm atom data and bonded data structures */
1429         if (simulationWork.useGpuNonbonded)
1430         {
1431             // Note: cycle counting only nononbondeds, GPU listed forces counts internally
1432             wallcycle_start_nocount(wcycle, WallCycleCounter::LaunchGpu);
1433             wallcycle_sub_start_nocount(wcycle, WallCycleSubCounter::LaunchGpuNonBonded);
1434             Nbnxm::gpu_init_atomdata(nbv->gpu_nbv, nbv->nbat.get());
1435             wallcycle_sub_stop(wcycle, WallCycleSubCounter::LaunchGpuNonBonded);
1436             wallcycle_stop(wcycle, WallCycleCounter::LaunchGpu);
1437
1438             if (fr->listedForcesGpu)
1439             {
1440                 /* Now we put all atoms on the grid, we can assign bonded
1441                  * interactions to the GPU, where the grid order is
1442                  * needed. Also the xq, f and fshift device buffers have
1443                  * been reallocated if needed, so the bonded code can
1444                  * learn about them. */
1445                 // TODO the xq, f, and fshift buffers are now shared
1446                 // resources, so they should be maintained by a
1447                 // higher-level object than the nb module.
1448                 fr->listedForcesGpu->updateInteractionListsAndDeviceBuffers(
1449                         nbv->getGridIndices(),
1450                         top->idef,
1451                         Nbnxm::gpu_get_xq(nbv->gpu_nbv),
1452                         Nbnxm::gpu_get_f(nbv->gpu_nbv),
1453                         Nbnxm::gpu_get_fshift(nbv->gpu_nbv));
1454             }
1455         }
1456
1457         // Need to run after the GPU-offload bonded interaction lists
1458         // are set up to be able to determine whether there is bonded work.
1459         runScheduleWork->domainWork = setupDomainLifetimeWorkload(
1460                 inputrec, *fr, pull_work, ed, *mdatoms, simulationWork, stepWork);
1461
1462         wallcycle_start_nocount(wcycle, WallCycleCounter::NS);
1463         wallcycle_sub_start(wcycle, WallCycleSubCounter::NBSSearchLocal);
1464         /* Note that with a GPU the launch overhead of the list transfer is not timed separately */
1465         nbv->constructPairlist(InteractionLocality::Local, top->excls, step, nrnb);
1466
1467         nbv->setupGpuShortRangeWork(fr->listedForcesGpu.get(), InteractionLocality::Local);
1468
1469         wallcycle_sub_stop(wcycle, WallCycleSubCounter::NBSSearchLocal);
1470         wallcycle_stop(wcycle, WallCycleCounter::NS);
1471
1472         if (stepWork.useGpuXBufferOps)
1473         {
1474             nbv->atomdata_init_copy_x_to_nbat_x_gpu();
1475         }
1476
1477         if (simulationWork.useGpuBufferOps)
1478         {
1479             setupGpuForceReductions(runScheduleWork, cr, fr);
1480         }
1481     }
1482     else if (!EI_TPI(inputrec.eI) && stepWork.computeNonbondedForces)
1483     {
1484         if (stepWork.useGpuXBufferOps)
1485         {
1486             GMX_ASSERT(stateGpu, "stateGpu should be valid when buffer ops are offloaded");
1487             nbv->convertCoordinatesGpu(AtomLocality::Local, stateGpu->getCoordinates(), localXReadyOnDevice);
1488         }
1489         else
1490         {
1491             if (simulationWork.useGpuUpdate)
1492             {
1493                 GMX_ASSERT(stateGpu, "need a valid stateGpu object");
1494                 GMX_ASSERT(haveCopiedXFromGpu,
1495                            "a wait should only be triggered if copy has been scheduled");
1496                 stateGpu->waitCoordinatesReadyOnHost(AtomLocality::Local);
1497             }
1498             nbv->convertCoordinates(AtomLocality::Local, x.unpaddedArrayRef());
1499         }
1500     }
1501
1502     if (simulationWork.useGpuNonbonded && (stepWork.computeNonbondedForces || domainWork.haveGpuBondedWork))
1503     {
1504         ddBalanceRegionHandler.openBeforeForceComputationGpu();
1505
1506         wallcycle_start(wcycle, WallCycleCounter::LaunchGpu);
1507         wallcycle_sub_start(wcycle, WallCycleSubCounter::LaunchGpuNonBonded);
1508         Nbnxm::gpu_upload_shiftvec(nbv->gpu_nbv, nbv->nbat.get());
1509         if (stepWork.doNeighborSearch || !stepWork.useGpuXBufferOps)
1510         {
1511             Nbnxm::gpu_copy_xq_to_gpu(nbv->gpu_nbv, nbv->nbat.get(), AtomLocality::Local);
1512         }
1513         wallcycle_sub_stop(wcycle, WallCycleSubCounter::LaunchGpuNonBonded);
1514         wallcycle_stop(wcycle, WallCycleCounter::LaunchGpu);
1515         // with X buffer ops offloaded to the GPU on all but the search steps
1516
1517         // bonded work not split into separate local and non-local, so with DD
1518         // we can only launch the kernel after non-local coordinates have been received.
1519         if (domainWork.haveGpuBondedWork && !simulationWork.havePpDomainDecomposition)
1520         {
1521             fr->listedForcesGpu->setPbcAndlaunchKernel(fr->pbcType, box, fr->bMolPBC, stepWork);
1522         }
1523
1524         /* launch local nonbonded work on GPU */
1525         wallcycle_start_nocount(wcycle, WallCycleCounter::LaunchGpu);
1526         wallcycle_sub_start_nocount(wcycle, WallCycleSubCounter::LaunchGpuNonBonded);
1527         do_nb_verlet(fr, ic, enerd, stepWork, InteractionLocality::Local, enbvClearFNo, step, nrnb, wcycle);
1528         wallcycle_sub_stop(wcycle, WallCycleSubCounter::LaunchGpuNonBonded);
1529         wallcycle_stop(wcycle, WallCycleCounter::LaunchGpu);
1530     }
1531
1532     if (stepWork.haveGpuPmeOnThisRank)
1533     {
1534         // In PME GPU and mixed mode we launch FFT / gather after the
1535         // X copy/transform to allow overlap as well as after the GPU NB
1536         // launch to avoid FFT launch overhead hijacking the CPU and delaying
1537         // the nonbonded kernel.
1538         launchPmeGpuFftAndGather(fr->pmedata,
1539                                  lambda[static_cast<int>(FreeEnergyPerturbationCouplingType::Coul)],
1540                                  wcycle,
1541                                  stepWork);
1542     }
1543
1544     /* Communicate coordinates and sum dipole if necessary +
1545        do non-local pair search */
1546     if (simulationWork.havePpDomainDecomposition)
1547     {
1548         if (stepWork.doNeighborSearch)
1549         {
1550             // TODO: fuse this branch with the above large stepWork.doNeighborSearch block
1551             wallcycle_start_nocount(wcycle, WallCycleCounter::NS);
1552             wallcycle_sub_start(wcycle, WallCycleSubCounter::NBSSearchNonLocal);
1553             /* Note that with a GPU the launch overhead of the list transfer is not timed separately */
1554             nbv->constructPairlist(InteractionLocality::NonLocal, top->excls, step, nrnb);
1555
1556             nbv->setupGpuShortRangeWork(fr->listedForcesGpu.get(), InteractionLocality::NonLocal);
1557             wallcycle_sub_stop(wcycle, WallCycleSubCounter::NBSSearchNonLocal);
1558             wallcycle_stop(wcycle, WallCycleCounter::NS);
1559             // TODO refactor this GPU halo exchange re-initialisation
1560             // to location in do_md where GPU halo exchange is
1561             // constructed at partitioning, after above stateGpu
1562             // re-initialization has similarly been refactored
1563             if (simulationWork.useGpuHaloExchange)
1564             {
1565                 reinitGpuHaloExchange(*cr, stateGpu->getCoordinates(), stateGpu->getForces());
1566             }
1567         }
1568         else
1569         {
1570             if (stepWork.useGpuXHalo)
1571             {
1572                 // The following must be called after local setCoordinates (which records an event
1573                 // when the coordinate data has been copied to the device).
1574                 communicateGpuHaloCoordinates(*cr, box, localXReadyOnDevice);
1575
1576                 if (domainWork.haveCpuBondedWork || domainWork.haveFreeEnergyWork)
1577                 {
1578                     // non-local part of coordinate buffer must be copied back to host for CPU work
1579                     stateGpu->copyCoordinatesFromGpu(x.unpaddedArrayRef(), AtomLocality::NonLocal);
1580                 }
1581             }
1582             else
1583             {
1584                 if (simulationWork.useGpuUpdate)
1585                 {
1586                     GMX_ASSERT(haveCopiedXFromGpu,
1587                                "a wait should only be triggered if copy has been scheduled");
1588                     stateGpu->waitCoordinatesReadyOnHost(AtomLocality::Local);
1589                 }
1590                 dd_move_x(cr->dd, box, x.unpaddedArrayRef(), wcycle);
1591             }
1592
1593             if (stepWork.useGpuXBufferOps)
1594             {
1595                 if (!stepWork.useGpuXHalo)
1596                 {
1597                     stateGpu->copyCoordinatesToGpu(x.unpaddedArrayRef(), AtomLocality::NonLocal);
1598                 }
1599                 nbv->convertCoordinatesGpu(AtomLocality::NonLocal,
1600                                            stateGpu->getCoordinates(),
1601                                            stateGpu->getCoordinatesReadyOnDeviceEvent(
1602                                                    AtomLocality::NonLocal, simulationWork, stepWork));
1603             }
1604             else
1605             {
1606                 nbv->convertCoordinates(AtomLocality::NonLocal, x.unpaddedArrayRef());
1607             }
1608         }
1609
1610         if (simulationWork.useGpuNonbonded)
1611         {
1612
1613             if (stepWork.doNeighborSearch || !stepWork.useGpuXBufferOps)
1614             {
1615                 wallcycle_start(wcycle, WallCycleCounter::LaunchGpu);
1616                 wallcycle_sub_start(wcycle, WallCycleSubCounter::LaunchGpuNonBonded);
1617                 Nbnxm::gpu_copy_xq_to_gpu(nbv->gpu_nbv, nbv->nbat.get(), AtomLocality::NonLocal);
1618                 wallcycle_sub_stop(wcycle, WallCycleSubCounter::LaunchGpuNonBonded);
1619                 wallcycle_stop(wcycle, WallCycleCounter::LaunchGpu);
1620             }
1621
1622             if (domainWork.haveGpuBondedWork)
1623             {
1624                 fr->listedForcesGpu->setPbcAndlaunchKernel(fr->pbcType, box, fr->bMolPBC, stepWork);
1625             }
1626
1627             /* launch non-local nonbonded tasks on GPU */
1628             wallcycle_start_nocount(wcycle, WallCycleCounter::LaunchGpu);
1629             wallcycle_sub_start(wcycle, WallCycleSubCounter::LaunchGpuNonBonded);
1630             do_nb_verlet(fr, ic, enerd, stepWork, InteractionLocality::NonLocal, enbvClearFNo, step, nrnb, wcycle);
1631             wallcycle_sub_stop(wcycle, WallCycleSubCounter::LaunchGpuNonBonded);
1632             wallcycle_stop(wcycle, WallCycleCounter::LaunchGpu);
1633         }
1634     }
1635
1636     if (simulationWork.useGpuNonbonded && stepWork.computeNonbondedForces)
1637     {
1638         /* launch D2H copy-back F */
1639         wallcycle_start_nocount(wcycle, WallCycleCounter::LaunchGpu);
1640         wallcycle_sub_start_nocount(wcycle, WallCycleSubCounter::LaunchGpuNonBonded);
1641
1642         if (simulationWork.havePpDomainDecomposition)
1643         {
1644             Nbnxm::gpu_launch_cpyback(nbv->gpu_nbv, nbv->nbat.get(), stepWork, AtomLocality::NonLocal);
1645         }
1646         Nbnxm::gpu_launch_cpyback(nbv->gpu_nbv, nbv->nbat.get(), stepWork, AtomLocality::Local);
1647         wallcycle_sub_stop(wcycle, WallCycleSubCounter::LaunchGpuNonBonded);
1648
1649         if (domainWork.haveGpuBondedWork && stepWork.computeEnergy)
1650         {
1651             fr->listedForcesGpu->launchEnergyTransfer();
1652         }
1653         wallcycle_stop(wcycle, WallCycleCounter::LaunchGpu);
1654     }
1655
1656     gmx::ArrayRef<const gmx::RVec> xWholeMolecules;
1657     if (fr->wholeMoleculeTransform)
1658     {
1659         xWholeMolecules = fr->wholeMoleculeTransform->wholeMoleculeCoordinates(x.unpaddedArrayRef(), box);
1660     }
1661
1662     // For the rest of the CPU tasks that depend on GPU-update produced coordinates,
1663     // this wait ensures that the D2H transfer is complete.
1664     if (simulationWork.useGpuUpdate && !stepWork.doNeighborSearch)
1665     {
1666         const bool needCoordsOnHost  = (runScheduleWork->domainWork.haveCpuLocalForceWork
1667                                        || stepWork.computeVirial || simulationWork.computeMuTot);
1668         const bool haveAlreadyWaited = simulationWork.useCpuHaloExchange;
1669         if (needCoordsOnHost && !haveAlreadyWaited)
1670         {
1671             GMX_ASSERT(haveCopiedXFromGpu,
1672                        "a wait should only be triggered if copy has been scheduled");
1673             stateGpu->waitCoordinatesReadyOnHost(AtomLocality::Local);
1674         }
1675     }
1676
1677     DipoleData dipoleData;
1678
1679     if (simulationWork.computeMuTot)
1680     {
1681         const int start = 0;
1682
1683         /* Calculate total (local) dipole moment in a temporary common array.
1684          * This makes it possible to sum them over nodes faster.
1685          */
1686         gmx::ArrayRef<const gmx::RVec> xRef =
1687                 (xWholeMolecules.empty() ? x.unpaddedArrayRef() : xWholeMolecules);
1688         calc_mu(start,
1689                 mdatoms->homenr,
1690                 xRef,
1691                 mdatoms->chargeA ? gmx::arrayRefFromArray(mdatoms->chargeA, mdatoms->nr)
1692                                  : gmx::ArrayRef<real>{},
1693                 mdatoms->chargeB ? gmx::arrayRefFromArray(mdatoms->chargeB, mdatoms->nr)
1694                                  : gmx::ArrayRef<real>{},
1695                 mdatoms->nChargePerturbed != 0,
1696                 dipoleData.muStaging[0],
1697                 dipoleData.muStaging[1]);
1698
1699         reduceAndUpdateMuTot(
1700                 &dipoleData, cr, (fr->efep != FreeEnergyPerturbationType::No), lambda, muTotal, ddBalanceRegionHandler);
1701     }
1702
1703     /* Reset energies */
1704     reset_enerdata(enerd);
1705
1706     if (DOMAINDECOMP(cr) && simulationWork.haveSeparatePmeRank)
1707     {
1708         wallcycle_start(wcycle, WallCycleCounter::PpDuringPme);
1709         dd_force_flop_start(cr->dd, nrnb);
1710     }
1711
1712     if (inputrec.bRot)
1713     {
1714         wallcycle_start(wcycle, WallCycleCounter::Rot);
1715         do_rotation(cr, enforcedRotation, box, x.unpaddedConstArrayRef(), t, step, stepWork.doNeighborSearch);
1716         wallcycle_stop(wcycle, WallCycleCounter::Rot);
1717     }
1718
1719     /* Start the force cycle counter.
1720      * Note that a different counter is used for dynamic load balancing.
1721      */
1722     wallcycle_start(wcycle, WallCycleCounter::Force);
1723
1724     /* Set up and clear force outputs:
1725      * forceOutMtsLevel0:  everything except what is in the other two outputs
1726      * forceOutMtsLevel1:  PME-mesh and listed-forces group 1
1727      * forceOutNonbonded: non-bonded forces
1728      * Without multiple time stepping all point to the same object.
1729      * With multiple time-stepping the use is different for MTS fast (level0 only) and slow steps.
1730      */
1731     ForceOutputs forceOutMtsLevel0 = setupForceOutputs(
1732             &fr->forceHelperBuffers[0], force, domainWork, stepWork, simulationWork.havePpDomainDecomposition, wcycle);
1733
1734     // Force output for MTS combined forces, only set at level1 MTS steps
1735     std::optional<ForceOutputs> forceOutMts =
1736             (simulationWork.useMts && stepWork.computeSlowForces)
1737                     ? std::optional(setupForceOutputs(&fr->forceHelperBuffers[1],
1738                                                       forceView->forceMtsCombinedWithPadding(),
1739                                                       domainWork,
1740                                                       stepWork,
1741                                                       simulationWork.havePpDomainDecomposition,
1742                                                       wcycle))
1743                     : std::nullopt;
1744
1745     ForceOutputs* forceOutMtsLevel1 =
1746             simulationWork.useMts ? (stepWork.computeSlowForces ? &forceOutMts.value() : nullptr)
1747                                   : &forceOutMtsLevel0;
1748
1749     const bool nonbondedAtMtsLevel1 = runScheduleWork->simulationWork.computeNonbondedAtMtsLevel1;
1750
1751     ForceOutputs* forceOutNonbonded = nonbondedAtMtsLevel1 ? forceOutMtsLevel1 : &forceOutMtsLevel0;
1752
1753     if (inputrec.bPull && pull_have_constraint(*pull_work))
1754     {
1755         clear_pull_forces(pull_work);
1756     }
1757
1758     /* We calculate the non-bonded forces, when done on the CPU, here.
1759      * We do this before calling do_force_lowlevel, because in that
1760      * function, the listed forces are calculated before PME, which
1761      * does communication.  With this order, non-bonded and listed
1762      * force calculation imbalance can be balanced out by the domain
1763      * decomposition load balancing.
1764      */
1765
1766     const bool useOrEmulateGpuNb = simulationWork.useGpuNonbonded || fr->nbv->emulateGpu();
1767
1768     if (!useOrEmulateGpuNb)
1769     {
1770         do_nb_verlet(fr, ic, enerd, stepWork, InteractionLocality::Local, enbvClearFYes, step, nrnb, wcycle);
1771     }
1772
1773     if (fr->efep != FreeEnergyPerturbationType::No && stepWork.computeNonbondedForces)
1774     {
1775         /* Calculate the local and non-local free energy interactions here.
1776          * Happens here on the CPU both with and without GPU.
1777          */
1778         nbv->dispatchFreeEnergyKernel(
1779                 InteractionLocality::Local,
1780                 x.unpaddedArrayRef(),
1781                 &forceOutNonbonded->forceWithShiftForces(),
1782                 fr->use_simd_kernels,
1783                 fr->ntype,
1784                 fr->rlist,
1785                 *fr->ic,
1786                 fr->shift_vec,
1787                 fr->nbfp,
1788                 fr->ljpme_c6grid,
1789                 mdatoms->chargeA ? gmx::arrayRefFromArray(mdatoms->chargeA, mdatoms->nr)
1790                                  : gmx::ArrayRef<real>{},
1791                 mdatoms->chargeB ? gmx::arrayRefFromArray(mdatoms->chargeB, mdatoms->nr)
1792                                  : gmx::ArrayRef<real>{},
1793                 mdatoms->typeA ? gmx::arrayRefFromArray(mdatoms->typeA, mdatoms->nr)
1794                                : gmx::ArrayRef<int>{},
1795                 mdatoms->typeB ? gmx::arrayRefFromArray(mdatoms->typeB, mdatoms->nr)
1796                                : gmx::ArrayRef<int>{},
1797                 inputrec.fepvals.get(),
1798                 lambda,
1799                 enerd,
1800                 stepWork,
1801                 nrnb);
1802
1803         if (simulationWork.havePpDomainDecomposition)
1804         {
1805             nbv->dispatchFreeEnergyKernel(
1806                     InteractionLocality::NonLocal,
1807                     x.unpaddedArrayRef(),
1808                     &forceOutNonbonded->forceWithShiftForces(),
1809                     fr->use_simd_kernels,
1810                     fr->ntype,
1811                     fr->rlist,
1812                     *fr->ic,
1813                     fr->shift_vec,
1814                     fr->nbfp,
1815                     fr->ljpme_c6grid,
1816                     mdatoms->chargeA ? gmx::arrayRefFromArray(mdatoms->chargeA, mdatoms->nr)
1817                                      : gmx::ArrayRef<real>{},
1818                     mdatoms->chargeB ? gmx::arrayRefFromArray(mdatoms->chargeB, mdatoms->nr)
1819                                      : gmx::ArrayRef<real>{},
1820                     mdatoms->typeA ? gmx::arrayRefFromArray(mdatoms->typeA, mdatoms->nr)
1821                                    : gmx::ArrayRef<int>{},
1822                     mdatoms->typeB ? gmx::arrayRefFromArray(mdatoms->typeB, mdatoms->nr)
1823                                    : gmx::ArrayRef<int>{},
1824                     inputrec.fepvals.get(),
1825                     lambda,
1826                     enerd,
1827                     stepWork,
1828                     nrnb);
1829         }
1830     }
1831
1832     if (stepWork.computeNonbondedForces && !useOrEmulateGpuNb)
1833     {
1834         if (simulationWork.havePpDomainDecomposition)
1835         {
1836             do_nb_verlet(fr, ic, enerd, stepWork, InteractionLocality::NonLocal, enbvClearFNo, step, nrnb, wcycle);
1837         }
1838
1839         if (stepWork.computeForces)
1840         {
1841             /* Add all the non-bonded force to the normal force array.
1842              * This can be split into a local and a non-local part when overlapping
1843              * communication with calculation with domain decomposition.
1844              */
1845             wallcycle_stop(wcycle, WallCycleCounter::Force);
1846             nbv->atomdata_add_nbat_f_to_f(AtomLocality::All,
1847                                           forceOutNonbonded->forceWithShiftForces().force());
1848             wallcycle_start_nocount(wcycle, WallCycleCounter::Force);
1849         }
1850
1851         /* If there are multiple fshift output buffers we need to reduce them */
1852         if (stepWork.computeVirial)
1853         {
1854             /* This is not in a subcounter because it takes a
1855                negligible and constant-sized amount of time */
1856             nbnxn_atomdata_add_nbat_fshift_to_fshift(
1857                     *nbv->nbat, forceOutNonbonded->forceWithShiftForces().shiftForces());
1858         }
1859     }
1860
1861     // TODO Force flags should include haveFreeEnergyWork for this domain
1862     if (stepWork.useGpuXHalo && (domainWork.haveCpuBondedWork || domainWork.haveFreeEnergyWork))
1863     {
1864         wallcycle_stop(wcycle, WallCycleCounter::Force);
1865         /* Wait for non-local coordinate data to be copied from device */
1866         stateGpu->waitCoordinatesReadyOnHost(AtomLocality::NonLocal);
1867         wallcycle_start_nocount(wcycle, WallCycleCounter::Force);
1868     }
1869
1870     // Compute wall interactions, when present.
1871     // Note: should be moved to special forces.
1872     if (inputrec.nwall && stepWork.computeNonbondedForces)
1873     {
1874         /* foreign lambda component for walls */
1875         real dvdl_walls = do_walls(inputrec,
1876                                    *fr,
1877                                    box,
1878                                    mdatoms->typeA ? gmx::arrayRefFromArray(mdatoms->typeA, mdatoms->nr)
1879                                                   : gmx::ArrayRef<int>{},
1880                                    mdatoms->typeB ? gmx::arrayRefFromArray(mdatoms->typeB, mdatoms->nr)
1881                                                   : gmx::ArrayRef<int>{},
1882                                    mdatoms->cENER ? gmx::arrayRefFromArray(mdatoms->cENER, mdatoms->nr)
1883                                                   : gmx::ArrayRef<unsigned short>{},
1884                                    mdatoms->homenr,
1885                                    mdatoms->nPerturbed,
1886                                    x.unpaddedConstArrayRef(),
1887                                    &forceOutMtsLevel0.forceWithVirial(),
1888                                    lambda[static_cast<int>(FreeEnergyPerturbationCouplingType::Vdw)],
1889                                    enerd->grpp.energyGroupPairTerms[NonBondedEnergyTerms::LJSR],
1890                                    nrnb);
1891         enerd->dvdl_lin[FreeEnergyPerturbationCouplingType::Vdw] += dvdl_walls;
1892     }
1893
1894     if (stepWork.computeListedForces)
1895     {
1896         /* Check whether we need to take into account PBC in listed interactions */
1897         bool needMolPbc = false;
1898         for (const auto& listedForces : fr->listedForces)
1899         {
1900             if (listedForces.haveCpuListedForces(*fr->fcdata))
1901             {
1902                 needMolPbc = fr->bMolPBC;
1903             }
1904         }
1905
1906         t_pbc pbc;
1907
1908         if (needMolPbc)
1909         {
1910             /* Since all atoms are in the rectangular or triclinic unit-cell,
1911              * only single box vector shifts (2 in x) are required.
1912              */
1913             set_pbc_dd(&pbc, fr->pbcType, DOMAINDECOMP(cr) ? cr->dd->numCells : nullptr, TRUE, box);
1914         }
1915
1916         for (int mtsIndex = 0; mtsIndex < (simulationWork.useMts && stepWork.computeSlowForces ? 2 : 1);
1917              mtsIndex++)
1918         {
1919             ListedForces& listedForces = fr->listedForces[mtsIndex];
1920             ForceOutputs& forceOut     = (mtsIndex == 0 ? forceOutMtsLevel0 : *forceOutMtsLevel1);
1921             listedForces.calculate(wcycle,
1922                                    box,
1923                                    inputrec.fepvals.get(),
1924                                    cr,
1925                                    ms,
1926                                    x,
1927                                    xWholeMolecules,
1928                                    fr->fcdata.get(),
1929                                    hist,
1930                                    &forceOut,
1931                                    fr,
1932                                    &pbc,
1933                                    enerd,
1934                                    nrnb,
1935                                    lambda,
1936                                    mdatoms,
1937                                    DOMAINDECOMP(cr) ? cr->dd->globalAtomIndices.data() : nullptr,
1938                                    stepWork);
1939         }
1940     }
1941
1942     if (stepWork.computeSlowForces)
1943     {
1944         calculateLongRangeNonbondeds(fr,
1945                                      inputrec,
1946                                      cr,
1947                                      nrnb,
1948                                      wcycle,
1949                                      mdatoms,
1950                                      x.unpaddedConstArrayRef(),
1951                                      &forceOutMtsLevel1->forceWithVirial(),
1952                                      enerd,
1953                                      box,
1954                                      lambda,
1955                                      dipoleData.muStateAB,
1956                                      stepWork,
1957                                      ddBalanceRegionHandler);
1958     }
1959
1960     wallcycle_stop(wcycle, WallCycleCounter::Force);
1961
1962     // VdW dispersion correction, only computed on master rank to avoid double counting
1963     if ((stepWork.computeEnergy || stepWork.computeVirial) && fr->dispersionCorrection && MASTER(cr))
1964     {
1965         // Calculate long range corrections to pressure and energy
1966         const DispersionCorrection::Correction correction = fr->dispersionCorrection->calculate(
1967                 box, lambda[static_cast<int>(FreeEnergyPerturbationCouplingType::Vdw)]);
1968
1969         if (stepWork.computeEnergy)
1970         {
1971             enerd->term[F_DISPCORR] = correction.energy;
1972             enerd->term[F_DVDL_VDW] += correction.dvdl;
1973             enerd->dvdl_lin[FreeEnergyPerturbationCouplingType::Vdw] += correction.dvdl;
1974         }
1975         if (stepWork.computeVirial)
1976         {
1977             correction.correctVirial(vir_force);
1978             enerd->term[F_PDISPCORR] = correction.pressure;
1979         }
1980     }
1981
1982     computeSpecialForces(fplog,
1983                          cr,
1984                          inputrec,
1985                          awh,
1986                          enforcedRotation,
1987                          imdSession,
1988                          pull_work,
1989                          step,
1990                          t,
1991                          wcycle,
1992                          fr->forceProviders,
1993                          box,
1994                          x.unpaddedArrayRef(),
1995                          mdatoms,
1996                          lambda,
1997                          stepWork,
1998                          &forceOutMtsLevel0.forceWithVirial(),
1999                          forceOutMtsLevel1 ? &forceOutMtsLevel1->forceWithVirial() : nullptr,
2000                          enerd,
2001                          ed,
2002                          stepWork.doNeighborSearch);
2003
2004     if (simulationWork.havePpDomainDecomposition && stepWork.computeForces && stepWork.useGpuFHalo
2005         && domainWork.haveCpuLocalForceWork)
2006     {
2007         stateGpu->copyForcesToGpu(forceOutMtsLevel0.forceWithShiftForces().force(), AtomLocality::Local);
2008     }
2009
2010     GMX_ASSERT(!(nonbondedAtMtsLevel1 && stepWork.useGpuFBufferOps),
2011                "The schedule below does not allow for nonbonded MTS with GPU buffer ops");
2012     GMX_ASSERT(!(nonbondedAtMtsLevel1 && stepWork.useGpuFHalo),
2013                "The schedule below does not allow for nonbonded MTS with GPU halo exchange");
2014     // Will store the amount of cycles spent waiting for the GPU that
2015     // will be later used in the DLB accounting.
2016     float cycles_wait_gpu = 0;
2017     if (useOrEmulateGpuNb && stepWork.computeNonbondedForces)
2018     {
2019         auto& forceWithShiftForces = forceOutNonbonded->forceWithShiftForces();
2020
2021         /* wait for non-local forces (or calculate in emulation mode) */
2022         if (simulationWork.havePpDomainDecomposition)
2023         {
2024             if (simulationWork.useGpuNonbonded)
2025             {
2026                 cycles_wait_gpu += Nbnxm::gpu_wait_finish_task(
2027                         nbv->gpu_nbv,
2028                         stepWork,
2029                         AtomLocality::NonLocal,
2030                         enerd->grpp.energyGroupPairTerms[NonBondedEnergyTerms::LJSR].data(),
2031                         enerd->grpp.energyGroupPairTerms[NonBondedEnergyTerms::CoulombSR].data(),
2032                         forceWithShiftForces.shiftForces(),
2033                         wcycle);
2034             }
2035             else
2036             {
2037                 wallcycle_start_nocount(wcycle, WallCycleCounter::Force);
2038                 do_nb_verlet(
2039                         fr, ic, enerd, stepWork, InteractionLocality::NonLocal, enbvClearFYes, step, nrnb, wcycle);
2040                 wallcycle_stop(wcycle, WallCycleCounter::Force);
2041             }
2042
2043             if (stepWork.useGpuFBufferOps)
2044             {
2045                 if (domainWork.haveNonLocalForceContribInCpuBuffer)
2046                 {
2047                     stateGpu->copyForcesToGpu(forceOutMtsLevel0.forceWithShiftForces().force(),
2048                                               AtomLocality::NonLocal);
2049                 }
2050
2051
2052                 fr->gpuForceReduction[gmx::AtomLocality::NonLocal]->execute();
2053
2054                 if (!stepWork.useGpuFHalo)
2055                 {
2056                     // copy from GPU input for dd_move_f()
2057                     stateGpu->copyForcesFromGpu(forceOutMtsLevel0.forceWithShiftForces().force(),
2058                                                 AtomLocality::NonLocal);
2059                 }
2060             }
2061             else
2062             {
2063                 nbv->atomdata_add_nbat_f_to_f(AtomLocality::NonLocal, forceWithShiftForces.force());
2064             }
2065
2066             if (fr->nbv->emulateGpu() && stepWork.computeVirial)
2067             {
2068                 nbnxn_atomdata_add_nbat_fshift_to_fshift(*nbv->nbat, forceWithShiftForces.shiftForces());
2069             }
2070         }
2071     }
2072
2073     /* Combining the forces for multiple time stepping before the halo exchange, when possible,
2074      * avoids an extra halo exchange (when DD is used) and post-processing step.
2075      */
2076     if (stepWork.combineMtsForcesBeforeHaloExchange)
2077     {
2078         combineMtsForces(getLocalAtomCount(cr->dd, *mdatoms, simulationWork.havePpDomainDecomposition),
2079                          force.unpaddedArrayRef(),
2080                          forceView->forceMtsCombined(),
2081                          inputrec.mtsLevels[1].stepFactor);
2082     }
2083
2084     if (simulationWork.havePpDomainDecomposition)
2085     {
2086         /* We are done with the CPU compute.
2087          * We will now communicate the non-local forces.
2088          * If we use a GPU this will overlap with GPU work, so in that case
2089          * we do not close the DD force balancing region here.
2090          */
2091         ddBalanceRegionHandler.closeAfterForceComputationCpu();
2092
2093         if (stepWork.computeForces)
2094         {
2095
2096             if (stepWork.useGpuFHalo)
2097             {
2098                 // If there exist CPU forces, data from halo exchange should accumulate into these
2099                 bool accumulateForces = domainWork.haveCpuLocalForceWork;
2100                 if (!accumulateForces)
2101                 {
2102                     // Force halo exchange will set a subset of local atoms with remote non-local data
2103                     // First clear local portion of force array, so that untouched atoms are zero
2104                     stateGpu->clearForcesOnGpu(AtomLocality::Local);
2105                 }
2106                 communicateGpuHaloForces(*cr, accumulateForces);
2107             }
2108             else
2109             {
2110                 if (stepWork.useGpuFBufferOps)
2111                 {
2112                     stateGpu->waitForcesReadyOnHost(AtomLocality::NonLocal);
2113                 }
2114
2115                 // Without MTS or with MTS at slow steps with uncombined forces we need to
2116                 // communicate the fast forces
2117                 if (!simulationWork.useMts || !stepWork.combineMtsForcesBeforeHaloExchange)
2118                 {
2119                     dd_move_f(cr->dd, &forceOutMtsLevel0.forceWithShiftForces(), wcycle);
2120                 }
2121                 // With MTS we need to communicate the slow or combined (in forceOutMtsLevel1) forces
2122                 if (simulationWork.useMts && stepWork.computeSlowForces)
2123                 {
2124                     dd_move_f(cr->dd, &forceOutMtsLevel1->forceWithShiftForces(), wcycle);
2125                 }
2126             }
2127         }
2128     }
2129
2130     // With both nonbonded and PME offloaded a GPU on the same rank, we use
2131     // an alternating wait/reduction scheme.
2132     bool alternateGpuWait =
2133             (!c_disableAlternatingWait && stepWork.haveGpuPmeOnThisRank
2134              && simulationWork.useGpuNonbonded && !DOMAINDECOMP(cr) && !stepWork.useGpuFBufferOps);
2135     if (alternateGpuWait)
2136     {
2137         alternatePmeNbGpuWaitReduce(fr->nbv.get(),
2138                                     fr->pmedata,
2139                                     forceOutNonbonded,
2140                                     forceOutMtsLevel1,
2141                                     enerd,
2142                                     lambda[static_cast<int>(FreeEnergyPerturbationCouplingType::Coul)],
2143                                     stepWork,
2144                                     wcycle);
2145     }
2146
2147     if (!alternateGpuWait && stepWork.haveGpuPmeOnThisRank)
2148     {
2149         pme_gpu_wait_and_reduce(fr->pmedata,
2150                                 stepWork,
2151                                 wcycle,
2152                                 &forceOutMtsLevel1->forceWithVirial(),
2153                                 enerd,
2154                                 lambda[static_cast<int>(FreeEnergyPerturbationCouplingType::Coul)]);
2155     }
2156
2157     /* Wait for local GPU NB outputs on the non-alternating wait path */
2158     if (!alternateGpuWait && stepWork.computeNonbondedForces && simulationWork.useGpuNonbonded)
2159     {
2160         /* Measured overhead on CUDA and OpenCL with(out) GPU sharing
2161          * is between 0.5 and 1.5 Mcycles. So 2 MCycles is an overestimate,
2162          * but even with a step of 0.1 ms the difference is less than 1%
2163          * of the step time.
2164          */
2165         const float gpuWaitApiOverheadMargin = 2e6F; /* cycles */
2166         const float waitCycles               = Nbnxm::gpu_wait_finish_task(
2167                 nbv->gpu_nbv,
2168                 stepWork,
2169                 AtomLocality::Local,
2170                 enerd->grpp.energyGroupPairTerms[NonBondedEnergyTerms::LJSR].data(),
2171                 enerd->grpp.energyGroupPairTerms[NonBondedEnergyTerms::CoulombSR].data(),
2172                 forceOutNonbonded->forceWithShiftForces().shiftForces(),
2173                 wcycle);
2174
2175         if (ddBalanceRegionHandler.useBalancingRegion())
2176         {
2177             DdBalanceRegionWaitedForGpu waitedForGpu = DdBalanceRegionWaitedForGpu::yes;
2178             if (stepWork.computeForces && waitCycles <= gpuWaitApiOverheadMargin)
2179             {
2180                 /* We measured few cycles, it could be that the kernel
2181                  * and transfer finished earlier and there was no actual
2182                  * wait time, only API call overhead.
2183                  * Then the actual time could be anywhere between 0 and
2184                  * cycles_wait_est. We will use half of cycles_wait_est.
2185                  */
2186                 waitedForGpu = DdBalanceRegionWaitedForGpu::no;
2187             }
2188             ddBalanceRegionHandler.closeAfterForceComputationGpu(cycles_wait_gpu, waitedForGpu);
2189         }
2190     }
2191
2192     if (fr->nbv->emulateGpu())
2193     {
2194         // NOTE: emulation kernel is not included in the balancing region,
2195         // but emulation mode does not target performance anyway
2196         wallcycle_start_nocount(wcycle, WallCycleCounter::Force);
2197         do_nb_verlet(fr,
2198                      ic,
2199                      enerd,
2200                      stepWork,
2201                      InteractionLocality::Local,
2202                      DOMAINDECOMP(cr) ? enbvClearFNo : enbvClearFYes,
2203                      step,
2204                      nrnb,
2205                      wcycle);
2206         wallcycle_stop(wcycle, WallCycleCounter::Force);
2207     }
2208
2209     // If on GPU PME-PP comms path, receive forces from PME before GPU buffer ops
2210     // TODO refactor this and unify with below default-path call to the same function
2211     if (PAR(cr) && simulationWork.haveSeparatePmeRank && simulationWork.useGpuPmePpCommunication
2212         && stepWork.computeSlowForces)
2213     {
2214         /* In case of node-splitting, the PP nodes receive the long-range
2215          * forces, virial and energy from the PME nodes here.
2216          */
2217         pme_receive_force_ener(fr,
2218                                cr,
2219                                &forceOutMtsLevel1->forceWithVirial(),
2220                                enerd,
2221                                simulationWork.useGpuPmePpCommunication,
2222                                stepWork.useGpuPmeFReduction,
2223                                wcycle);
2224     }
2225
2226
2227     /* Do the nonbonded GPU (or emulation) force buffer reduction
2228      * on the non-alternating path. */
2229     GMX_ASSERT(!(nonbondedAtMtsLevel1 && stepWork.useGpuFBufferOps),
2230                "The schedule below does not allow for nonbonded MTS with GPU buffer ops");
2231     if (useOrEmulateGpuNb && !alternateGpuWait)
2232     {
2233         if (stepWork.useGpuFBufferOps)
2234         {
2235             ArrayRef<gmx::RVec> forceWithShift = forceOutNonbonded->forceWithShiftForces().force();
2236
2237             // TODO: move these steps as early as possible:
2238             // - CPU f H2D should be as soon as all CPU-side forces are done
2239             // - wait for force reduction does not need to block host (at least not here, it's sufficient to wait
2240             //   before the next CPU task that consumes the forces: vsite spread or update)
2241             // - copy is not perfomed if GPU force halo exchange is active, because it would overwrite the result
2242             //   of the halo exchange. In that case the copy is instead performed above, before the exchange.
2243             //   These should be unified.
2244             if (domainWork.haveLocalForceContribInCpuBuffer && !stepWork.useGpuFHalo)
2245             {
2246                 // Note: AtomLocality::All is used for the non-DD case because, as in this
2247                 // case copyForcesToGpu() uses a separate stream, it allows overlap of
2248                 // CPU force H2D with GPU force tasks on all streams including those in the
2249                 // local stream which would otherwise be implicit dependencies for the
2250                 // transfer and would not overlap.
2251                 auto locality = simulationWork.havePpDomainDecomposition ? AtomLocality::Local
2252                                                                          : AtomLocality::All;
2253
2254                 stateGpu->copyForcesToGpu(forceWithShift, locality);
2255             }
2256
2257             if (stepWork.computeNonbondedForces)
2258             {
2259                 fr->gpuForceReduction[gmx::AtomLocality::Local]->execute();
2260             }
2261
2262             // Copy forces to host if they are needed for update or if virtual sites are enabled.
2263             // If there are vsites, we need to copy forces every step to spread vsite forces on host.
2264             // TODO: When the output flags will be included in step workload, this copy can be combined with the
2265             //       copy call done in sim_utils(...) for the output.
2266             // NOTE: If there are virtual sites, the forces are modified on host after this D2H copy. Hence,
2267             //       they should not be copied in do_md(...) for the output.
2268             if (!simulationWork.useGpuUpdate
2269                 || (simulationWork.useGpuUpdate && DOMAINDECOMP(cr) && simulationWork.useCpuPmePpCommunication)
2270                 || vsite)
2271             {
2272                 stateGpu->copyForcesFromGpu(forceWithShift, AtomLocality::Local);
2273                 stateGpu->waitForcesReadyOnHost(AtomLocality::Local);
2274             }
2275         }
2276         else if (stepWork.computeNonbondedForces)
2277         {
2278             ArrayRef<gmx::RVec> forceWithShift = forceOutNonbonded->forceWithShiftForces().force();
2279             nbv->atomdata_add_nbat_f_to_f(AtomLocality::Local, forceWithShift);
2280         }
2281     }
2282
2283     launchGpuEndOfStepTasks(
2284             nbv, fr->listedForcesGpu.get(), fr->pmedata, enerd, *runScheduleWork, step, wcycle);
2285
2286     if (DOMAINDECOMP(cr))
2287     {
2288         dd_force_flop_stop(cr->dd, nrnb);
2289     }
2290
2291     const bool haveCombinedMtsForces = (stepWork.computeForces && simulationWork.useMts && stepWork.computeSlowForces
2292                                         && stepWork.combineMtsForcesBeforeHaloExchange);
2293     if (stepWork.computeForces)
2294     {
2295         postProcessForceWithShiftForces(
2296                 nrnb, wcycle, box, x.unpaddedArrayRef(), &forceOutMtsLevel0, vir_force, *mdatoms, *fr, vsite, stepWork);
2297
2298         if (simulationWork.useMts && stepWork.computeSlowForces && !haveCombinedMtsForces)
2299         {
2300             postProcessForceWithShiftForces(
2301                     nrnb, wcycle, box, x.unpaddedArrayRef(), forceOutMtsLevel1, vir_force, *mdatoms, *fr, vsite, stepWork);
2302         }
2303     }
2304
2305     // TODO refactor this and unify with above GPU PME-PP / GPU update path call to the same function
2306     if (PAR(cr) && simulationWork.haveSeparatePmeRank && simulationWork.useCpuPmePpCommunication
2307         && stepWork.computeSlowForces)
2308     {
2309         /* In case of node-splitting, the PP nodes receive the long-range
2310          * forces, virial and energy from the PME nodes here.
2311          */
2312         pme_receive_force_ener(fr,
2313                                cr,
2314                                &forceOutMtsLevel1->forceWithVirial(),
2315                                enerd,
2316                                simulationWork.useGpuPmePpCommunication,
2317                                false,
2318                                wcycle);
2319     }
2320
2321     if (stepWork.computeForces)
2322     {
2323         /* If we don't use MTS or if we already combined the MTS forces before, we only
2324          * need to post-process one ForceOutputs object here, called forceOutCombined,
2325          * otherwise we have to post-process two outputs and then combine them.
2326          */
2327         ForceOutputs& forceOutCombined = (haveCombinedMtsForces ? forceOutMts.value() : forceOutMtsLevel0);
2328         postProcessForces(
2329                 cr, step, nrnb, wcycle, box, x.unpaddedArrayRef(), &forceOutCombined, vir_force, mdatoms, fr, vsite, stepWork);
2330
2331         if (simulationWork.useMts && stepWork.computeSlowForces && !haveCombinedMtsForces)
2332         {
2333             postProcessForces(
2334                     cr, step, nrnb, wcycle, box, x.unpaddedArrayRef(), forceOutMtsLevel1, vir_force, mdatoms, fr, vsite, stepWork);
2335
2336             combineMtsForces(mdatoms->homenr,
2337                              force.unpaddedArrayRef(),
2338                              forceView->forceMtsCombined(),
2339                              inputrec.mtsLevels[1].stepFactor);
2340         }
2341     }
2342
2343     if (stepWork.computeEnergy)
2344     {
2345         /* Compute the final potential energy terms */
2346         accumulatePotentialEnergies(enerd, lambda, inputrec.fepvals.get());
2347
2348         if (!EI_TPI(inputrec.eI))
2349         {
2350             checkPotentialEnergyValidity(step, *enerd, inputrec);
2351         }
2352     }
2353
2354     /* In case we don't have constraints and are using GPUs, the next balancing
2355      * region starts here.
2356      * Some "special" work at the end of do_force_cuts?, such as vsite spread,
2357      * virial calculation and COM pulling, is not thus not included in
2358      * the balance timing, which is ok as most tasks do communication.
2359      */
2360     ddBalanceRegionHandler.openBeforeForceComputationCpu(DdAllowBalanceRegionReopen::no);
2361 }