53cff6eefd29b52f57a2eba69e17f11e6e1965e5
[alexxy/gromacs.git] / src / gromacs / mdlib / sim_util.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
5  * Copyright (c) 2001-2004, The GROMACS development team.
6  * Copyright (c) 2013-2019,2020, by the GROMACS development team, led by
7  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
8  * and including many others, as listed in the AUTHORS file in the
9  * top-level source directory and at http://www.gromacs.org.
10  *
11  * GROMACS is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU Lesser General Public License
13  * as published by the Free Software Foundation; either version 2.1
14  * of the License, or (at your option) any later version.
15  *
16  * GROMACS is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * Lesser General Public License for more details.
20  *
21  * You should have received a copy of the GNU Lesser General Public
22  * License along with GROMACS; if not, see
23  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
24  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
25  *
26  * If you want to redistribute modifications to GROMACS, please
27  * consider that scientific software is very special. Version
28  * control is crucial - bugs must be traceable. We will be happy to
29  * consider code for inclusion in the official distribution, but
30  * derived work must not be called official GROMACS. Details are found
31  * in the README & COPYING files - if they are missing, get the
32  * official version at http://www.gromacs.org.
33  *
34  * To help us fund GROMACS development, we humbly ask that you cite
35  * the research papers on the package. Check out http://www.gromacs.org.
36  */
37 #include "gmxpre.h"
38
39 #include "config.h"
40
41 #include <cmath>
42 #include <cstdint>
43 #include <cstdio>
44 #include <cstring>
45
46 #include <array>
47
48 #include "gromacs/awh/awh.h"
49 #include "gromacs/domdec/dlbtiming.h"
50 #include "gromacs/domdec/domdec.h"
51 #include "gromacs/domdec/domdec_struct.h"
52 #include "gromacs/domdec/gpuhaloexchange.h"
53 #include "gromacs/domdec/partition.h"
54 #include "gromacs/essentialdynamics/edsam.h"
55 #include "gromacs/ewald/pme.h"
56 #include "gromacs/ewald/pme_pp.h"
57 #include "gromacs/ewald/pme_pp_comm_gpu.h"
58 #include "gromacs/gmxlib/network.h"
59 #include "gromacs/gmxlib/nonbonded/nb_free_energy.h"
60 #include "gromacs/gmxlib/nonbonded/nb_kernel.h"
61 #include "gromacs/gmxlib/nonbonded/nonbonded.h"
62 #include "gromacs/gpu_utils/gpu_utils.h"
63 #include "gromacs/imd/imd.h"
64 #include "gromacs/listed_forces/disre.h"
65 #include "gromacs/listed_forces/gpubonded.h"
66 #include "gromacs/listed_forces/listed_forces.h"
67 #include "gromacs/listed_forces/orires.h"
68 #include "gromacs/math/arrayrefwithpadding.h"
69 #include "gromacs/math/functions.h"
70 #include "gromacs/math/units.h"
71 #include "gromacs/math/vec.h"
72 #include "gromacs/math/vecdump.h"
73 #include "gromacs/mdlib/calcmu.h"
74 #include "gromacs/mdlib/calcvir.h"
75 #include "gromacs/mdlib/constr.h"
76 #include "gromacs/mdlib/dispersioncorrection.h"
77 #include "gromacs/mdlib/enerdata_utils.h"
78 #include "gromacs/mdlib/force.h"
79 #include "gromacs/mdlib/force_flags.h"
80 #include "gromacs/mdlib/forcerec.h"
81 #include "gromacs/mdlib/gmx_omp_nthreads.h"
82 #include "gromacs/mdlib/update.h"
83 #include "gromacs/mdlib/vsite.h"
84 #include "gromacs/mdlib/wall.h"
85 #include "gromacs/mdlib/wholemoleculetransform.h"
86 #include "gromacs/mdtypes/commrec.h"
87 #include "gromacs/mdtypes/enerdata.h"
88 #include "gromacs/mdtypes/forcebuffers.h"
89 #include "gromacs/mdtypes/forceoutput.h"
90 #include "gromacs/mdtypes/forcerec.h"
91 #include "gromacs/mdtypes/iforceprovider.h"
92 #include "gromacs/mdtypes/inputrec.h"
93 #include "gromacs/mdtypes/md_enums.h"
94 #include "gromacs/mdtypes/mdatom.h"
95 #include "gromacs/mdtypes/simulation_workload.h"
96 #include "gromacs/mdtypes/state.h"
97 #include "gromacs/mdtypes/state_propagator_data_gpu.h"
98 #include "gromacs/nbnxm/gpu_data_mgmt.h"
99 #include "gromacs/nbnxm/nbnxm.h"
100 #include "gromacs/nbnxm/nbnxm_gpu.h"
101 #include "gromacs/pbcutil/ishift.h"
102 #include "gromacs/pbcutil/pbc.h"
103 #include "gromacs/pulling/pull.h"
104 #include "gromacs/pulling/pull_rotation.h"
105 #include "gromacs/timing/cyclecounter.h"
106 #include "gromacs/timing/gpu_timing.h"
107 #include "gromacs/timing/wallcycle.h"
108 #include "gromacs/timing/wallcyclereporting.h"
109 #include "gromacs/timing/walltime_accounting.h"
110 #include "gromacs/topology/topology.h"
111 #include "gromacs/utility/arrayref.h"
112 #include "gromacs/utility/basedefinitions.h"
113 #include "gromacs/utility/cstringutil.h"
114 #include "gromacs/utility/exceptions.h"
115 #include "gromacs/utility/fatalerror.h"
116 #include "gromacs/utility/fixedcapacityvector.h"
117 #include "gromacs/utility/gmxassert.h"
118 #include "gromacs/utility/gmxmpi.h"
119 #include "gromacs/utility/logger.h"
120 #include "gromacs/utility/smalloc.h"
121 #include "gromacs/utility/strconvert.h"
122 #include "gromacs/utility/sysinfo.h"
123
124 using gmx::ArrayRef;
125 using gmx::AtomLocality;
126 using gmx::DomainLifetimeWorkload;
127 using gmx::ForceOutputs;
128 using gmx::ForceWithShiftForces;
129 using gmx::InteractionLocality;
130 using gmx::RVec;
131 using gmx::SimulationWorkload;
132 using gmx::StepWorkload;
133
134 // TODO: this environment variable allows us to verify before release
135 // that on less common architectures the total cost of polling is not larger than
136 // a blocking wait (so polling does not introduce overhead when the static
137 // PME-first ordering would suffice).
138 static const bool c_disableAlternatingWait = (getenv("GMX_DISABLE_ALTERNATING_GPU_WAIT") != nullptr);
139
140 static void sum_forces(ArrayRef<RVec> f, ArrayRef<const RVec> forceToAdd)
141 {
142     GMX_ASSERT(f.size() >= forceToAdd.size(), "Accumulation buffer should be sufficiently large");
143     const int end = forceToAdd.size();
144
145     int gmx_unused nt = gmx_omp_nthreads_get(emntDefault);
146 #pragma omp parallel for num_threads(nt) schedule(static)
147     for (int i = 0; i < end; i++)
148     {
149         rvec_inc(f[i], forceToAdd[i]);
150     }
151 }
152
153 static void calc_virial(int                              start,
154                         int                              homenr,
155                         const rvec                       x[],
156                         const gmx::ForceWithShiftForces& forceWithShiftForces,
157                         tensor                           vir_part,
158                         const matrix                     box,
159                         t_nrnb*                          nrnb,
160                         const t_forcerec*                fr,
161                         PbcType                          pbcType)
162 {
163     /* The short-range virial from surrounding boxes */
164     const rvec* fshift = as_rvec_array(forceWithShiftForces.shiftForces().data());
165     calc_vir(SHIFTS, fr->shift_vec, fshift, vir_part, pbcType == PbcType::Screw, box);
166     inc_nrnb(nrnb, eNR_VIRIAL, SHIFTS);
167
168     /* Calculate partial virial, for local atoms only, based on short range.
169      * Total virial is computed in global_stat, called from do_md
170      */
171     const rvec* f = as_rvec_array(forceWithShiftForces.force().data());
172     f_calc_vir(start, start + homenr, x, f, vir_part, box);
173     inc_nrnb(nrnb, eNR_VIRIAL, homenr);
174
175     if (debug)
176     {
177         pr_rvecs(debug, 0, "vir_part", vir_part, DIM);
178     }
179 }
180
181 static void pull_potential_wrapper(const t_commrec*               cr,
182                                    const t_inputrec*              ir,
183                                    const matrix                   box,
184                                    gmx::ArrayRef<const gmx::RVec> x,
185                                    gmx::ForceWithVirial*          force,
186                                    const t_mdatoms*               mdatoms,
187                                    gmx_enerdata_t*                enerd,
188                                    pull_t*                        pull_work,
189                                    const real*                    lambda,
190                                    double                         t,
191                                    gmx_wallcycle_t                wcycle)
192 {
193     t_pbc pbc;
194     real  dvdl;
195
196     /* Calculate the center of mass forces, this requires communication,
197      * which is why pull_potential is called close to other communication.
198      */
199     wallcycle_start(wcycle, ewcPULLPOT);
200     set_pbc(&pbc, ir->pbcType, box);
201     dvdl = 0;
202     enerd->term[F_COM_PULL] +=
203             pull_potential(pull_work, mdatoms->massT, &pbc, cr, t, lambda[efptRESTRAINT],
204                            as_rvec_array(x.data()), force, &dvdl);
205     enerd->dvdl_lin[efptRESTRAINT] += dvdl;
206     wallcycle_stop(wcycle, ewcPULLPOT);
207 }
208
209 static void pme_receive_force_ener(t_forcerec*           fr,
210                                    const t_commrec*      cr,
211                                    gmx::ForceWithVirial* forceWithVirial,
212                                    gmx_enerdata_t*       enerd,
213                                    bool                  useGpuPmePpComms,
214                                    bool                  receivePmeForceToGpu,
215                                    gmx_wallcycle_t       wcycle)
216 {
217     real  e_q, e_lj, dvdl_q, dvdl_lj;
218     float cycles_ppdpme, cycles_seppme;
219
220     cycles_ppdpme = wallcycle_stop(wcycle, ewcPPDURINGPME);
221     dd_cycles_add(cr->dd, cycles_ppdpme, ddCyclPPduringPME);
222
223     /* In case of node-splitting, the PP nodes receive the long-range
224      * forces, virial and energy from the PME nodes here.
225      */
226     wallcycle_start(wcycle, ewcPP_PMEWAITRECVF);
227     dvdl_q  = 0;
228     dvdl_lj = 0;
229     gmx_pme_receive_f(fr->pmePpCommGpu.get(), cr, forceWithVirial, &e_q, &e_lj, &dvdl_q, &dvdl_lj,
230                       useGpuPmePpComms, receivePmeForceToGpu, &cycles_seppme);
231     enerd->term[F_COUL_RECIP] += e_q;
232     enerd->term[F_LJ_RECIP] += e_lj;
233     enerd->dvdl_lin[efptCOUL] += dvdl_q;
234     enerd->dvdl_lin[efptVDW] += dvdl_lj;
235
236     if (wcycle)
237     {
238         dd_cycles_add(cr->dd, cycles_seppme, ddCyclPME);
239     }
240     wallcycle_stop(wcycle, ewcPP_PMEWAITRECVF);
241 }
242
243 static void print_large_forces(FILE*                fp,
244                                const t_mdatoms*     md,
245                                const t_commrec*     cr,
246                                int64_t              step,
247                                real                 forceTolerance,
248                                ArrayRef<const RVec> x,
249                                ArrayRef<const RVec> f)
250 {
251     real       force2Tolerance = gmx::square(forceTolerance);
252     gmx::index numNonFinite    = 0;
253     for (int i = 0; i < md->homenr; i++)
254     {
255         real force2    = norm2(f[i]);
256         bool nonFinite = !std::isfinite(force2);
257         if (force2 >= force2Tolerance || nonFinite)
258         {
259             fprintf(fp, "step %" PRId64 " atom %6d  x %8.3f %8.3f %8.3f  force %12.5e\n", step,
260                     ddglatnr(cr->dd, i), x[i][XX], x[i][YY], x[i][ZZ], std::sqrt(force2));
261         }
262         if (nonFinite)
263         {
264             numNonFinite++;
265         }
266     }
267     if (numNonFinite > 0)
268     {
269         /* Note that with MPI this fatal call on one rank might interrupt
270          * the printing on other ranks. But we can only avoid that with
271          * an expensive MPI barrier that we would need at each step.
272          */
273         gmx_fatal(FARGS, "At step %" PRId64 " detected non-finite forces on %td atoms", step, numNonFinite);
274     }
275 }
276
277 //! When necessary, spreads forces on vsites and computes the virial for \p forceOutputs->forceWithShiftForces()
278 static void postProcessForceWithShiftForces(t_nrnb*                   nrnb,
279                                             gmx_wallcycle_t           wcycle,
280                                             const matrix              box,
281                                             ArrayRef<const RVec>      x,
282                                             ForceOutputs*             forceOutputs,
283                                             tensor                    vir_force,
284                                             const t_mdatoms&          mdatoms,
285                                             const t_forcerec&         fr,
286                                             gmx::VirtualSitesHandler* vsite,
287                                             const StepWorkload&       stepWork)
288 {
289     ForceWithShiftForces& forceWithShiftForces = forceOutputs->forceWithShiftForces();
290
291     /* If we have NoVirSum forces, but we do not calculate the virial,
292      * we later sum the forceWithShiftForces buffer together with
293      * the noVirSum buffer and spread the combined vsite forces at once.
294      */
295     if (vsite && (!forceOutputs->haveForceWithVirial() || stepWork.computeVirial))
296     {
297         using VirialHandling = gmx::VirtualSitesHandler::VirialHandling;
298
299         auto                 f      = forceWithShiftForces.force();
300         auto                 fshift = forceWithShiftForces.shiftForces();
301         const VirialHandling virialHandling =
302                 (stepWork.computeVirial ? VirialHandling::Pbc : VirialHandling::None);
303         vsite->spreadForces(x, f, virialHandling, fshift, nullptr, nrnb, box, wcycle);
304         forceWithShiftForces.haveSpreadVsiteForces() = true;
305     }
306
307     if (stepWork.computeVirial)
308     {
309         /* Calculation of the virial must be done after vsites! */
310         calc_virial(0, mdatoms.homenr, as_rvec_array(x.data()), forceWithShiftForces, vir_force,
311                     box, nrnb, &fr, fr.pbcType);
312     }
313 }
314
315 //! Spread, compute virial for and sum forces, when necessary
316 static void postProcessForces(const t_commrec*          cr,
317                               int64_t                   step,
318                               t_nrnb*                   nrnb,
319                               gmx_wallcycle_t           wcycle,
320                               const matrix              box,
321                               ArrayRef<const RVec>      x,
322                               ForceOutputs*             forceOutputs,
323                               tensor                    vir_force,
324                               const t_mdatoms*          mdatoms,
325                               const t_forcerec*         fr,
326                               gmx::VirtualSitesHandler* vsite,
327                               const StepWorkload&       stepWork)
328 {
329     // Extract the final output force buffer, which is also the buffer for forces with shift forces
330     ArrayRef<RVec> f = forceOutputs->forceWithShiftForces().force();
331
332     if (forceOutputs->haveForceWithVirial())
333     {
334         auto& forceWithVirial = forceOutputs->forceWithVirial();
335
336         if (vsite)
337         {
338             /* Spread the mesh force on virtual sites to the other particles...
339              * This is parallellized. MPI communication is performed
340              * if the constructing atoms aren't local.
341              */
342             GMX_ASSERT(!stepWork.computeVirial || f.data() != forceWithVirial.force_.data(),
343                        "We need separate force buffers for shift and virial forces when "
344                        "computing the virial");
345             GMX_ASSERT(!stepWork.computeVirial
346                                || forceOutputs->forceWithShiftForces().haveSpreadVsiteForces(),
347                        "We should spread the force with shift forces separately when computing "
348                        "the virial");
349             const gmx::VirtualSitesHandler::VirialHandling virialHandling =
350                     (stepWork.computeVirial ? gmx::VirtualSitesHandler::VirialHandling::NonLinear
351                                             : gmx::VirtualSitesHandler::VirialHandling::None);
352             matrix virial = { { 0 } };
353             vsite->spreadForces(x, forceWithVirial.force_, virialHandling, {}, virial, nrnb, box, wcycle);
354             forceWithVirial.addVirialContribution(virial);
355         }
356
357         if (stepWork.computeVirial)
358         {
359             /* Now add the forces, this is local */
360             sum_forces(f, forceWithVirial.force_);
361
362             /* Add the direct virial contributions */
363             GMX_ASSERT(
364                     forceWithVirial.computeVirial_,
365                     "forceWithVirial should request virial computation when we request the virial");
366             m_add(vir_force, forceWithVirial.getVirial(), vir_force);
367
368             if (debug)
369             {
370                 pr_rvecs(debug, 0, "vir_force", vir_force, DIM);
371             }
372         }
373     }
374     else
375     {
376         GMX_ASSERT(vsite == nullptr || forceOutputs->forceWithShiftForces().haveSpreadVsiteForces(),
377                    "We should have spread the vsite forces (earlier)");
378     }
379
380     if (fr->print_force >= 0)
381     {
382         print_large_forces(stderr, mdatoms, cr, step, fr->print_force, x, f);
383     }
384 }
385
386 static void do_nb_verlet(t_forcerec*                fr,
387                          const interaction_const_t* ic,
388                          gmx_enerdata_t*            enerd,
389                          const StepWorkload&        stepWork,
390                          const InteractionLocality  ilocality,
391                          const int                  clearF,
392                          const int64_t              step,
393                          t_nrnb*                    nrnb,
394                          gmx_wallcycle_t            wcycle)
395 {
396     if (!stepWork.computeNonbondedForces)
397     {
398         /* skip non-bonded calculation */
399         return;
400     }
401
402     nonbonded_verlet_t* nbv = fr->nbv.get();
403
404     /* GPU kernel launch overhead is already timed separately */
405     if (fr->cutoff_scheme != ecutsVERLET)
406     {
407         gmx_incons("Invalid cut-off scheme passed!");
408     }
409
410     if (!nbv->useGpu())
411     {
412         /* When dynamic pair-list  pruning is requested, we need to prune
413          * at nstlistPrune steps.
414          */
415         if (nbv->isDynamicPruningStepCpu(step))
416         {
417             /* Prune the pair-list beyond fr->ic->rlistPrune using
418              * the current coordinates of the atoms.
419              */
420             wallcycle_sub_start(wcycle, ewcsNONBONDED_PRUNING);
421             nbv->dispatchPruneKernelCpu(ilocality, fr->shift_vec);
422             wallcycle_sub_stop(wcycle, ewcsNONBONDED_PRUNING);
423         }
424     }
425
426     nbv->dispatchNonbondedKernel(ilocality, *ic, stepWork, clearF, *fr, enerd, nrnb);
427 }
428
429 static inline void clearRVecs(ArrayRef<RVec> v, const bool useOpenmpThreading)
430 {
431     int nth = gmx_omp_nthreads_get_simple_rvec_task(emntDefault, v.ssize());
432
433     /* Note that we would like to avoid this conditional by putting it
434      * into the omp pragma instead, but then we still take the full
435      * omp parallel for overhead (at least with gcc5).
436      */
437     if (!useOpenmpThreading || nth == 1)
438     {
439         for (RVec& elem : v)
440         {
441             clear_rvec(elem);
442         }
443     }
444     else
445     {
446 #pragma omp parallel for num_threads(nth) schedule(static)
447         for (gmx::index i = 0; i < v.ssize(); i++)
448         {
449             clear_rvec(v[i]);
450         }
451     }
452 }
453
454 /*! \brief Return an estimate of the average kinetic energy or 0 when unreliable
455  *
456  * \param groupOptions  Group options, containing T-coupling options
457  */
458 static real averageKineticEnergyEstimate(const t_grpopts& groupOptions)
459 {
460     real nrdfCoupled   = 0;
461     real nrdfUncoupled = 0;
462     real kineticEnergy = 0;
463     for (int g = 0; g < groupOptions.ngtc; g++)
464     {
465         if (groupOptions.tau_t[g] >= 0)
466         {
467             nrdfCoupled += groupOptions.nrdf[g];
468             kineticEnergy += groupOptions.nrdf[g] * 0.5 * groupOptions.ref_t[g] * BOLTZ;
469         }
470         else
471         {
472             nrdfUncoupled += groupOptions.nrdf[g];
473         }
474     }
475
476     /* This conditional with > also catches nrdf=0 */
477     if (nrdfCoupled > nrdfUncoupled)
478     {
479         return kineticEnergy * (nrdfCoupled + nrdfUncoupled) / nrdfCoupled;
480     }
481     else
482     {
483         return 0;
484     }
485 }
486
487 /*! \brief This routine checks that the potential energy is finite.
488  *
489  * Always checks that the potential energy is finite. If step equals
490  * inputrec.init_step also checks that the magnitude of the potential energy
491  * is reasonable. Terminates with a fatal error when a check fails.
492  * Note that passing this check does not guarantee finite forces,
493  * since those use slightly different arithmetics. But in most cases
494  * there is just a narrow coordinate range where forces are not finite
495  * and energies are finite.
496  *
497  * \param[in] step      The step number, used for checking and printing
498  * \param[in] enerd     The energy data; the non-bonded group energies need to be added to
499  * enerd.term[F_EPOT] before calling this routine \param[in] inputrec  The input record
500  */
501 static void checkPotentialEnergyValidity(int64_t step, const gmx_enerdata_t& enerd, const t_inputrec& inputrec)
502 {
503     /* Threshold valid for comparing absolute potential energy against
504      * the kinetic energy. Normally one should not consider absolute
505      * potential energy values, but with a factor of one million
506      * we should never get false positives.
507      */
508     constexpr real c_thresholdFactor = 1e6;
509
510     bool energyIsNotFinite    = !std::isfinite(enerd.term[F_EPOT]);
511     real averageKineticEnergy = 0;
512     /* We only check for large potential energy at the initial step,
513      * because that is by far the most likely step for this too occur
514      * and because computing the average kinetic energy is not free.
515      * Note: nstcalcenergy >> 1 often does not allow to catch large energies
516      * before they become NaN.
517      */
518     if (step == inputrec.init_step && EI_DYNAMICS(inputrec.eI))
519     {
520         averageKineticEnergy = averageKineticEnergyEstimate(inputrec.opts);
521     }
522
523     if (energyIsNotFinite
524         || (averageKineticEnergy > 0 && enerd.term[F_EPOT] > c_thresholdFactor * averageKineticEnergy))
525     {
526         gmx_fatal(
527                 FARGS,
528                 "Step %" PRId64
529                 ": The total potential energy is %g, which is %s. The LJ and electrostatic "
530                 "contributions to the energy are %g and %g, respectively. A %s potential energy "
531                 "can be caused by overlapping interactions in bonded interactions or very large%s "
532                 "coordinate values. Usually this is caused by a badly- or non-equilibrated initial "
533                 "configuration, incorrect interactions or parameters in the topology.",
534                 step, enerd.term[F_EPOT], energyIsNotFinite ? "not finite" : "extremely high",
535                 enerd.term[F_LJ], enerd.term[F_COUL_SR],
536                 energyIsNotFinite ? "non-finite" : "very high", energyIsNotFinite ? " or Nan" : "");
537     }
538 }
539
540 /*! \brief Return true if there are special forces computed this step.
541  *
542  * The conditionals exactly correspond to those in computeSpecialForces().
543  */
544 static bool haveSpecialForces(const t_inputrec&          inputrec,
545                               const gmx::ForceProviders& forceProviders,
546                               const pull_t*              pull_work,
547                               const bool                 computeForces,
548                               const gmx_edsam*           ed)
549 {
550
551     return ((computeForces && forceProviders.hasForceProvider()) || // forceProviders
552             (inputrec.bPull && pull_have_potential(pull_work)) ||   // pull
553             inputrec.bRot ||                                        // enforced rotation
554             (ed != nullptr) ||                                      // flooding
555             (inputrec.bIMD && computeForces));                      // IMD
556 }
557
558 /*! \brief Compute forces and/or energies for special algorithms
559  *
560  * The intention is to collect all calls to algorithms that compute
561  * forces on local atoms only and that do not contribute to the local
562  * virial sum (but add their virial contribution separately).
563  * Eventually these should likely all become ForceProviders.
564  * Within this function the intention is to have algorithms that do
565  * global communication at the end, so global barriers within the MD loop
566  * are as close together as possible.
567  *
568  * \param[in]     fplog            The log file
569  * \param[in]     cr               The communication record
570  * \param[in]     inputrec         The input record
571  * \param[in]     awh              The Awh module (nullptr if none in use).
572  * \param[in]     enforcedRotation Enforced rotation module.
573  * \param[in]     imdSession       The IMD session
574  * \param[in]     pull_work        The pull work structure.
575  * \param[in]     step             The current MD step
576  * \param[in]     t                The current time
577  * \param[in,out] wcycle           Wallcycle accounting struct
578  * \param[in,out] forceProviders   Pointer to a list of force providers
579  * \param[in]     box              The unit cell
580  * \param[in]     x                The coordinates
581  * \param[in]     mdatoms          Per atom properties
582  * \param[in]     lambda           Array of free-energy lambda values
583  * \param[in]     stepWork         Step schedule flags
584  * \param[in,out] forceWithVirial  Force and virial buffers
585  * \param[in,out] enerd            Energy buffer
586  * \param[in,out] ed               Essential dynamics pointer
587  * \param[in]     didNeighborSearch Tells if we did neighbor searching this step, used for ED sampling
588  *
589  * \todo Remove didNeighborSearch, which is used incorrectly.
590  * \todo Convert all other algorithms called here to ForceProviders.
591  */
592 static void computeSpecialForces(FILE*                          fplog,
593                                  const t_commrec*               cr,
594                                  const t_inputrec*              inputrec,
595                                  gmx::Awh*                      awh,
596                                  gmx_enfrot*                    enforcedRotation,
597                                  gmx::ImdSession*               imdSession,
598                                  pull_t*                        pull_work,
599                                  int64_t                        step,
600                                  double                         t,
601                                  gmx_wallcycle_t                wcycle,
602                                  gmx::ForceProviders*           forceProviders,
603                                  const matrix                   box,
604                                  gmx::ArrayRef<const gmx::RVec> x,
605                                  const t_mdatoms*               mdatoms,
606                                  gmx::ArrayRef<const real>      lambda,
607                                  const StepWorkload&            stepWork,
608                                  gmx::ForceWithVirial*          forceWithVirial,
609                                  gmx_enerdata_t*                enerd,
610                                  gmx_edsam*                     ed,
611                                  bool                           didNeighborSearch)
612 {
613     /* NOTE: Currently all ForceProviders only provide forces.
614      *       When they also provide energies, remove this conditional.
615      */
616     if (stepWork.computeForces)
617     {
618         gmx::ForceProviderInput  forceProviderInput(x, *mdatoms, t, box, *cr);
619         gmx::ForceProviderOutput forceProviderOutput(forceWithVirial, enerd);
620
621         /* Collect forces from modules */
622         forceProviders->calculateForces(forceProviderInput, &forceProviderOutput);
623     }
624
625     if (inputrec->bPull && pull_have_potential(pull_work))
626     {
627         pull_potential_wrapper(cr, inputrec, box, x, forceWithVirial, mdatoms, enerd, pull_work,
628                                lambda.data(), t, wcycle);
629     }
630     if (awh)
631     {
632         const bool          needForeignEnergyDifferences = awh->needForeignEnergyDifferences(step);
633         std::vector<double> foreignLambdaDeltaH, foreignLambdaDhDl;
634         if (needForeignEnergyDifferences)
635         {
636             enerd->foreignLambdaTerms.finalizePotentialContributions(enerd->dvdl_lin, lambda,
637                                                                      *inputrec->fepvals);
638             std::tie(foreignLambdaDeltaH, foreignLambdaDhDl) = enerd->foreignLambdaTerms.getTerms(cr);
639         }
640
641         enerd->term[F_COM_PULL] += awh->applyBiasForcesAndUpdateBias(
642                 inputrec->pbcType, mdatoms->massT, foreignLambdaDeltaH, foreignLambdaDhDl, box,
643                 forceWithVirial, t, step, wcycle, fplog);
644     }
645
646     rvec* f = as_rvec_array(forceWithVirial->force_.data());
647
648     /* Add the forces from enforced rotation potentials (if any) */
649     if (inputrec->bRot)
650     {
651         wallcycle_start(wcycle, ewcROTadd);
652         enerd->term[F_COM_PULL] += add_rot_forces(enforcedRotation, f, cr, step, t);
653         wallcycle_stop(wcycle, ewcROTadd);
654     }
655
656     if (ed)
657     {
658         /* Note that since init_edsam() is called after the initialization
659          * of forcerec, edsam doesn't request the noVirSum force buffer.
660          * Thus if no other algorithm (e.g. PME) requires it, the forces
661          * here will contribute to the virial.
662          */
663         do_flood(cr, inputrec, as_rvec_array(x.data()), f, ed, box, step, didNeighborSearch);
664     }
665
666     /* Add forces from interactive molecular dynamics (IMD), if any */
667     if (inputrec->bIMD && stepWork.computeForces)
668     {
669         imdSession->applyForces(f);
670     }
671 }
672
673 /*! \brief Launch the prepare_step and spread stages of PME GPU.
674  *
675  * \param[in]  pmedata              The PME structure
676  * \param[in]  box                  The box matrix
677  * \param[in]  stepWork             Step schedule flags
678  * \param[in]  xReadyOnDevice       Event synchronizer indicating that the coordinates are ready in the device memory.
679  * \param[in]  lambdaQ              The Coulomb lambda of the current state.
680  * \param[in]  wcycle               The wallcycle structure
681  */
682 static inline void launchPmeGpuSpread(gmx_pme_t*            pmedata,
683                                       const matrix          box,
684                                       const StepWorkload&   stepWork,
685                                       GpuEventSynchronizer* xReadyOnDevice,
686                                       const real            lambdaQ,
687                                       gmx_wallcycle_t       wcycle)
688 {
689     pme_gpu_prepare_computation(pmedata, box, wcycle, stepWork);
690     pme_gpu_launch_spread(pmedata, xReadyOnDevice, wcycle, lambdaQ);
691 }
692
693 /*! \brief Launch the FFT and gather stages of PME GPU
694  *
695  * This function only implements setting the output forces (no accumulation).
696  *
697  * \param[in]  pmedata        The PME structure
698  * \param[in]  lambdaQ        The Coulomb lambda of the current system state.
699  * \param[in]  wcycle         The wallcycle structure
700  * \param[in]  stepWork       Step schedule flags
701  */
702 static void launchPmeGpuFftAndGather(gmx_pme_t*               pmedata,
703                                      const real               lambdaQ,
704                                      gmx_wallcycle_t          wcycle,
705                                      const gmx::StepWorkload& stepWork)
706 {
707     pme_gpu_launch_complex_transforms(pmedata, wcycle, stepWork);
708     pme_gpu_launch_gather(pmedata, wcycle, lambdaQ);
709 }
710
711 /*! \brief
712  *  Polling wait for either of the PME or nonbonded GPU tasks.
713  *
714  * Instead of a static order in waiting for GPU tasks, this function
715  * polls checking which of the two tasks completes first, and does the
716  * associated force buffer reduction overlapped with the other task.
717  * By doing that, unlike static scheduling order, it can always overlap
718  * one of the reductions, regardless of the GPU task completion order.
719  *
720  * \param[in]     nbv              Nonbonded verlet structure
721  * \param[in,out] pmedata          PME module data
722  * \param[in,out] forceOutputs     Output buffer for the forces and virial
723  * \param[in,out] enerd            Energy data structure results are reduced into
724  * \param[in]     lambdaQ          The Coulomb lambda of the current system state.
725  * \param[in]     stepWork         Step schedule flags
726  * \param[in]     wcycle           The wallcycle structure
727  */
728 static void alternatePmeNbGpuWaitReduce(nonbonded_verlet_t* nbv,
729                                         gmx_pme_t*          pmedata,
730                                         gmx::ForceOutputs*  forceOutputs,
731                                         gmx_enerdata_t*     enerd,
732                                         const real          lambdaQ,
733                                         const StepWorkload& stepWork,
734                                         gmx_wallcycle_t     wcycle)
735 {
736     bool isPmeGpuDone = false;
737     bool isNbGpuDone  = false;
738
739
740     gmx::ForceWithShiftForces& forceWithShiftForces = forceOutputs->forceWithShiftForces();
741     gmx::ForceWithVirial&      forceWithVirial      = forceOutputs->forceWithVirial();
742
743     gmx::ArrayRef<const gmx::RVec> pmeGpuForces;
744
745     while (!isPmeGpuDone || !isNbGpuDone)
746     {
747         if (!isPmeGpuDone)
748         {
749             GpuTaskCompletion completionType =
750                     (isNbGpuDone) ? GpuTaskCompletion::Wait : GpuTaskCompletion::Check;
751             isPmeGpuDone = pme_gpu_try_finish_task(pmedata, stepWork, wcycle, &forceWithVirial,
752                                                    enerd, lambdaQ, completionType);
753         }
754
755         if (!isNbGpuDone)
756         {
757             GpuTaskCompletion completionType =
758                     (isPmeGpuDone) ? GpuTaskCompletion::Wait : GpuTaskCompletion::Check;
759             isNbGpuDone = Nbnxm::gpu_try_finish_task(
760                     nbv->gpu_nbv, stepWork, AtomLocality::Local, enerd->grpp.ener[egLJSR].data(),
761                     enerd->grpp.ener[egCOULSR].data(), forceWithShiftForces.shiftForces(),
762                     completionType, wcycle);
763
764             if (isNbGpuDone)
765             {
766                 nbv->atomdata_add_nbat_f_to_f(AtomLocality::Local, forceWithShiftForces.force());
767             }
768         }
769     }
770 }
771
772 /*! \brief Set up the different force buffers; also does clearing.
773  *
774  * \param[in] forceHelperBuffers  Helper force buffers
775  * \param[in] pull_work The pull work object.
776  * \param[in] inputrec  input record
777  * \param[in] force     force array
778  * \param[in] stepWork  Step schedule flags
779  * \param[out] wcycle   wallcycle recording structure
780  *
781  * \returns             Cleared force output structure
782  */
783 static ForceOutputs setupForceOutputs(ForceHelperBuffers*                 forceHelperBuffers,
784                                       pull_t*                             pull_work,
785                                       const t_inputrec&                   inputrec,
786                                       gmx::ArrayRefWithPadding<gmx::RVec> force,
787                                       const StepWorkload&                 stepWork,
788                                       gmx_wallcycle_t                     wcycle)
789 {
790     wallcycle_sub_start(wcycle, ewcsCLEAR_FORCE_BUFFER);
791
792     /* NOTE: We assume fr->shiftForces is all zeros here */
793     gmx::ForceWithShiftForces forceWithShiftForces(force, stepWork.computeVirial,
794                                                    forceHelperBuffers->shiftForces());
795
796     if (stepWork.computeForces)
797     {
798         /* Clear the short- and long-range forces */
799         clearRVecs(forceWithShiftForces.force(), true);
800
801         /* Clear the shift forces */
802         clearRVecs(forceWithShiftForces.shiftForces(), false);
803     }
804
805     /* If we need to compute the virial, we might need a separate
806      * force buffer for algorithms for which the virial is calculated
807      * directly, such as PME. Otherwise, forceWithVirial uses the
808      * the same force (f in legacy calls) buffer as other algorithms.
809      */
810     const bool useSeparateForceWithVirialBuffer =
811             (stepWork.computeForces
812              && (stepWork.computeVirial && forceHelperBuffers->haveDirectVirialContributions()));
813     /* forceWithVirial uses the local atom range only */
814     gmx::ForceWithVirial forceWithVirial(
815             useSeparateForceWithVirialBuffer ? forceHelperBuffers->forceBufferForDirectVirialContributions()
816                                              : force.unpaddedArrayRef(),
817             stepWork.computeVirial);
818
819     if (useSeparateForceWithVirialBuffer)
820     {
821         /* TODO: update comment
822          * We only compute forces on local atoms. Note that vsites can
823          * spread to non-local atoms, but that part of the buffer is
824          * cleared separately in the vsite spreading code.
825          */
826         clearRVecs(forceWithVirial.force_, true);
827     }
828
829     if (inputrec.bPull && pull_have_constraint(pull_work))
830     {
831         clear_pull_forces(pull_work);
832     }
833
834     wallcycle_sub_stop(wcycle, ewcsCLEAR_FORCE_BUFFER);
835
836     return ForceOutputs(forceWithShiftForces, forceHelperBuffers->haveDirectVirialContributions(),
837                         forceWithVirial);
838 }
839
840
841 /*! \brief Set up flags that have the lifetime of the domain indicating what type of work is there to compute.
842  */
843 static DomainLifetimeWorkload setupDomainLifetimeWorkload(const t_inputrec&         inputrec,
844                                                           const t_forcerec&         fr,
845                                                           const pull_t*             pull_work,
846                                                           const gmx_edsam*          ed,
847                                                           const t_mdatoms&          mdatoms,
848                                                           const SimulationWorkload& simulationWork,
849                                                           const StepWorkload&       stepWork)
850 {
851     DomainLifetimeWorkload domainWork;
852     // Note that haveSpecialForces is constant over the whole run
853     domainWork.haveSpecialForces =
854             haveSpecialForces(inputrec, *fr.forceProviders, pull_work, stepWork.computeForces, ed);
855     domainWork.haveCpuListedForceWork = false;
856     domainWork.haveCpuBondedWork      = false;
857     for (const auto& listedForces : fr.listedForces)
858     {
859         if (listedForces.haveCpuListedForces(*fr.fcdata))
860         {
861             domainWork.haveCpuListedForceWork = true;
862         }
863         if (listedForces.haveCpuBondeds())
864         {
865             domainWork.haveCpuBondedWork = true;
866         }
867     }
868     domainWork.haveGpuBondedWork = ((fr.gpuBonded != nullptr) && fr.gpuBonded->haveInteractions());
869     // Note that haveFreeEnergyWork is constant over the whole run
870     domainWork.haveFreeEnergyWork = (fr.efep != efepNO && mdatoms.nPerturbed != 0);
871     // We assume we have local force work if there are CPU
872     // force tasks including PME or nonbondeds.
873     domainWork.haveCpuLocalForceWork =
874             domainWork.haveSpecialForces || domainWork.haveCpuListedForceWork
875             || domainWork.haveFreeEnergyWork || simulationWork.useCpuNonbonded || simulationWork.useCpuPme
876             || simulationWork.haveEwaldSurfaceContribution || inputrec.nwall > 0;
877
878     return domainWork;
879 }
880
881 /*! \brief Set up force flag stuct from the force bitmask.
882  *
883  * \param[in]      legacyFlags          Force bitmask flags used to construct the new flags
884  * \param[in]      isNonbondedOn        Global override, if false forces to turn off all nonbonded calculation.
885  * \param[in]      simulationWork       Simulation workload description.
886  * \param[in]      rankHasPmeDuty       If this rank computes PME.
887  *
888  * \returns New Stepworkload description.
889  */
890 static StepWorkload setupStepWorkload(const int                 legacyFlags,
891                                       const bool                isNonbondedOn,
892                                       const SimulationWorkload& simulationWork,
893                                       const bool                rankHasPmeDuty)
894 {
895     StepWorkload flags;
896     flags.stateChanged           = ((legacyFlags & GMX_FORCE_STATECHANGED) != 0);
897     flags.haveDynamicBox         = ((legacyFlags & GMX_FORCE_DYNAMICBOX) != 0);
898     flags.doNeighborSearch       = ((legacyFlags & GMX_FORCE_NS) != 0);
899     flags.computeVirial          = ((legacyFlags & GMX_FORCE_VIRIAL) != 0);
900     flags.computeEnergy          = ((legacyFlags & GMX_FORCE_ENERGY) != 0);
901     flags.computeForces          = ((legacyFlags & GMX_FORCE_FORCES) != 0);
902     flags.computeListedForces    = ((legacyFlags & GMX_FORCE_LISTED) != 0);
903     flags.computeNonbondedForces = ((legacyFlags & GMX_FORCE_NONBONDED) != 0) && isNonbondedOn;
904     flags.computeDhdl            = ((legacyFlags & GMX_FORCE_DHDL) != 0);
905
906     if (simulationWork.useGpuBufferOps)
907     {
908         GMX_ASSERT(simulationWork.useGpuNonbonded,
909                    "Can only offload buffer ops if nonbonded computation is also offloaded");
910     }
911     flags.useGpuXBufferOps = simulationWork.useGpuBufferOps;
912     // on virial steps the CPU reduction path is taken
913     flags.useGpuFBufferOps    = simulationWork.useGpuBufferOps && !flags.computeVirial;
914     flags.useGpuPmeFReduction = flags.useGpuFBufferOps
915                                 && (simulationWork.useGpuPme
916                                     && (rankHasPmeDuty || simulationWork.useGpuPmePpCommunication));
917
918     return flags;
919 }
920
921
922 /* \brief Launch end-of-step GPU tasks: buffer clearing and rolling pruning.
923  *
924  * TODO: eliminate \p useGpuPmeOnThisRank when this is
925  * incorporated in DomainLifetimeWorkload.
926  */
927 static void launchGpuEndOfStepTasks(nonbonded_verlet_t*               nbv,
928                                     gmx::GpuBonded*                   gpuBonded,
929                                     gmx_pme_t*                        pmedata,
930                                     gmx_enerdata_t*                   enerd,
931                                     const gmx::MdrunScheduleWorkload& runScheduleWork,
932                                     bool                              useGpuPmeOnThisRank,
933                                     int64_t                           step,
934                                     gmx_wallcycle_t                   wcycle)
935 {
936     if (runScheduleWork.simulationWork.useGpuNonbonded)
937     {
938         /* Launch pruning before buffer clearing because the API overhead of the
939          * clear kernel launches can leave the GPU idle while it could be running
940          * the prune kernel.
941          */
942         if (nbv->isDynamicPruningStepGpu(step))
943         {
944             nbv->dispatchPruneKernelGpu(step);
945         }
946
947         /* now clear the GPU outputs while we finish the step on the CPU */
948         wallcycle_start_nocount(wcycle, ewcLAUNCH_GPU);
949         wallcycle_sub_start_nocount(wcycle, ewcsLAUNCH_GPU_NONBONDED);
950         Nbnxm::gpu_clear_outputs(nbv->gpu_nbv, runScheduleWork.stepWork.computeVirial);
951         wallcycle_sub_stop(wcycle, ewcsLAUNCH_GPU_NONBONDED);
952         wallcycle_stop(wcycle, ewcLAUNCH_GPU);
953     }
954
955     if (useGpuPmeOnThisRank)
956     {
957         pme_gpu_reinit_computation(pmedata, wcycle);
958     }
959
960     if (runScheduleWork.domainWork.haveGpuBondedWork && runScheduleWork.stepWork.computeEnergy)
961     {
962         // in principle this should be included in the DD balancing region,
963         // but generally it is infrequent so we'll omit it for the sake of
964         // simpler code
965         gpuBonded->waitAccumulateEnergyTerms(enerd);
966
967         gpuBonded->clearEnergies();
968     }
969 }
970
971 //! \brief Data structure to hold dipole-related data and staging arrays
972 struct DipoleData
973 {
974     //! Dipole staging for fast summing over MPI
975     gmx::DVec muStaging[2] = { { 0.0, 0.0, 0.0 } };
976     //! Dipole staging for states A and B (index 0 and 1 resp.)
977     gmx::RVec muStateAB[2] = { { 0.0_real, 0.0_real, 0.0_real } };
978 };
979
980
981 static void reduceAndUpdateMuTot(DipoleData*                   dipoleData,
982                                  const t_commrec*              cr,
983                                  const bool                    haveFreeEnergy,
984                                  gmx::ArrayRef<const real>     lambda,
985                                  rvec                          muTotal,
986                                  const DDBalanceRegionHandler& ddBalanceRegionHandler)
987 {
988     if (PAR(cr))
989     {
990         gmx_sumd(2 * DIM, dipoleData->muStaging[0], cr);
991         ddBalanceRegionHandler.reopenRegionCpu();
992     }
993     for (int i = 0; i < 2; i++)
994     {
995         for (int j = 0; j < DIM; j++)
996         {
997             dipoleData->muStateAB[i][j] = dipoleData->muStaging[i][j];
998         }
999     }
1000
1001     if (!haveFreeEnergy)
1002     {
1003         copy_rvec(dipoleData->muStateAB[0], muTotal);
1004     }
1005     else
1006     {
1007         for (int j = 0; j < DIM; j++)
1008         {
1009             muTotal[j] = (1.0 - lambda[efptCOUL]) * dipoleData->muStateAB[0][j]
1010                          + lambda[efptCOUL] * dipoleData->muStateAB[1][j];
1011         }
1012     }
1013 }
1014
1015 void do_force(FILE*                               fplog,
1016               const t_commrec*                    cr,
1017               const gmx_multisim_t*               ms,
1018               const t_inputrec*                   inputrec,
1019               gmx::Awh*                           awh,
1020               gmx_enfrot*                         enforcedRotation,
1021               gmx::ImdSession*                    imdSession,
1022               pull_t*                             pull_work,
1023               int64_t                             step,
1024               t_nrnb*                             nrnb,
1025               gmx_wallcycle_t                     wcycle,
1026               const gmx_localtop_t*               top,
1027               const matrix                        box,
1028               gmx::ArrayRefWithPadding<gmx::RVec> x,
1029               history_t*                          hist,
1030               gmx::ForceBuffersView*              forceView,
1031               tensor                              vir_force,
1032               const t_mdatoms*                    mdatoms,
1033               gmx_enerdata_t*                     enerd,
1034               gmx::ArrayRef<const real>           lambda,
1035               t_forcerec*                         fr,
1036               gmx::MdrunScheduleWorkload*         runScheduleWork,
1037               gmx::VirtualSitesHandler*           vsite,
1038               rvec                                muTotal,
1039               double                              t,
1040               gmx_edsam*                          ed,
1041               int                                 legacyFlags,
1042               const DDBalanceRegionHandler&       ddBalanceRegionHandler)
1043 {
1044     auto force = forceView->forceWithPadding();
1045     GMX_ASSERT(force.unpaddedArrayRef().ssize() >= fr->natoms_force_constr,
1046                "The size of the force buffer should be at least the number of atoms to compute "
1047                "forces for");
1048
1049     nonbonded_verlet_t*          nbv      = fr->nbv.get();
1050     interaction_const_t*         ic       = fr->ic;
1051     gmx::StatePropagatorDataGpu* stateGpu = fr->stateGpu;
1052
1053     const SimulationWorkload& simulationWork = runScheduleWork->simulationWork;
1054
1055
1056     runScheduleWork->stepWork    = setupStepWorkload(legacyFlags, fr->bNonbonded, simulationWork,
1057                                                   thisRankHasDuty(cr, DUTY_PME));
1058     const StepWorkload& stepWork = runScheduleWork->stepWork;
1059
1060
1061     const bool useGpuPmeOnThisRank = simulationWork.useGpuPme && thisRankHasDuty(cr, DUTY_PME);
1062
1063     /* At a search step we need to start the first balancing region
1064      * somewhere early inside the step after communication during domain
1065      * decomposition (and not during the previous step as usual).
1066      */
1067     if (stepWork.doNeighborSearch)
1068     {
1069         ddBalanceRegionHandler.openBeforeForceComputationCpu(DdAllowBalanceRegionReopen::yes);
1070     }
1071
1072     clear_mat(vir_force);
1073
1074     if (fr->pbcType != PbcType::No)
1075     {
1076         /* Compute shift vectors every step,
1077          * because of pressure coupling or box deformation!
1078          */
1079         if (stepWork.haveDynamicBox && stepWork.stateChanged)
1080         {
1081             calc_shifts(box, fr->shift_vec);
1082         }
1083
1084         const bool fillGrid = (stepWork.doNeighborSearch && stepWork.stateChanged);
1085         const bool calcCGCM = (fillGrid && !DOMAINDECOMP(cr));
1086         if (calcCGCM)
1087         {
1088             put_atoms_in_box_omp(fr->pbcType, box, x.unpaddedArrayRef().subArray(0, mdatoms->homenr),
1089                                  gmx_omp_nthreads_get(emntDefault));
1090             inc_nrnb(nrnb, eNR_SHIFTX, mdatoms->homenr);
1091         }
1092     }
1093
1094     nbnxn_atomdata_copy_shiftvec(stepWork.haveDynamicBox, fr->shift_vec, nbv->nbat.get());
1095
1096     const bool pmeSendCoordinatesFromGpu =
1097             GMX_MPI && simulationWork.useGpuPmePpCommunication && !(stepWork.doNeighborSearch);
1098     const bool reinitGpuPmePpComms =
1099             GMX_MPI && simulationWork.useGpuPmePpCommunication && (stepWork.doNeighborSearch);
1100
1101     const auto localXReadyOnDevice = (useGpuPmeOnThisRank || simulationWork.useGpuBufferOps)
1102                                              ? stateGpu->getCoordinatesReadyOnDeviceEvent(
1103                                                        AtomLocality::Local, simulationWork, stepWork)
1104                                              : nullptr;
1105
1106     // If coordinates are to be sent to PME task from CPU memory, perform that send here.
1107     // Otherwise the send will occur after H2D coordinate transfer.
1108     if (GMX_MPI && !thisRankHasDuty(cr, DUTY_PME) && !pmeSendCoordinatesFromGpu)
1109     {
1110         /* Send particle coordinates to the pme nodes */
1111         if (!stepWork.doNeighborSearch && simulationWork.useGpuUpdate)
1112         {
1113             GMX_RELEASE_ASSERT(false,
1114                                "GPU update and separate PME ranks are only supported with GPU "
1115                                "direct communication!");
1116             // TODO: when this code-path becomes supported add:
1117             // stateGpu->waitCoordinatesReadyOnHost(AtomLocality::Local);
1118         }
1119
1120         gmx_pme_send_coordinates(fr, cr, box, as_rvec_array(x.unpaddedArrayRef().data()), lambda[efptCOUL],
1121                                  lambda[efptVDW], (stepWork.computeVirial || stepWork.computeEnergy),
1122                                  step, simulationWork.useGpuPmePpCommunication, reinitGpuPmePpComms,
1123                                  pmeSendCoordinatesFromGpu, localXReadyOnDevice, wcycle);
1124     }
1125
1126     // Coordinates on the device are needed if PME or BufferOps are offloaded.
1127     // The local coordinates can be copied right away.
1128     // NOTE: Consider moving this copy to right after they are updated and constrained,
1129     //       if the later is not offloaded.
1130     if (useGpuPmeOnThisRank || stepWork.useGpuXBufferOps)
1131     {
1132         if (stepWork.doNeighborSearch)
1133         {
1134             // TODO refactor this to do_md, after partitioning.
1135             stateGpu->reinit(mdatoms->homenr,
1136                              cr->dd != nullptr ? dd_numAtomsZones(*cr->dd) : mdatoms->homenr);
1137             if (useGpuPmeOnThisRank)
1138             {
1139                 // TODO: This should be moved into PME setup function ( pme_gpu_prepare_computation(...) )
1140                 pme_gpu_set_device_x(fr->pmedata, stateGpu->getCoordinates());
1141             }
1142         }
1143         // We need to copy coordinates when:
1144         // 1. Update is not offloaded
1145         // 2. The buffers were reinitialized on search step
1146         if (!simulationWork.useGpuUpdate || stepWork.doNeighborSearch)
1147         {
1148             GMX_ASSERT(stateGpu != nullptr, "stateGpu should not be null");
1149             stateGpu->copyCoordinatesToGpu(x.unpaddedArrayRef(), AtomLocality::Local);
1150         }
1151     }
1152
1153     // TODO Update this comment when introducing SimulationWorkload
1154     //
1155     // The conditions for gpuHaloExchange e.g. using GPU buffer
1156     // operations were checked before construction, so here we can
1157     // just use it and assert upon any conditions.
1158     const bool ddUsesGpuDirectCommunication =
1159             ((cr->dd != nullptr) && (!cr->dd->gpuHaloExchange.empty()));
1160     GMX_ASSERT(!ddUsesGpuDirectCommunication || stepWork.useGpuXBufferOps,
1161                "Must use coordinate buffer ops with GPU halo exchange");
1162     const bool useGpuForcesHaloExchange = ddUsesGpuDirectCommunication && stepWork.useGpuFBufferOps;
1163
1164     // Copy coordinate from the GPU if update is on the GPU and there
1165     // are forces to be computed on the CPU, or for the computation of
1166     // virial, or if host-side data will be transferred from this task
1167     // to a remote task for halo exchange or PME-PP communication. At
1168     // search steps the current coordinates are already on the host,
1169     // hence copy is not needed.
1170     const bool haveHostPmePpComms =
1171             !thisRankHasDuty(cr, DUTY_PME) && !simulationWork.useGpuPmePpCommunication;
1172     const bool haveHostHaloExchangeComms = havePPDomainDecomposition(cr) && !ddUsesGpuDirectCommunication;
1173
1174     bool gmx_used_in_debug haveCopiedXFromGpu = false;
1175     if (simulationWork.useGpuUpdate && !stepWork.doNeighborSearch
1176         && (runScheduleWork->domainWork.haveCpuLocalForceWork || stepWork.computeVirial
1177             || haveHostPmePpComms || haveHostHaloExchangeComms))
1178     {
1179         GMX_ASSERT(stateGpu != nullptr, "stateGpu should not be null");
1180         stateGpu->copyCoordinatesFromGpu(x.unpaddedArrayRef(), AtomLocality::Local);
1181         haveCopiedXFromGpu = true;
1182     }
1183
1184     // If coordinates are to be sent to PME task from GPU memory, perform that send here.
1185     // Otherwise the send will occur before the H2D coordinate transfer.
1186     if (!thisRankHasDuty(cr, DUTY_PME) && pmeSendCoordinatesFromGpu)
1187     {
1188         /* Send particle coordinates to the pme nodes */
1189         gmx_pme_send_coordinates(fr, cr, box, as_rvec_array(x.unpaddedArrayRef().data()), lambda[efptCOUL],
1190                                  lambda[efptVDW], (stepWork.computeVirial || stepWork.computeEnergy),
1191                                  step, simulationWork.useGpuPmePpCommunication, reinitGpuPmePpComms,
1192                                  pmeSendCoordinatesFromGpu, localXReadyOnDevice, wcycle);
1193     }
1194
1195     if (useGpuPmeOnThisRank)
1196     {
1197         launchPmeGpuSpread(fr->pmedata, box, stepWork, localXReadyOnDevice, lambda[efptCOUL], wcycle);
1198     }
1199
1200     /* do gridding for pair search */
1201     if (stepWork.doNeighborSearch)
1202     {
1203         if (fr->wholeMoleculeTransform && stepWork.stateChanged)
1204         {
1205             fr->wholeMoleculeTransform->updateForAtomPbcJumps(x.unpaddedArrayRef(), box);
1206         }
1207
1208         // TODO
1209         // - vzero is constant, do we need to pass it?
1210         // - box_diag should be passed directly to nbnxn_put_on_grid
1211         //
1212         rvec vzero;
1213         clear_rvec(vzero);
1214
1215         rvec box_diag;
1216         box_diag[XX] = box[XX][XX];
1217         box_diag[YY] = box[YY][YY];
1218         box_diag[ZZ] = box[ZZ][ZZ];
1219
1220         wallcycle_start(wcycle, ewcNS);
1221         if (!DOMAINDECOMP(cr))
1222         {
1223             wallcycle_sub_start(wcycle, ewcsNBS_GRID_LOCAL);
1224             nbnxn_put_on_grid(nbv, box, 0, vzero, box_diag, nullptr, { 0, mdatoms->homenr }, -1,
1225                               fr->cginfo, x.unpaddedArrayRef(), 0, nullptr);
1226             wallcycle_sub_stop(wcycle, ewcsNBS_GRID_LOCAL);
1227         }
1228         else
1229         {
1230             wallcycle_sub_start(wcycle, ewcsNBS_GRID_NONLOCAL);
1231             nbnxn_put_on_grid_nonlocal(nbv, domdec_zones(cr->dd), fr->cginfo, x.unpaddedArrayRef());
1232             wallcycle_sub_stop(wcycle, ewcsNBS_GRID_NONLOCAL);
1233         }
1234
1235         nbv->setAtomProperties(gmx::constArrayRefFromArray(mdatoms->typeA, mdatoms->nr),
1236                                gmx::constArrayRefFromArray(mdatoms->chargeA, mdatoms->nr), fr->cginfo);
1237
1238         wallcycle_stop(wcycle, ewcNS);
1239
1240         /* initialize the GPU nbnxm atom data and bonded data structures */
1241         if (simulationWork.useGpuNonbonded)
1242         {
1243             wallcycle_start_nocount(wcycle, ewcLAUNCH_GPU);
1244
1245             wallcycle_sub_start_nocount(wcycle, ewcsLAUNCH_GPU_NONBONDED);
1246             Nbnxm::gpu_init_atomdata(nbv->gpu_nbv, nbv->nbat.get());
1247             wallcycle_sub_stop(wcycle, ewcsLAUNCH_GPU_NONBONDED);
1248
1249             if (fr->gpuBonded)
1250             {
1251                 /* Now we put all atoms on the grid, we can assign bonded
1252                  * interactions to the GPU, where the grid order is
1253                  * needed. Also the xq, f and fshift device buffers have
1254                  * been reallocated if needed, so the bonded code can
1255                  * learn about them. */
1256                 // TODO the xq, f, and fshift buffers are now shared
1257                 // resources, so they should be maintained by a
1258                 // higher-level object than the nb module.
1259                 fr->gpuBonded->updateInteractionListsAndDeviceBuffers(
1260                         nbv->getGridIndices(), top->idef, Nbnxm::gpu_get_xq(nbv->gpu_nbv),
1261                         Nbnxm::gpu_get_f(nbv->gpu_nbv), Nbnxm::gpu_get_fshift(nbv->gpu_nbv));
1262             }
1263             wallcycle_stop(wcycle, ewcLAUNCH_GPU);
1264         }
1265
1266         // Need to run after the GPU-offload bonded interaction lists
1267         // are set up to be able to determine whether there is bonded work.
1268         runScheduleWork->domainWork = setupDomainLifetimeWorkload(
1269                 *inputrec, *fr, pull_work, ed, *mdatoms, simulationWork, stepWork);
1270
1271         wallcycle_start_nocount(wcycle, ewcNS);
1272         wallcycle_sub_start(wcycle, ewcsNBS_SEARCH_LOCAL);
1273         /* Note that with a GPU the launch overhead of the list transfer is not timed separately */
1274         nbv->constructPairlist(InteractionLocality::Local, top->excls, step, nrnb);
1275
1276         nbv->setupGpuShortRangeWork(fr->gpuBonded, InteractionLocality::Local);
1277
1278         wallcycle_sub_stop(wcycle, ewcsNBS_SEARCH_LOCAL);
1279         wallcycle_stop(wcycle, ewcNS);
1280
1281         if (stepWork.useGpuXBufferOps)
1282         {
1283             nbv->atomdata_init_copy_x_to_nbat_x_gpu();
1284         }
1285         // For force buffer ops, we use the below conditon rather than
1286         // useGpuFBufferOps to ensure that init is performed even if this
1287         // NS step is also a virial step (on which f buf ops are deactivated).
1288         if (GMX_GPU_CUDA && simulationWork.useGpuBufferOps && simulationWork.useGpuNonbonded)
1289         {
1290             GMX_ASSERT(stateGpu, "stateGpu should be valid when buffer ops are offloaded");
1291             nbv->atomdata_init_add_nbat_f_to_f_gpu(stateGpu->fReducedOnDevice());
1292         }
1293     }
1294     else if (!EI_TPI(inputrec->eI))
1295     {
1296         if (stepWork.useGpuXBufferOps)
1297         {
1298             GMX_ASSERT(stateGpu, "stateGpu should be valid when buffer ops are offloaded");
1299             nbv->convertCoordinatesGpu(AtomLocality::Local, false, stateGpu->getCoordinates(),
1300                                        localXReadyOnDevice);
1301         }
1302         else
1303         {
1304             if (simulationWork.useGpuUpdate)
1305             {
1306                 GMX_ASSERT(stateGpu, "need a valid stateGpu object");
1307                 GMX_ASSERT(haveCopiedXFromGpu,
1308                            "a wait should only be triggered if copy has been scheduled");
1309                 stateGpu->waitCoordinatesReadyOnHost(AtomLocality::Local);
1310             }
1311             nbv->convertCoordinates(AtomLocality::Local, false, x.unpaddedArrayRef());
1312         }
1313     }
1314
1315     const gmx::DomainLifetimeWorkload& domainWork = runScheduleWork->domainWork;
1316
1317     if (simulationWork.useGpuNonbonded)
1318     {
1319         ddBalanceRegionHandler.openBeforeForceComputationGpu();
1320
1321         wallcycle_start(wcycle, ewcLAUNCH_GPU);
1322
1323         wallcycle_sub_start(wcycle, ewcsLAUNCH_GPU_NONBONDED);
1324         Nbnxm::gpu_upload_shiftvec(nbv->gpu_nbv, nbv->nbat.get());
1325         if (stepWork.doNeighborSearch || !stepWork.useGpuXBufferOps)
1326         {
1327             Nbnxm::gpu_copy_xq_to_gpu(nbv->gpu_nbv, nbv->nbat.get(), AtomLocality::Local);
1328         }
1329         wallcycle_sub_stop(wcycle, ewcsLAUNCH_GPU_NONBONDED);
1330         // with X buffer ops offloaded to the GPU on all but the search steps
1331
1332         // bonded work not split into separate local and non-local, so with DD
1333         // we can only launch the kernel after non-local coordinates have been received.
1334         if (domainWork.haveGpuBondedWork && !havePPDomainDecomposition(cr))
1335         {
1336             wallcycle_sub_start(wcycle, ewcsLAUNCH_GPU_BONDED);
1337             fr->gpuBonded->setPbcAndlaunchKernel(fr->pbcType, box, fr->bMolPBC, stepWork);
1338             wallcycle_sub_stop(wcycle, ewcsLAUNCH_GPU_BONDED);
1339         }
1340
1341         /* launch local nonbonded work on GPU */
1342         wallcycle_sub_start_nocount(wcycle, ewcsLAUNCH_GPU_NONBONDED);
1343         do_nb_verlet(fr, ic, enerd, stepWork, InteractionLocality::Local, enbvClearFNo, step, nrnb, wcycle);
1344         wallcycle_sub_stop(wcycle, ewcsLAUNCH_GPU_NONBONDED);
1345         wallcycle_stop(wcycle, ewcLAUNCH_GPU);
1346     }
1347
1348     if (useGpuPmeOnThisRank)
1349     {
1350         // In PME GPU and mixed mode we launch FFT / gather after the
1351         // X copy/transform to allow overlap as well as after the GPU NB
1352         // launch to avoid FFT launch overhead hijacking the CPU and delaying
1353         // the nonbonded kernel.
1354         launchPmeGpuFftAndGather(fr->pmedata, lambda[efptCOUL], wcycle, stepWork);
1355     }
1356
1357     /* Communicate coordinates and sum dipole if necessary +
1358        do non-local pair search */
1359     if (havePPDomainDecomposition(cr))
1360     {
1361         if (stepWork.doNeighborSearch)
1362         {
1363             // TODO: fuse this branch with the above large stepWork.doNeighborSearch block
1364             wallcycle_start_nocount(wcycle, ewcNS);
1365             wallcycle_sub_start(wcycle, ewcsNBS_SEARCH_NONLOCAL);
1366             /* Note that with a GPU the launch overhead of the list transfer is not timed separately */
1367             nbv->constructPairlist(InteractionLocality::NonLocal, top->excls, step, nrnb);
1368
1369             nbv->setupGpuShortRangeWork(fr->gpuBonded, InteractionLocality::NonLocal);
1370             wallcycle_sub_stop(wcycle, ewcsNBS_SEARCH_NONLOCAL);
1371             wallcycle_stop(wcycle, ewcNS);
1372             // TODO refactor this GPU halo exchange re-initialisation
1373             // to location in do_md where GPU halo exchange is
1374             // constructed at partitioning, after above stateGpu
1375             // re-initialization has similarly been refactored
1376             if (ddUsesGpuDirectCommunication)
1377             {
1378                 reinitGpuHaloExchange(*cr, stateGpu->getCoordinates(), stateGpu->getForces());
1379             }
1380         }
1381         else
1382         {
1383             if (ddUsesGpuDirectCommunication)
1384             {
1385                 // The following must be called after local setCoordinates (which records an event
1386                 // when the coordinate data has been copied to the device).
1387                 communicateGpuHaloCoordinates(*cr, box, localXReadyOnDevice);
1388
1389                 if (domainWork.haveCpuBondedWork || domainWork.haveFreeEnergyWork)
1390                 {
1391                     // non-local part of coordinate buffer must be copied back to host for CPU work
1392                     stateGpu->copyCoordinatesFromGpu(x.unpaddedArrayRef(), AtomLocality::NonLocal);
1393                 }
1394             }
1395             else
1396             {
1397                 // Note: GPU update + DD without direct communication is not supported,
1398                 // a waitCoordinatesReadyOnHost() should be issued if it will be.
1399                 GMX_ASSERT(!simulationWork.useGpuUpdate,
1400                            "GPU update is not supported with CPU halo exchange");
1401                 dd_move_x(cr->dd, box, x.unpaddedArrayRef(), wcycle);
1402             }
1403
1404             if (stepWork.useGpuXBufferOps)
1405             {
1406                 if (!useGpuPmeOnThisRank && !ddUsesGpuDirectCommunication)
1407                 {
1408                     stateGpu->copyCoordinatesToGpu(x.unpaddedArrayRef(), AtomLocality::NonLocal);
1409                 }
1410                 nbv->convertCoordinatesGpu(AtomLocality::NonLocal, false, stateGpu->getCoordinates(),
1411                                            stateGpu->getCoordinatesReadyOnDeviceEvent(
1412                                                    AtomLocality::NonLocal, simulationWork, stepWork));
1413             }
1414             else
1415             {
1416                 nbv->convertCoordinates(AtomLocality::NonLocal, false, x.unpaddedArrayRef());
1417             }
1418         }
1419
1420         if (simulationWork.useGpuNonbonded)
1421         {
1422             wallcycle_start(wcycle, ewcLAUNCH_GPU);
1423
1424             if (stepWork.doNeighborSearch || !stepWork.useGpuXBufferOps)
1425             {
1426                 wallcycle_sub_start(wcycle, ewcsLAUNCH_GPU_NONBONDED);
1427                 Nbnxm::gpu_copy_xq_to_gpu(nbv->gpu_nbv, nbv->nbat.get(), AtomLocality::NonLocal);
1428                 wallcycle_sub_stop(wcycle, ewcsLAUNCH_GPU_NONBONDED);
1429             }
1430
1431             if (domainWork.haveGpuBondedWork)
1432             {
1433                 wallcycle_sub_start(wcycle, ewcsLAUNCH_GPU_BONDED);
1434                 fr->gpuBonded->setPbcAndlaunchKernel(fr->pbcType, box, fr->bMolPBC, stepWork);
1435                 wallcycle_sub_stop(wcycle, ewcsLAUNCH_GPU_BONDED);
1436             }
1437
1438             /* launch non-local nonbonded tasks on GPU */
1439             wallcycle_sub_start(wcycle, ewcsLAUNCH_GPU_NONBONDED);
1440             do_nb_verlet(fr, ic, enerd, stepWork, InteractionLocality::NonLocal, enbvClearFNo, step,
1441                          nrnb, wcycle);
1442             wallcycle_sub_stop(wcycle, ewcsLAUNCH_GPU_NONBONDED);
1443
1444             wallcycle_stop(wcycle, ewcLAUNCH_GPU);
1445         }
1446     }
1447
1448     if (simulationWork.useGpuNonbonded)
1449     {
1450         /* launch D2H copy-back F */
1451         wallcycle_start_nocount(wcycle, ewcLAUNCH_GPU);
1452         wallcycle_sub_start_nocount(wcycle, ewcsLAUNCH_GPU_NONBONDED);
1453
1454         if (havePPDomainDecomposition(cr))
1455         {
1456             Nbnxm::gpu_launch_cpyback(nbv->gpu_nbv, nbv->nbat.get(), stepWork, AtomLocality::NonLocal);
1457         }
1458         Nbnxm::gpu_launch_cpyback(nbv->gpu_nbv, nbv->nbat.get(), stepWork, AtomLocality::Local);
1459         wallcycle_sub_stop(wcycle, ewcsLAUNCH_GPU_NONBONDED);
1460
1461         if (domainWork.haveGpuBondedWork && stepWork.computeEnergy)
1462         {
1463             fr->gpuBonded->launchEnergyTransfer();
1464         }
1465         wallcycle_stop(wcycle, ewcLAUNCH_GPU);
1466     }
1467
1468     gmx::ArrayRef<const gmx::RVec> xWholeMolecules;
1469     if (fr->wholeMoleculeTransform)
1470     {
1471         xWholeMolecules = fr->wholeMoleculeTransform->wholeMoleculeCoordinates(x.unpaddedArrayRef(), box);
1472     }
1473
1474     DipoleData dipoleData;
1475
1476     if (simulationWork.computeMuTot)
1477     {
1478         const int start = 0;
1479
1480         /* Calculate total (local) dipole moment in a temporary common array.
1481          * This makes it possible to sum them over nodes faster.
1482          */
1483         gmx::ArrayRef<const gmx::RVec> xRef =
1484                 (xWholeMolecules.empty() ? x.unpaddedArrayRef() : xWholeMolecules);
1485         calc_mu(start, mdatoms->homenr, xRef, mdatoms->chargeA, mdatoms->chargeB,
1486                 mdatoms->nChargePerturbed, dipoleData.muStaging[0], dipoleData.muStaging[1]);
1487
1488         reduceAndUpdateMuTot(&dipoleData, cr, (fr->efep != efepNO), lambda, muTotal, ddBalanceRegionHandler);
1489     }
1490
1491     /* Reset energies */
1492     reset_enerdata(enerd);
1493
1494     if (DOMAINDECOMP(cr) && !thisRankHasDuty(cr, DUTY_PME))
1495     {
1496         wallcycle_start(wcycle, ewcPPDURINGPME);
1497         dd_force_flop_start(cr->dd, nrnb);
1498     }
1499
1500     // For the rest of the CPU tasks that depend on GPU-update produced coordinates,
1501     // this wait ensures that the D2H transfer is complete.
1502     if ((simulationWork.useGpuUpdate)
1503         && (runScheduleWork->domainWork.haveCpuLocalForceWork || stepWork.computeVirial))
1504     {
1505         stateGpu->waitCoordinatesReadyOnHost(AtomLocality::Local);
1506     }
1507
1508     if (inputrec->bRot)
1509     {
1510         wallcycle_start(wcycle, ewcROT);
1511         do_rotation(cr, enforcedRotation, box, as_rvec_array(x.unpaddedArrayRef().data()), t, step,
1512                     stepWork.doNeighborSearch);
1513         wallcycle_stop(wcycle, ewcROT);
1514     }
1515
1516     /* Start the force cycle counter.
1517      * Note that a different counter is used for dynamic load balancing.
1518      */
1519     wallcycle_start(wcycle, ewcFORCE);
1520
1521     // Set up and clear force outputs.
1522     // We use std::move to keep the compiler happy, it has no effect.
1523     ForceOutputs forceOut = setupForceOutputs(fr->forceHelperBuffers.get(), pull_work, *inputrec,
1524                                               std::move(force), stepWork, wcycle);
1525
1526     /* We calculate the non-bonded forces, when done on the CPU, here.
1527      * We do this before calling do_force_lowlevel, because in that
1528      * function, the listed forces are calculated before PME, which
1529      * does communication.  With this order, non-bonded and listed
1530      * force calculation imbalance can be balanced out by the domain
1531      * decomposition load balancing.
1532      */
1533
1534     const bool useOrEmulateGpuNb = simulationWork.useGpuNonbonded || fr->nbv->emulateGpu();
1535
1536     if (!useOrEmulateGpuNb)
1537     {
1538         do_nb_verlet(fr, ic, enerd, stepWork, InteractionLocality::Local, enbvClearFYes, step, nrnb, wcycle);
1539     }
1540
1541     if (fr->efep != efepNO)
1542     {
1543         /* Calculate the local and non-local free energy interactions here.
1544          * Happens here on the CPU both with and without GPU.
1545          */
1546         nbv->dispatchFreeEnergyKernel(InteractionLocality::Local, fr,
1547                                       as_rvec_array(x.unpaddedArrayRef().data()),
1548                                       &forceOut.forceWithShiftForces(), *mdatoms, inputrec->fepvals,
1549                                       lambda, enerd, stepWork, nrnb);
1550
1551         if (havePPDomainDecomposition(cr))
1552         {
1553             nbv->dispatchFreeEnergyKernel(InteractionLocality::NonLocal, fr,
1554                                           as_rvec_array(x.unpaddedArrayRef().data()),
1555                                           &forceOut.forceWithShiftForces(), *mdatoms,
1556                                           inputrec->fepvals, lambda, enerd, stepWork, nrnb);
1557         }
1558     }
1559
1560     if (!useOrEmulateGpuNb)
1561     {
1562         if (havePPDomainDecomposition(cr))
1563         {
1564             do_nb_verlet(fr, ic, enerd, stepWork, InteractionLocality::NonLocal, enbvClearFNo, step,
1565                          nrnb, wcycle);
1566         }
1567
1568         if (stepWork.computeForces)
1569         {
1570             /* Add all the non-bonded force to the normal force array.
1571              * This can be split into a local and a non-local part when overlapping
1572              * communication with calculation with domain decomposition.
1573              */
1574             wallcycle_stop(wcycle, ewcFORCE);
1575             nbv->atomdata_add_nbat_f_to_f(AtomLocality::All, forceOut.forceWithShiftForces().force());
1576             wallcycle_start_nocount(wcycle, ewcFORCE);
1577         }
1578
1579         /* If there are multiple fshift output buffers we need to reduce them */
1580         if (stepWork.computeVirial)
1581         {
1582             /* This is not in a subcounter because it takes a
1583                negligible and constant-sized amount of time */
1584             nbnxn_atomdata_add_nbat_fshift_to_fshift(*nbv->nbat,
1585                                                      forceOut.forceWithShiftForces().shiftForces());
1586         }
1587     }
1588
1589     // TODO Force flags should include haveFreeEnergyWork for this domain
1590     if (ddUsesGpuDirectCommunication && (domainWork.haveCpuBondedWork || domainWork.haveFreeEnergyWork))
1591     {
1592         /* Wait for non-local coordinate data to be copied from device */
1593         stateGpu->waitCoordinatesReadyOnHost(AtomLocality::NonLocal);
1594     }
1595
1596     // Compute wall interactions, when present.
1597     // Note: should be moved to special forces.
1598     if (inputrec->nwall && stepWork.computeNonbondedForces)
1599     {
1600         /* foreign lambda component for walls */
1601         real dvdl_walls = do_walls(*inputrec, *fr, box, *mdatoms, x.unpaddedConstArrayRef(),
1602                                    &forceOut.forceWithVirial(), lambda[efptVDW],
1603                                    enerd->grpp.ener[egLJSR].data(), nrnb);
1604         enerd->dvdl_lin[efptVDW] += dvdl_walls;
1605     }
1606
1607     if (stepWork.computeListedForces)
1608     {
1609         /* Check whether we need to take into account PBC in listed interactions */
1610         bool needMolPbc = false;
1611         for (const auto& listedForces : fr->listedForces)
1612         {
1613             if (listedForces.haveCpuListedForces(*fr->fcdata))
1614             {
1615                 needMolPbc = fr->bMolPBC;
1616             }
1617         }
1618
1619         t_pbc pbc;
1620
1621         if (needMolPbc)
1622         {
1623             /* Since all atoms are in the rectangular or triclinic unit-cell,
1624              * only single box vector shifts (2 in x) are required.
1625              */
1626             set_pbc_dd(&pbc, fr->pbcType, DOMAINDECOMP(cr) ? cr->dd->numCells : nullptr, TRUE, box);
1627         }
1628
1629         for (auto& listedForces : fr->listedForces)
1630         {
1631             listedForces.calculate(
1632                     wcycle, box, inputrec->fepvals, cr, ms, x, xWholeMolecules, fr->fcdata.get(),
1633                     hist, &forceOut, fr, &pbc, enerd, nrnb, lambda.data(), mdatoms,
1634                     DOMAINDECOMP(cr) ? cr->dd->globalAtomIndices.data() : nullptr, stepWork);
1635         }
1636     }
1637
1638     calculateLongRangeNonbondeds(fr, inputrec, cr, nrnb, wcycle, mdatoms, x.unpaddedConstArrayRef(),
1639                                  &forceOut.forceWithVirial(), enerd, box, lambda.data(),
1640                                  as_rvec_array(dipoleData.muStateAB), stepWork, ddBalanceRegionHandler);
1641
1642     wallcycle_stop(wcycle, ewcFORCE);
1643
1644     // VdW dispersion correction, only computed on master rank to avoid double counting
1645     if ((stepWork.computeEnergy || stepWork.computeVirial) && fr->dispersionCorrection && MASTER(cr))
1646     {
1647         // Calculate long range corrections to pressure and energy
1648         const DispersionCorrection::Correction correction =
1649                 fr->dispersionCorrection->calculate(box, lambda[efptVDW]);
1650
1651         if (stepWork.computeEnergy)
1652         {
1653             enerd->term[F_DISPCORR] = correction.energy;
1654             enerd->term[F_DVDL_VDW] += correction.dvdl;
1655             enerd->dvdl_lin[efptVDW] += correction.dvdl;
1656         }
1657         if (stepWork.computeVirial)
1658         {
1659             correction.correctVirial(vir_force);
1660             enerd->term[F_PDISPCORR] = correction.pressure;
1661         }
1662     }
1663
1664     computeSpecialForces(fplog, cr, inputrec, awh, enforcedRotation, imdSession, pull_work, step, t,
1665                          wcycle, fr->forceProviders, box, x.unpaddedArrayRef(), mdatoms, lambda,
1666                          stepWork, &forceOut.forceWithVirial(), enerd, ed, stepWork.doNeighborSearch);
1667
1668
1669     // Will store the amount of cycles spent waiting for the GPU that
1670     // will be later used in the DLB accounting.
1671     float cycles_wait_gpu = 0;
1672     if (useOrEmulateGpuNb)
1673     {
1674         auto& forceWithShiftForces = forceOut.forceWithShiftForces();
1675
1676         /* wait for non-local forces (or calculate in emulation mode) */
1677         if (havePPDomainDecomposition(cr))
1678         {
1679             if (simulationWork.useGpuNonbonded)
1680             {
1681                 cycles_wait_gpu += Nbnxm::gpu_wait_finish_task(
1682                         nbv->gpu_nbv, stepWork, AtomLocality::NonLocal, enerd->grpp.ener[egLJSR].data(),
1683                         enerd->grpp.ener[egCOULSR].data(), forceWithShiftForces.shiftForces(), wcycle);
1684             }
1685             else
1686             {
1687                 wallcycle_start_nocount(wcycle, ewcFORCE);
1688                 do_nb_verlet(fr, ic, enerd, stepWork, InteractionLocality::NonLocal, enbvClearFYes,
1689                              step, nrnb, wcycle);
1690                 wallcycle_stop(wcycle, ewcFORCE);
1691             }
1692
1693             if (stepWork.useGpuFBufferOps)
1694             {
1695                 gmx::FixedCapacityVector<GpuEventSynchronizer*, 1> dependencyList;
1696
1697                 // TODO: move this into DomainLifetimeWorkload, including the second part of the
1698                 // condition The bonded and free energy CPU tasks can have non-local force
1699                 // contributions which are a dependency for the GPU force reduction.
1700                 bool haveNonLocalForceContribInCpuBuffer =
1701                         domainWork.haveCpuBondedWork || domainWork.haveFreeEnergyWork;
1702
1703                 if (haveNonLocalForceContribInCpuBuffer)
1704                 {
1705                     stateGpu->copyForcesToGpu(forceOut.forceWithShiftForces().force(),
1706                                               AtomLocality::NonLocal);
1707                     dependencyList.push_back(stateGpu->getForcesReadyOnDeviceEvent(
1708                             AtomLocality::NonLocal, stepWork.useGpuFBufferOps));
1709                 }
1710
1711                 nbv->atomdata_add_nbat_f_to_f_gpu(AtomLocality::NonLocal, stateGpu->getForces(),
1712                                                   pme_gpu_get_device_f(fr->pmedata), dependencyList,
1713                                                   false, haveNonLocalForceContribInCpuBuffer);
1714                 if (!useGpuForcesHaloExchange)
1715                 {
1716                     // copy from GPU input for dd_move_f()
1717                     stateGpu->copyForcesFromGpu(forceOut.forceWithShiftForces().force(),
1718                                                 AtomLocality::NonLocal);
1719                 }
1720             }
1721             else
1722             {
1723                 nbv->atomdata_add_nbat_f_to_f(AtomLocality::NonLocal, forceWithShiftForces.force());
1724             }
1725
1726
1727             if (fr->nbv->emulateGpu() && stepWork.computeVirial)
1728             {
1729                 nbnxn_atomdata_add_nbat_fshift_to_fshift(*nbv->nbat, forceWithShiftForces.shiftForces());
1730             }
1731         }
1732     }
1733
1734     if (havePPDomainDecomposition(cr))
1735     {
1736         /* We are done with the CPU compute.
1737          * We will now communicate the non-local forces.
1738          * If we use a GPU this will overlap with GPU work, so in that case
1739          * we do not close the DD force balancing region here.
1740          */
1741         ddBalanceRegionHandler.closeAfterForceComputationCpu();
1742
1743         if (stepWork.computeForces)
1744         {
1745
1746             if (useGpuForcesHaloExchange)
1747             {
1748                 if (domainWork.haveCpuLocalForceWork)
1749                 {
1750                     stateGpu->copyForcesToGpu(forceOut.forceWithShiftForces().force(), AtomLocality::Local);
1751                 }
1752                 communicateGpuHaloForces(*cr, domainWork.haveCpuLocalForceWork);
1753             }
1754             else
1755             {
1756                 if (stepWork.useGpuFBufferOps)
1757                 {
1758                     stateGpu->waitForcesReadyOnHost(AtomLocality::NonLocal);
1759                 }
1760                 dd_move_f(cr->dd, &forceOut.forceWithShiftForces(), wcycle);
1761             }
1762         }
1763     }
1764
1765     // With both nonbonded and PME offloaded a GPU on the same rank, we use
1766     // an alternating wait/reduction scheme.
1767     bool alternateGpuWait = (!c_disableAlternatingWait && useGpuPmeOnThisRank && simulationWork.useGpuNonbonded
1768                              && !DOMAINDECOMP(cr) && !stepWork.useGpuFBufferOps);
1769     if (alternateGpuWait)
1770     {
1771         alternatePmeNbGpuWaitReduce(fr->nbv.get(), fr->pmedata, &forceOut, enerd, lambda[efptCOUL],
1772                                     stepWork, wcycle);
1773     }
1774
1775     if (!alternateGpuWait && useGpuPmeOnThisRank)
1776     {
1777         pme_gpu_wait_and_reduce(fr->pmedata, stepWork, wcycle, &forceOut.forceWithVirial(), enerd,
1778                                 lambda[efptCOUL]);
1779     }
1780
1781     /* Wait for local GPU NB outputs on the non-alternating wait path */
1782     if (!alternateGpuWait && simulationWork.useGpuNonbonded)
1783     {
1784         /* Measured overhead on CUDA and OpenCL with(out) GPU sharing
1785          * is between 0.5 and 1.5 Mcycles. So 2 MCycles is an overestimate,
1786          * but even with a step of 0.1 ms the difference is less than 1%
1787          * of the step time.
1788          */
1789         const float gpuWaitApiOverheadMargin = 2e6F; /* cycles */
1790         const float waitCycles               = Nbnxm::gpu_wait_finish_task(
1791                 nbv->gpu_nbv, stepWork, AtomLocality::Local, enerd->grpp.ener[egLJSR].data(),
1792                 enerd->grpp.ener[egCOULSR].data(), forceOut.forceWithShiftForces().shiftForces(), wcycle);
1793
1794         if (ddBalanceRegionHandler.useBalancingRegion())
1795         {
1796             DdBalanceRegionWaitedForGpu waitedForGpu = DdBalanceRegionWaitedForGpu::yes;
1797             if (stepWork.computeForces && waitCycles <= gpuWaitApiOverheadMargin)
1798             {
1799                 /* We measured few cycles, it could be that the kernel
1800                  * and transfer finished earlier and there was no actual
1801                  * wait time, only API call overhead.
1802                  * Then the actual time could be anywhere between 0 and
1803                  * cycles_wait_est. We will use half of cycles_wait_est.
1804                  */
1805                 waitedForGpu = DdBalanceRegionWaitedForGpu::no;
1806             }
1807             ddBalanceRegionHandler.closeAfterForceComputationGpu(cycles_wait_gpu, waitedForGpu);
1808         }
1809     }
1810
1811     if (fr->nbv->emulateGpu())
1812     {
1813         // NOTE: emulation kernel is not included in the balancing region,
1814         // but emulation mode does not target performance anyway
1815         wallcycle_start_nocount(wcycle, ewcFORCE);
1816         do_nb_verlet(fr, ic, enerd, stepWork, InteractionLocality::Local,
1817                      DOMAINDECOMP(cr) ? enbvClearFNo : enbvClearFYes, step, nrnb, wcycle);
1818         wallcycle_stop(wcycle, ewcFORCE);
1819     }
1820
1821     // If on GPU PME-PP comms or GPU update path, receive forces from PME before GPU buffer ops
1822     // TODO refactor this and unify with below default-path call to the same function
1823     if (PAR(cr) && !thisRankHasDuty(cr, DUTY_PME)
1824         && (simulationWork.useGpuPmePpCommunication || simulationWork.useGpuUpdate))
1825     {
1826         /* In case of node-splitting, the PP nodes receive the long-range
1827          * forces, virial and energy from the PME nodes here.
1828          */
1829         pme_receive_force_ener(fr, cr, &forceOut.forceWithVirial(), enerd,
1830                                simulationWork.useGpuPmePpCommunication,
1831                                stepWork.useGpuPmeFReduction, wcycle);
1832     }
1833
1834
1835     /* Do the nonbonded GPU (or emulation) force buffer reduction
1836      * on the non-alternating path. */
1837     if (useOrEmulateGpuNb && !alternateGpuWait)
1838     {
1839         // TODO simplify the below conditionals. Pass buffer and sync pointers at init stage rather than here. Unify getter fns for sameGPU/otherGPU cases.
1840         void* pmeForcePtr =
1841                 stepWork.useGpuPmeFReduction
1842                         ? (thisRankHasDuty(cr, DUTY_PME) ? pme_gpu_get_device_f(fr->pmedata)
1843                                                          : // PME force buffer on same GPU
1844                                    fr->pmePpCommGpu->getGpuForceStagingPtr()) // buffer received from other GPU
1845                         : nullptr; // PME reduction not active on GPU
1846
1847         GpuEventSynchronizer* const pmeSynchronizer =
1848                 stepWork.useGpuPmeFReduction
1849                         ? (thisRankHasDuty(cr, DUTY_PME) ? pme_gpu_get_f_ready_synchronizer(fr->pmedata)
1850                                                          : // PME force buffer on same GPU
1851                                    static_cast<GpuEventSynchronizer*>(
1852                                            fr->pmePpCommGpu->getForcesReadySynchronizer())) // buffer received from other GPU
1853                         : nullptr; // PME reduction not active on GPU
1854
1855         gmx::FixedCapacityVector<GpuEventSynchronizer*, 3> dependencyList;
1856
1857         if (stepWork.useGpuPmeFReduction)
1858         {
1859             dependencyList.push_back(pmeSynchronizer);
1860         }
1861
1862         gmx::ArrayRef<gmx::RVec> forceWithShift = forceOut.forceWithShiftForces().force();
1863
1864         if (stepWork.useGpuFBufferOps)
1865         {
1866             // Flag to specify whether the CPU force buffer has contributions to
1867             // local atoms. This depends on whether there are CPU-based force tasks
1868             // or when DD is active the halo exchange has resulted in contributions
1869             // from the non-local part.
1870             const bool haveLocalForceContribInCpuBuffer =
1871                     (domainWork.haveCpuLocalForceWork || havePPDomainDecomposition(cr));
1872
1873             // TODO: move these steps as early as possible:
1874             // - CPU f H2D should be as soon as all CPU-side forces are done
1875             // - wait for force reduction does not need to block host (at least not here, it's sufficient to wait
1876             //   before the next CPU task that consumes the forces: vsite spread or update)
1877             // - copy is not perfomed if GPU force halo exchange is active, because it would overwrite the result
1878             //   of the halo exchange. In that case the copy is instead performed above, before the exchange.
1879             //   These should be unified.
1880             if (haveLocalForceContribInCpuBuffer && !useGpuForcesHaloExchange)
1881             {
1882                 // Note: AtomLocality::All is used for the non-DD case because, as in this
1883                 // case copyForcesToGpu() uses a separate stream, it allows overlap of
1884                 // CPU force H2D with GPU force tasks on all streams including those in the
1885                 // local stream which would otherwise be implicit dependencies for the
1886                 // transfer and would not overlap.
1887                 auto locality = havePPDomainDecomposition(cr) ? AtomLocality::Local : AtomLocality::All;
1888
1889                 stateGpu->copyForcesToGpu(forceWithShift, locality);
1890                 dependencyList.push_back(
1891                         stateGpu->getForcesReadyOnDeviceEvent(locality, stepWork.useGpuFBufferOps));
1892             }
1893             if (useGpuForcesHaloExchange)
1894             {
1895                 dependencyList.push_back(cr->dd->gpuHaloExchange[0]->getForcesReadyOnDeviceEvent());
1896             }
1897             nbv->atomdata_add_nbat_f_to_f_gpu(AtomLocality::Local, stateGpu->getForces(), pmeForcePtr,
1898                                               dependencyList, stepWork.useGpuPmeFReduction,
1899                                               haveLocalForceContribInCpuBuffer);
1900             // Copy forces to host if they are needed for update or if virtual sites are enabled.
1901             // If there are vsites, we need to copy forces every step to spread vsite forces on host.
1902             // TODO: When the output flags will be included in step workload, this copy can be combined with the
1903             //       copy call done in sim_utils(...) for the output.
1904             // NOTE: If there are virtual sites, the forces are modified on host after this D2H copy. Hence,
1905             //       they should not be copied in do_md(...) for the output.
1906             if (!simulationWork.useGpuUpdate || vsite)
1907             {
1908                 stateGpu->copyForcesFromGpu(forceWithShift, AtomLocality::Local);
1909                 stateGpu->waitForcesReadyOnHost(AtomLocality::Local);
1910             }
1911         }
1912         else
1913         {
1914             nbv->atomdata_add_nbat_f_to_f(AtomLocality::Local, forceWithShift);
1915         }
1916     }
1917
1918     launchGpuEndOfStepTasks(nbv, fr->gpuBonded, fr->pmedata, enerd, *runScheduleWork,
1919                             useGpuPmeOnThisRank, step, wcycle);
1920
1921     if (DOMAINDECOMP(cr))
1922     {
1923         dd_force_flop_stop(cr->dd, nrnb);
1924     }
1925
1926     if (stepWork.computeForces)
1927     {
1928         postProcessForceWithShiftForces(nrnb, wcycle, box, x.unpaddedArrayRef(), &forceOut,
1929                                         vir_force, *mdatoms, *fr, vsite, stepWork);
1930     }
1931
1932     // TODO refactor this and unify with above GPU PME-PP / GPU update path call to the same function
1933     if (PAR(cr) && !thisRankHasDuty(cr, DUTY_PME) && !simulationWork.useGpuPmePpCommunication
1934         && !simulationWork.useGpuUpdate)
1935     {
1936         /* In case of node-splitting, the PP nodes receive the long-range
1937          * forces, virial and energy from the PME nodes here.
1938          */
1939         pme_receive_force_ener(fr, cr, &forceOut.forceWithVirial(), enerd,
1940                                simulationWork.useGpuPmePpCommunication, false, wcycle);
1941     }
1942
1943     if (stepWork.computeForces)
1944     {
1945         postProcessForces(cr, step, nrnb, wcycle, box, x.unpaddedArrayRef(), &forceOut, vir_force,
1946                           mdatoms, fr, vsite, stepWork);
1947     }
1948
1949     if (stepWork.computeEnergy)
1950     {
1951         /* Compute the final potential energy terms */
1952         accumulatePotentialEnergies(enerd, lambda, inputrec->fepvals);
1953
1954         if (!EI_TPI(inputrec->eI))
1955         {
1956             checkPotentialEnergyValidity(step, *enerd, *inputrec);
1957         }
1958     }
1959
1960     /* In case we don't have constraints and are using GPUs, the next balancing
1961      * region starts here.
1962      * Some "special" work at the end of do_force_cuts?, such as vsite spread,
1963      * virial calculation and COM pulling, is not thus not included in
1964      * the balance timing, which is ok as most tasks do communication.
1965      */
1966     ddBalanceRegionHandler.openBeforeForceComputationCpu(DdAllowBalanceRegionReopen::no);
1967 }