Merge branch 'release-4-6'
[alexxy/gromacs.git] / src / gromacs / mdlib / sim_util.c
1 /* -*- mode: c; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4; c-file-style: "stroustrup"; -*-
2  *
3  *
4  *                This source code is part of
5  *
6  *                 G   R   O   M   A   C   S
7  *
8  *          GROningen MAchine for Chemical Simulations
9  *
10  *                        VERSION 3.2.0
11  * Written by David van der Spoel, Erik Lindahl, Berk Hess, and others.
12  * Copyright (c) 1991-2000, University of Groningen, The Netherlands.
13  * Copyright (c) 2001-2004, The GROMACS development team,
14  * check out http://www.gromacs.org for more information.
15
16  * This program is free software; you can redistribute it and/or
17  * modify it under the terms of the GNU General Public License
18  * as published by the Free Software Foundation; either version 2
19  * of the License, or (at your option) any later version.
20  *
21  * If you want to redistribute modifications, please consider that
22  * scientific software is very special. Version control is crucial -
23  * bugs must be traceable. We will be happy to consider code for
24  * inclusion in the official distribution, but derived work must not
25  * be called official GROMACS. Details are found in the README & COPYING
26  * files - if they are missing, get the official version at www.gromacs.org.
27  *
28  * To help us fund GROMACS development, we humbly ask that you cite
29  * the papers on the package - you can find them in the top README file.
30  *
31  * For more info, check our website at http://www.gromacs.org
32  *
33  * And Hey:
34  * GROwing Monsters And Cloning Shrimps
35  */
36 #ifdef HAVE_CONFIG_H
37 #include <config.h>
38 #endif
39
40 #ifdef GMX_CRAY_XT3
41 #include <catamount/dclock.h>
42 #endif
43
44
45 #include <stdio.h>
46 #include <time.h>
47 #ifdef HAVE_SYS_TIME_H
48 #include <sys/time.h>
49 #endif
50 #include <math.h>
51 #include "typedefs.h"
52 #include "string2.h"
53 #include "gmxfio.h"
54 #include "smalloc.h"
55 #include "names.h"
56 #include "confio.h"
57 #include "mvdata.h"
58 #include "txtdump.h"
59 #include "pbc.h"
60 #include "chargegroup.h"
61 #include "vec.h"
62 #include <time.h>
63 #include "nrnb.h"
64 #include "mshift.h"
65 #include "mdrun.h"
66 #include "sim_util.h"
67 #include "update.h"
68 #include "physics.h"
69 #include "main.h"
70 #include "mdatoms.h"
71 #include "force.h"
72 #include "bondf.h"
73 #include "pme.h"
74 #include "disre.h"
75 #include "orires.h"
76 #include "network.h"
77 #include "calcmu.h"
78 #include "constr.h"
79 #include "xvgr.h"
80 #include "trnio.h"
81 #include "xtcio.h"
82 #include "copyrite.h"
83 #include "pull_rotation.h"
84 #include "gmx_random.h"
85 #include "domdec.h"
86 #include "partdec.h"
87 #include "gmx_wallcycle.h"
88 #include "genborn.h"
89 #include "nbnxn_atomdata.h"
90 #include "nbnxn_search.h"
91 #include "nbnxn_kernels/nbnxn_kernel_ref.h"
92 #include "nbnxn_kernels/simd_4xn/nbnxn_kernel_simd_4xn.h"
93 #include "nbnxn_kernels/simd_2xnn/nbnxn_kernel_simd_2xnn.h"
94 #include "nbnxn_kernels/nbnxn_kernel_gpu_ref.h"
95
96 #include "gromacs/utility/gmxmpi.h"
97
98 #include "adress.h"
99 #include "qmmm.h"
100
101 #include "nbnxn_cuda_data_mgmt.h"
102 #include "nbnxn_cuda/nbnxn_cuda.h"
103
104 double
105 gmx_gettime()
106 {
107 #ifdef HAVE_GETTIMEOFDAY
108     struct timeval t;
109     double         seconds;
110
111     gettimeofday(&t, NULL);
112
113     seconds = (double) t.tv_sec + 1e-6*(double)t.tv_usec;
114
115     return seconds;
116 #else
117     double  seconds;
118
119     seconds = time(NULL);
120
121     return seconds;
122 #endif
123 }
124
125
126 #define difftime(end, start) ((double)(end)-(double)(start))
127
128 void print_time(FILE *out, gmx_runtime_t *runtime, gmx_large_int_t step,
129                 t_inputrec *ir, t_commrec gmx_unused *cr)
130 {
131     time_t finish;
132     char   timebuf[STRLEN];
133     double dt;
134     char   buf[48];
135
136 #ifndef GMX_THREAD_MPI
137     if (!PAR(cr))
138 #endif
139     {
140         fprintf(out, "\r");
141     }
142     fprintf(out, "step %s", gmx_step_str(step, buf));
143     if ((step >= ir->nstlist))
144     {
145         runtime->last          = gmx_gettime();
146         dt                     = difftime(runtime->last, runtime->real);
147         runtime->time_per_step = dt/(step - ir->init_step + 1);
148
149         dt = (ir->nsteps + ir->init_step - step)*runtime->time_per_step;
150
151         if (ir->nsteps >= 0)
152         {
153             if (dt >= 300)
154             {
155                 finish = (time_t) (runtime->last + dt);
156                 gmx_ctime_r(&finish, timebuf, STRLEN);
157                 sprintf(buf, "%s", timebuf);
158                 buf[strlen(buf)-1] = '\0';
159                 fprintf(out, ", will finish %s", buf);
160             }
161             else
162             {
163                 fprintf(out, ", remaining runtime: %5d s          ", (int)dt);
164             }
165         }
166         else
167         {
168             fprintf(out, " performance: %.1f ns/day    ",
169                     ir->delta_t/1000*24*60*60/runtime->time_per_step);
170         }
171     }
172 #ifndef GMX_THREAD_MPI
173     if (PAR(cr))
174     {
175         fprintf(out, "\n");
176     }
177 #endif
178
179     fflush(out);
180 }
181
182 #ifdef NO_CLOCK
183 #define clock() -1
184 #endif
185
186 static double set_proctime(gmx_runtime_t *runtime)
187 {
188     double diff;
189 #ifdef GMX_CRAY_XT3
190     double prev;
191
192     prev          = runtime->proc;
193     runtime->proc = dclock();
194
195     diff = runtime->proc - prev;
196 #else
197     clock_t prev;
198
199     prev          = runtime->proc;
200     runtime->proc = clock();
201
202     diff = (double)(runtime->proc - prev)/(double)CLOCKS_PER_SEC;
203 #endif
204     if (diff < 0)
205     {
206         /* The counter has probably looped, ignore this data */
207         diff = 0;
208     }
209
210     return diff;
211 }
212
213 void runtime_start(gmx_runtime_t *runtime)
214 {
215     runtime->real          = gmx_gettime();
216     runtime->proc          = 0;
217     set_proctime(runtime);
218     runtime->realtime      = 0;
219     runtime->proctime      = 0;
220     runtime->last          = 0;
221     runtime->time_per_step = 0;
222 }
223
224 void runtime_end(gmx_runtime_t *runtime)
225 {
226     double now;
227
228     now = gmx_gettime();
229
230     runtime->proctime += set_proctime(runtime);
231     runtime->realtime  = now - runtime->real;
232     runtime->real      = now;
233 }
234
235 void runtime_upd_proc(gmx_runtime_t *runtime)
236 {
237     runtime->proctime += set_proctime(runtime);
238 }
239
240 void print_date_and_time(FILE *fplog, int nodeid, const char *title,
241                          const gmx_runtime_t *runtime)
242 {
243     int    i;
244     char   timebuf[STRLEN];
245     char   time_string[STRLEN];
246     time_t tmptime;
247
248     if (fplog)
249     {
250         if (runtime != NULL)
251         {
252             tmptime = (time_t) runtime->real;
253             gmx_ctime_r(&tmptime, timebuf, STRLEN);
254         }
255         else
256         {
257             tmptime = (time_t) gmx_gettime();
258             gmx_ctime_r(&tmptime, timebuf, STRLEN);
259         }
260         for (i = 0; timebuf[i] >= ' '; i++)
261         {
262             time_string[i] = timebuf[i];
263         }
264         time_string[i] = '\0';
265
266         fprintf(fplog, "%s on node %d %s\n", title, nodeid, time_string);
267     }
268 }
269
270 static void sum_forces(int start, int end, rvec f[], rvec flr[])
271 {
272     int i;
273
274     if (gmx_debug_at)
275     {
276         pr_rvecs(debug, 0, "fsr", f+start, end-start);
277         pr_rvecs(debug, 0, "flr", flr+start, end-start);
278     }
279     for (i = start; (i < end); i++)
280     {
281         rvec_inc(f[i], flr[i]);
282     }
283 }
284
285 /*
286  * calc_f_el calculates forces due to an electric field.
287  *
288  * force is kJ mol^-1 nm^-1 = e * kJ mol^-1 nm^-1 / e
289  *
290  * Et[] contains the parameters for the time dependent
291  * part of the field (not yet used).
292  * Ex[] contains the parameters for
293  * the spatial dependent part of the field. You can have cool periodic
294  * fields in principle, but only a constant field is supported
295  * now.
296  * The function should return the energy due to the electric field
297  * (if any) but for now returns 0.
298  *
299  * WARNING:
300  * There can be problems with the virial.
301  * Since the field is not self-consistent this is unavoidable.
302  * For neutral molecules the virial is correct within this approximation.
303  * For neutral systems with many charged molecules the error is small.
304  * But for systems with a net charge or a few charged molecules
305  * the error can be significant when the field is high.
306  * Solution: implement a self-consitent electric field into PME.
307  */
308 static void calc_f_el(FILE *fp, int  start, int homenr,
309                       real charge[], rvec f[],
310                       t_cosines Ex[], t_cosines Et[], double t)
311 {
312     rvec Ext;
313     real t0;
314     int  i, m;
315
316     for (m = 0; (m < DIM); m++)
317     {
318         if (Et[m].n > 0)
319         {
320             if (Et[m].n == 3)
321             {
322                 t0     = Et[m].a[1];
323                 Ext[m] = cos(Et[m].a[0]*(t-t0))*exp(-sqr(t-t0)/(2.0*sqr(Et[m].a[2])));
324             }
325             else
326             {
327                 Ext[m] = cos(Et[m].a[0]*t);
328             }
329         }
330         else
331         {
332             Ext[m] = 1.0;
333         }
334         if (Ex[m].n > 0)
335         {
336             /* Convert the field strength from V/nm to MD-units */
337             Ext[m] *= Ex[m].a[0]*FIELDFAC;
338             for (i = start; (i < start+homenr); i++)
339             {
340                 f[i][m] += charge[i]*Ext[m];
341             }
342         }
343         else
344         {
345             Ext[m] = 0;
346         }
347     }
348     if (fp != NULL)
349     {
350         fprintf(fp, "%10g  %10g  %10g  %10g #FIELD\n", t,
351                 Ext[XX]/FIELDFAC, Ext[YY]/FIELDFAC, Ext[ZZ]/FIELDFAC);
352     }
353 }
354
355 static void calc_virial(int start, int homenr, rvec x[], rvec f[],
356                         tensor vir_part, t_graph *graph, matrix box,
357                         t_nrnb *nrnb, const t_forcerec *fr, int ePBC)
358 {
359     int    i, j;
360     tensor virtest;
361
362     /* The short-range virial from surrounding boxes */
363     clear_mat(vir_part);
364     calc_vir(SHIFTS, fr->shift_vec, fr->fshift, vir_part, ePBC == epbcSCREW, box);
365     inc_nrnb(nrnb, eNR_VIRIAL, SHIFTS);
366
367     /* Calculate partial virial, for local atoms only, based on short range.
368      * Total virial is computed in global_stat, called from do_md
369      */
370     f_calc_vir(start, start+homenr, x, f, vir_part, graph, box);
371     inc_nrnb(nrnb, eNR_VIRIAL, homenr);
372
373     /* Add position restraint contribution */
374     for (i = 0; i < DIM; i++)
375     {
376         vir_part[i][i] += fr->vir_diag_posres[i];
377     }
378
379     /* Add wall contribution */
380     for (i = 0; i < DIM; i++)
381     {
382         vir_part[i][ZZ] += fr->vir_wall_z[i];
383     }
384
385     if (debug)
386     {
387         pr_rvecs(debug, 0, "vir_part", vir_part, DIM);
388     }
389 }
390
391 static void posres_wrapper(FILE *fplog,
392                            int flags,
393                            gmx_bool bSepDVDL,
394                            t_inputrec *ir,
395                            t_nrnb *nrnb,
396                            gmx_localtop_t *top,
397                            matrix box, rvec x[],
398                            gmx_enerdata_t *enerd,
399                            real *lambda,
400                            t_forcerec *fr)
401 {
402     t_pbc pbc;
403     real  v, dvdl;
404     int   i;
405
406     /* Position restraints always require full pbc */
407     set_pbc(&pbc, ir->ePBC, box);
408     dvdl = 0;
409     v    = posres(top->idef.il[F_POSRES].nr, top->idef.il[F_POSRES].iatoms,
410                   top->idef.iparams_posres,
411                   (const rvec*)x, fr->f_novirsum, fr->vir_diag_posres,
412                   ir->ePBC == epbcNONE ? NULL : &pbc,
413                   lambda[efptRESTRAINT], &dvdl,
414                   fr->rc_scaling, fr->ePBC, fr->posres_com, fr->posres_comB);
415     if (bSepDVDL)
416     {
417         gmx_print_sepdvdl(fplog, interaction_function[F_POSRES].longname, v, dvdl);
418     }
419     enerd->term[F_POSRES] += v;
420     /* If just the force constant changes, the FEP term is linear,
421      * but if k changes, it is not.
422      */
423     enerd->dvdl_nonlin[efptRESTRAINT] += dvdl;
424     inc_nrnb(nrnb, eNR_POSRES, top->idef.il[F_POSRES].nr/2);
425
426     if ((ir->fepvals->n_lambda > 0) && (flags & GMX_FORCE_DHDL))
427     {
428         for (i = 0; i < enerd->n_lambda; i++)
429         {
430             real dvdl_dum, lambda_dum;
431
432             lambda_dum = (i == 0 ? lambda[efptRESTRAINT] : ir->fepvals->all_lambda[efptRESTRAINT][i-1]);
433             v          = posres(top->idef.il[F_POSRES].nr, top->idef.il[F_POSRES].iatoms,
434                                 top->idef.iparams_posres,
435                                 (const rvec*)x, NULL, NULL,
436                                 ir->ePBC == epbcNONE ? NULL : &pbc, lambda_dum, &dvdl,
437                                 fr->rc_scaling, fr->ePBC, fr->posres_com, fr->posres_comB);
438             enerd->enerpart_lambda[i] += v;
439         }
440     }
441 }
442
443 static void pull_potential_wrapper(FILE *fplog,
444                                    gmx_bool bSepDVDL,
445                                    t_commrec *cr,
446                                    t_inputrec *ir,
447                                    matrix box, rvec x[],
448                                    rvec f[],
449                                    tensor vir_force,
450                                    t_mdatoms *mdatoms,
451                                    gmx_enerdata_t *enerd,
452                                    real *lambda,
453                                    double t)
454 {
455     t_pbc  pbc;
456     real   dvdl;
457
458     /* Calculate the center of mass forces, this requires communication,
459      * which is why pull_potential is called close to other communication.
460      * The virial contribution is calculated directly,
461      * which is why we call pull_potential after calc_virial.
462      */
463     set_pbc(&pbc, ir->ePBC, box);
464     dvdl                     = 0;
465     enerd->term[F_COM_PULL] +=
466         pull_potential(ir->ePull, ir->pull, mdatoms, &pbc,
467                        cr, t, lambda[efptRESTRAINT], x, f, vir_force, &dvdl);
468     if (bSepDVDL)
469     {
470         gmx_print_sepdvdl(fplog, "Com pull", enerd->term[F_COM_PULL], dvdl);
471     }
472     enerd->dvdl_lin[efptRESTRAINT] += dvdl;
473 }
474
475 static void pme_receive_force_ener(FILE           *fplog,
476                                    gmx_bool        bSepDVDL,
477                                    t_commrec      *cr,
478                                    gmx_wallcycle_t wcycle,
479                                    gmx_enerdata_t *enerd,
480                                    t_forcerec     *fr)
481 {
482     real   e, v, dvdl;
483     float  cycles_ppdpme, cycles_seppme;
484
485     cycles_ppdpme = wallcycle_stop(wcycle, ewcPPDURINGPME);
486     dd_cycles_add(cr->dd, cycles_ppdpme, ddCyclPPduringPME);
487
488     /* In case of node-splitting, the PP nodes receive the long-range
489      * forces, virial and energy from the PME nodes here.
490      */
491     wallcycle_start(wcycle, ewcPP_PMEWAITRECVF);
492     dvdl = 0;
493     gmx_pme_receive_f(cr, fr->f_novirsum, fr->vir_el_recip, &e, &dvdl,
494                       &cycles_seppme);
495     if (bSepDVDL)
496     {
497         gmx_print_sepdvdl(fplog, "PME mesh", e, dvdl);
498     }
499     enerd->term[F_COUL_RECIP] += e;
500     enerd->dvdl_lin[efptCOUL] += dvdl;
501     if (wcycle)
502     {
503         dd_cycles_add(cr->dd, cycles_seppme, ddCyclPME);
504     }
505     wallcycle_stop(wcycle, ewcPP_PMEWAITRECVF);
506 }
507
508 static void print_large_forces(FILE *fp, t_mdatoms *md, t_commrec *cr,
509                                gmx_large_int_t step, real pforce, rvec *x, rvec *f)
510 {
511     int  i;
512     real pf2, fn2;
513     char buf[STEPSTRSIZE];
514
515     pf2 = sqr(pforce);
516     for (i = md->start; i < md->start+md->homenr; i++)
517     {
518         fn2 = norm2(f[i]);
519         /* We also catch NAN, if the compiler does not optimize this away. */
520         if (fn2 >= pf2 || fn2 != fn2)
521         {
522             fprintf(fp, "step %s  atom %6d  x %8.3f %8.3f %8.3f  force %12.5e\n",
523                     gmx_step_str(step, buf),
524                     ddglatnr(cr->dd, i), x[i][XX], x[i][YY], x[i][ZZ], sqrt(fn2));
525         }
526     }
527 }
528
529 static void post_process_forces(t_commrec *cr,
530                                 gmx_large_int_t step,
531                                 t_nrnb *nrnb, gmx_wallcycle_t wcycle,
532                                 gmx_localtop_t *top,
533                                 matrix box, rvec x[],
534                                 rvec f[],
535                                 tensor vir_force,
536                                 t_mdatoms *mdatoms,
537                                 t_graph *graph,
538                                 t_forcerec *fr, gmx_vsite_t *vsite,
539                                 int flags)
540 {
541     if (fr->bF_NoVirSum)
542     {
543         if (vsite)
544         {
545             /* Spread the mesh force on virtual sites to the other particles...
546              * This is parallellized. MPI communication is performed
547              * if the constructing atoms aren't local.
548              */
549             wallcycle_start(wcycle, ewcVSITESPREAD);
550             spread_vsite_f(vsite, x, fr->f_novirsum, NULL,
551                            (flags & GMX_FORCE_VIRIAL), fr->vir_el_recip,
552                            nrnb,
553                            &top->idef, fr->ePBC, fr->bMolPBC, graph, box, cr);
554             wallcycle_stop(wcycle, ewcVSITESPREAD);
555         }
556         if (flags & GMX_FORCE_VIRIAL)
557         {
558             /* Now add the forces, this is local */
559             if (fr->bDomDec)
560             {
561                 sum_forces(0, fr->f_novirsum_n, f, fr->f_novirsum);
562             }
563             else
564             {
565                 sum_forces(mdatoms->start, mdatoms->start+mdatoms->homenr,
566                            f, fr->f_novirsum);
567             }
568             if (EEL_FULL(fr->eeltype))
569             {
570                 /* Add the mesh contribution to the virial */
571                 m_add(vir_force, fr->vir_el_recip, vir_force);
572             }
573             if (debug)
574             {
575                 pr_rvecs(debug, 0, "vir_force", vir_force, DIM);
576             }
577         }
578     }
579
580     if (fr->print_force >= 0)
581     {
582         print_large_forces(stderr, mdatoms, cr, step, fr->print_force, x, f);
583     }
584 }
585
586 static void do_nb_verlet(t_forcerec *fr,
587                          interaction_const_t *ic,
588                          gmx_enerdata_t *enerd,
589                          int flags, int ilocality,
590                          int clearF,
591                          t_nrnb *nrnb)
592 {
593     int                        nnbl, kernel_type, enr_nbnxn_kernel_ljc, enr_nbnxn_kernel_lj;
594     char                      *env;
595     nonbonded_verlet_group_t  *nbvg;
596     gmx_bool                  bCUDA;
597
598     if (!(flags & GMX_FORCE_NONBONDED))
599     {
600         /* skip non-bonded calculation */
601         return;
602     }
603
604     nbvg = &fr->nbv->grp[ilocality];
605
606     /* CUDA kernel launch overhead is already timed separately */
607     if (fr->cutoff_scheme != ecutsVERLET)
608     {
609         gmx_incons("Invalid cut-off scheme passed!");
610     }
611
612     bCUDA = (nbvg->kernel_type == nbnxnk8x8x8_CUDA);
613
614     if (!bCUDA)
615     {
616         wallcycle_sub_start(wcycle, ewcsNONBONDED);
617     }
618     switch (nbvg->kernel_type)
619     {
620         case nbnxnk4x4_PlainC:
621             nbnxn_kernel_ref(&nbvg->nbl_lists,
622                              nbvg->nbat, ic,
623                              fr->shift_vec,
624                              flags,
625                              clearF,
626                              fr->fshift[0],
627                              enerd->grpp.ener[egCOULSR],
628                              fr->bBHAM ?
629                              enerd->grpp.ener[egBHAMSR] :
630                              enerd->grpp.ener[egLJSR]);
631             break;
632
633         case nbnxnk4xN_SIMD_4xN:
634             nbnxn_kernel_simd_4xn(&nbvg->nbl_lists,
635                                   nbvg->nbat, ic,
636                                   nbvg->ewald_excl,
637                                   fr->shift_vec,
638                                   flags,
639                                   clearF,
640                                   fr->fshift[0],
641                                   enerd->grpp.ener[egCOULSR],
642                                   fr->bBHAM ?
643                                   enerd->grpp.ener[egBHAMSR] :
644                                   enerd->grpp.ener[egLJSR]);
645             break;
646         case nbnxnk4xN_SIMD_2xNN:
647             nbnxn_kernel_simd_2xnn(&nbvg->nbl_lists,
648                                    nbvg->nbat, ic,
649                                    nbvg->ewald_excl,
650                                    fr->shift_vec,
651                                    flags,
652                                    clearF,
653                                    fr->fshift[0],
654                                    enerd->grpp.ener[egCOULSR],
655                                    fr->bBHAM ?
656                                    enerd->grpp.ener[egBHAMSR] :
657                                    enerd->grpp.ener[egLJSR]);
658             break;
659
660         case nbnxnk8x8x8_CUDA:
661             nbnxn_cuda_launch_kernel(fr->nbv->cu_nbv, nbvg->nbat, flags, ilocality);
662             break;
663
664         case nbnxnk8x8x8_PlainC:
665             nbnxn_kernel_gpu_ref(nbvg->nbl_lists.nbl[0],
666                                  nbvg->nbat, ic,
667                                  fr->shift_vec,
668                                  flags,
669                                  clearF,
670                                  nbvg->nbat->out[0].f,
671                                  fr->fshift[0],
672                                  enerd->grpp.ener[egCOULSR],
673                                  fr->bBHAM ?
674                                  enerd->grpp.ener[egBHAMSR] :
675                                  enerd->grpp.ener[egLJSR]);
676             break;
677
678         default:
679             gmx_incons("Invalid nonbonded kernel type passed!");
680
681     }
682     if (!bCUDA)
683     {
684         wallcycle_sub_stop(wcycle, ewcsNONBONDED);
685     }
686
687     if (EEL_RF(ic->eeltype) || ic->eeltype == eelCUT)
688     {
689         enr_nbnxn_kernel_ljc = eNR_NBNXN_LJ_RF;
690     }
691     else if ((!bCUDA && nbvg->ewald_excl == ewaldexclAnalytical) ||
692              (bCUDA && nbnxn_cuda_is_kernel_ewald_analytical(fr->nbv->cu_nbv)))
693     {
694         enr_nbnxn_kernel_ljc = eNR_NBNXN_LJ_EWALD;
695     }
696     else
697     {
698         enr_nbnxn_kernel_ljc = eNR_NBNXN_LJ_TAB;
699     }
700     enr_nbnxn_kernel_lj = eNR_NBNXN_LJ;
701     if (flags & GMX_FORCE_ENERGY)
702     {
703         /* In eNR_??? the nbnxn F+E kernels are always the F kernel + 1 */
704         enr_nbnxn_kernel_ljc += 1;
705         enr_nbnxn_kernel_lj  += 1;
706     }
707
708     inc_nrnb(nrnb, enr_nbnxn_kernel_ljc,
709              nbvg->nbl_lists.natpair_ljq);
710     inc_nrnb(nrnb, enr_nbnxn_kernel_lj,
711              nbvg->nbl_lists.natpair_lj);
712     inc_nrnb(nrnb, enr_nbnxn_kernel_ljc-eNR_NBNXN_LJ_RF+eNR_NBNXN_RF,
713              nbvg->nbl_lists.natpair_q);
714 }
715
716 void do_force_cutsVERLET(FILE *fplog, t_commrec *cr,
717                          t_inputrec *inputrec,
718                          gmx_large_int_t step, t_nrnb *nrnb, gmx_wallcycle_t wcycle,
719                          gmx_localtop_t *top,
720                          gmx_groups_t gmx_unused *groups,
721                          matrix box, rvec x[], history_t *hist,
722                          rvec f[],
723                          tensor vir_force,
724                          t_mdatoms *mdatoms,
725                          gmx_enerdata_t *enerd, t_fcdata *fcd,
726                          real *lambda, t_graph *graph,
727                          t_forcerec *fr, interaction_const_t *ic,
728                          gmx_vsite_t *vsite, rvec mu_tot,
729                          double t, FILE *field, gmx_edsam_t ed,
730                          gmx_bool bBornRadii,
731                          int flags)
732 {
733     int                 cg0, cg1, i, j;
734     int                 start, homenr;
735     int                 nb_kernel_type;
736     double              mu[2*DIM];
737     gmx_bool            bSepDVDL, bStateChanged, bNS, bFillGrid, bCalcCGCM, bBS;
738     gmx_bool            bDoLongRange, bDoForces, bSepLRF, bUseGPU, bUseOrEmulGPU;
739     gmx_bool            bDiffKernels = FALSE;
740     matrix              boxs;
741     rvec                vzero, box_diag;
742     real                e, v, dvdl;
743     float               cycles_pme, cycles_force;
744     nonbonded_verlet_t *nbv;
745
746     cycles_force   = 0;
747     nbv            = fr->nbv;
748     nb_kernel_type = fr->nbv->grp[0].kernel_type;
749
750     start  = mdatoms->start;
751     homenr = mdatoms->homenr;
752
753     bSepDVDL = (fr->bSepDVDL && do_per_step(step, inputrec->nstlog));
754
755     clear_mat(vir_force);
756
757     cg0 = 0;
758     if (DOMAINDECOMP(cr))
759     {
760         cg1 = cr->dd->ncg_tot;
761     }
762     else
763     {
764         cg1 = top->cgs.nr;
765     }
766     if (fr->n_tpi > 0)
767     {
768         cg1--;
769     }
770
771     bStateChanged = (flags & GMX_FORCE_STATECHANGED);
772     bNS           = (flags & GMX_FORCE_NS) && (fr->bAllvsAll == FALSE);
773     bFillGrid     = (bNS && bStateChanged);
774     bCalcCGCM     = (bFillGrid && !DOMAINDECOMP(cr));
775     bDoLongRange  = (fr->bTwinRange && bNS && (flags & GMX_FORCE_DO_LR));
776     bDoForces     = (flags & GMX_FORCE_FORCES);
777     bSepLRF       = (bDoLongRange && bDoForces && (flags & GMX_FORCE_SEPLRF));
778     bUseGPU       = fr->nbv->bUseGPU;
779     bUseOrEmulGPU = bUseGPU || (nbv->grp[0].kernel_type == nbnxnk8x8x8_PlainC);
780
781     if (bStateChanged)
782     {
783         update_forcerec(fr, box);
784
785         if (NEED_MUTOT(*inputrec))
786         {
787             /* Calculate total (local) dipole moment in a temporary common array.
788              * This makes it possible to sum them over nodes faster.
789              */
790             calc_mu(start, homenr,
791                     x, mdatoms->chargeA, mdatoms->chargeB, mdatoms->nChargePerturbed,
792                     mu, mu+DIM);
793         }
794     }
795
796     if (fr->ePBC != epbcNONE)
797     {
798         /* Compute shift vectors every step,
799          * because of pressure coupling or box deformation!
800          */
801         if ((flags & GMX_FORCE_DYNAMICBOX) && bStateChanged)
802         {
803             calc_shifts(box, fr->shift_vec);
804         }
805
806         if (bCalcCGCM)
807         {
808             put_atoms_in_box_omp(fr->ePBC, box, homenr, x);
809             inc_nrnb(nrnb, eNR_SHIFTX, homenr);
810         }
811         else if (EI_ENERGY_MINIMIZATION(inputrec->eI) && graph)
812         {
813             unshift_self(graph, box, x);
814         }
815     }
816
817     nbnxn_atomdata_copy_shiftvec(flags & GMX_FORCE_DYNAMICBOX,
818                                  fr->shift_vec, nbv->grp[0].nbat);
819
820 #ifdef GMX_MPI
821     if (!(cr->duty & DUTY_PME))
822     {
823         /* Send particle coordinates to the pme nodes.
824          * Since this is only implemented for domain decomposition
825          * and domain decomposition does not use the graph,
826          * we do not need to worry about shifting.
827          */
828
829         wallcycle_start(wcycle, ewcPP_PMESENDX);
830
831         bBS = (inputrec->nwall == 2);
832         if (bBS)
833         {
834             copy_mat(box, boxs);
835             svmul(inputrec->wall_ewald_zfac, boxs[ZZ], boxs[ZZ]);
836         }
837
838         gmx_pme_send_x(cr, bBS ? boxs : box, x,
839                        mdatoms->nChargePerturbed, lambda[efptCOUL],
840                        (flags & (GMX_FORCE_VIRIAL | GMX_FORCE_ENERGY)), step);
841
842         wallcycle_stop(wcycle, ewcPP_PMESENDX);
843     }
844 #endif /* GMX_MPI */
845
846     /* do gridding for pair search */
847     if (bNS)
848     {
849         if (graph && bStateChanged)
850         {
851             /* Calculate intramolecular shift vectors to make molecules whole */
852             mk_mshift(fplog, graph, fr->ePBC, box, x);
853         }
854
855         clear_rvec(vzero);
856         box_diag[XX] = box[XX][XX];
857         box_diag[YY] = box[YY][YY];
858         box_diag[ZZ] = box[ZZ][ZZ];
859
860         wallcycle_start(wcycle, ewcNS);
861         if (!fr->bDomDec)
862         {
863             wallcycle_sub_start(wcycle, ewcsNBS_GRID_LOCAL);
864             nbnxn_put_on_grid(nbv->nbs, fr->ePBC, box,
865                               0, vzero, box_diag,
866                               0, mdatoms->homenr, -1, fr->cginfo, x,
867                               0, NULL,
868                               nbv->grp[eintLocal].kernel_type,
869                               nbv->grp[eintLocal].nbat);
870             wallcycle_sub_stop(wcycle, ewcsNBS_GRID_LOCAL);
871         }
872         else
873         {
874             wallcycle_sub_start(wcycle, ewcsNBS_GRID_NONLOCAL);
875             nbnxn_put_on_grid_nonlocal(nbv->nbs, domdec_zones(cr->dd),
876                                        fr->cginfo, x,
877                                        nbv->grp[eintNonlocal].kernel_type,
878                                        nbv->grp[eintNonlocal].nbat);
879             wallcycle_sub_stop(wcycle, ewcsNBS_GRID_NONLOCAL);
880         }
881
882         if (nbv->ngrp == 1 ||
883             nbv->grp[eintNonlocal].nbat == nbv->grp[eintLocal].nbat)
884         {
885             nbnxn_atomdata_set(nbv->grp[eintLocal].nbat, eatAll,
886                                nbv->nbs, mdatoms, fr->cginfo);
887         }
888         else
889         {
890             nbnxn_atomdata_set(nbv->grp[eintLocal].nbat, eatLocal,
891                                nbv->nbs, mdatoms, fr->cginfo);
892             nbnxn_atomdata_set(nbv->grp[eintNonlocal].nbat, eatAll,
893                                nbv->nbs, mdatoms, fr->cginfo);
894         }
895         wallcycle_stop(wcycle, ewcNS);
896     }
897
898     /* initialize the GPU atom data and copy shift vector */
899     if (bUseGPU)
900     {
901         if (bNS)
902         {
903             wallcycle_start_nocount(wcycle, ewcLAUNCH_GPU_NB);
904             nbnxn_cuda_init_atomdata(nbv->cu_nbv, nbv->grp[eintLocal].nbat);
905             wallcycle_stop(wcycle, ewcLAUNCH_GPU_NB);
906         }
907
908         wallcycle_start_nocount(wcycle, ewcLAUNCH_GPU_NB);
909         nbnxn_cuda_upload_shiftvec(nbv->cu_nbv, nbv->grp[eintLocal].nbat);
910         wallcycle_stop(wcycle, ewcLAUNCH_GPU_NB);
911     }
912
913     /* do local pair search */
914     if (bNS)
915     {
916         wallcycle_start_nocount(wcycle, ewcNS);
917         wallcycle_sub_start(wcycle, ewcsNBS_SEARCH_LOCAL);
918         nbnxn_make_pairlist(nbv->nbs, nbv->grp[eintLocal].nbat,
919                             &top->excls,
920                             ic->rlist,
921                             nbv->min_ci_balanced,
922                             &nbv->grp[eintLocal].nbl_lists,
923                             eintLocal,
924                             nbv->grp[eintLocal].kernel_type,
925                             nrnb);
926         wallcycle_sub_stop(wcycle, ewcsNBS_SEARCH_LOCAL);
927
928         if (bUseGPU)
929         {
930             /* initialize local pair-list on the GPU */
931             nbnxn_cuda_init_pairlist(nbv->cu_nbv,
932                                      nbv->grp[eintLocal].nbl_lists.nbl[0],
933                                      eintLocal);
934         }
935         wallcycle_stop(wcycle, ewcNS);
936     }
937     else
938     {
939         wallcycle_start(wcycle, ewcNB_XF_BUF_OPS);
940         wallcycle_sub_start(wcycle, ewcsNB_X_BUF_OPS);
941         nbnxn_atomdata_copy_x_to_nbat_x(nbv->nbs, eatLocal, FALSE, x,
942                                         nbv->grp[eintLocal].nbat);
943         wallcycle_sub_stop(wcycle, ewcsNB_X_BUF_OPS);
944         wallcycle_stop(wcycle, ewcNB_XF_BUF_OPS);
945     }
946
947     if (bUseGPU)
948     {
949         wallcycle_start(wcycle, ewcLAUNCH_GPU_NB);
950         /* launch local nonbonded F on GPU */
951         do_nb_verlet(fr, ic, enerd, flags, eintLocal, enbvClearFNo,
952                      nrnb);
953         wallcycle_stop(wcycle, ewcLAUNCH_GPU_NB);
954     }
955
956     /* Communicate coordinates and sum dipole if necessary +
957        do non-local pair search */
958     if (DOMAINDECOMP(cr))
959     {
960         bDiffKernels = (nbv->grp[eintNonlocal].kernel_type !=
961                         nbv->grp[eintLocal].kernel_type);
962
963         if (bDiffKernels)
964         {
965             /* With GPU+CPU non-bonded calculations we need to copy
966              * the local coordinates to the non-local nbat struct
967              * (in CPU format) as the non-local kernel call also
968              * calculates the local - non-local interactions.
969              */
970             wallcycle_start(wcycle, ewcNB_XF_BUF_OPS);
971             wallcycle_sub_start(wcycle, ewcsNB_X_BUF_OPS);
972             nbnxn_atomdata_copy_x_to_nbat_x(nbv->nbs, eatLocal, TRUE, x,
973                                             nbv->grp[eintNonlocal].nbat);
974             wallcycle_sub_stop(wcycle, ewcsNB_X_BUF_OPS);
975             wallcycle_stop(wcycle, ewcNB_XF_BUF_OPS);
976         }
977
978         if (bNS)
979         {
980             wallcycle_start_nocount(wcycle, ewcNS);
981             wallcycle_sub_start(wcycle, ewcsNBS_SEARCH_NONLOCAL);
982
983             if (bDiffKernels)
984             {
985                 nbnxn_grid_add_simple(nbv->nbs, nbv->grp[eintNonlocal].nbat);
986             }
987
988             nbnxn_make_pairlist(nbv->nbs, nbv->grp[eintNonlocal].nbat,
989                                 &top->excls,
990                                 ic->rlist,
991                                 nbv->min_ci_balanced,
992                                 &nbv->grp[eintNonlocal].nbl_lists,
993                                 eintNonlocal,
994                                 nbv->grp[eintNonlocal].kernel_type,
995                                 nrnb);
996
997             wallcycle_sub_stop(wcycle, ewcsNBS_SEARCH_NONLOCAL);
998
999             if (nbv->grp[eintNonlocal].kernel_type == nbnxnk8x8x8_CUDA)
1000             {
1001                 /* initialize non-local pair-list on the GPU */
1002                 nbnxn_cuda_init_pairlist(nbv->cu_nbv,
1003                                          nbv->grp[eintNonlocal].nbl_lists.nbl[0],
1004                                          eintNonlocal);
1005             }
1006             wallcycle_stop(wcycle, ewcNS);
1007         }
1008         else
1009         {
1010             wallcycle_start(wcycle, ewcMOVEX);
1011             dd_move_x(cr->dd, box, x);
1012
1013             /* When we don't need the total dipole we sum it in global_stat */
1014             if (bStateChanged && NEED_MUTOT(*inputrec))
1015             {
1016                 gmx_sumd(2*DIM, mu, cr);
1017             }
1018             wallcycle_stop(wcycle, ewcMOVEX);
1019
1020             wallcycle_start(wcycle, ewcNB_XF_BUF_OPS);
1021             wallcycle_sub_start(wcycle, ewcsNB_X_BUF_OPS);
1022             nbnxn_atomdata_copy_x_to_nbat_x(nbv->nbs, eatNonlocal, FALSE, x,
1023                                             nbv->grp[eintNonlocal].nbat);
1024             wallcycle_sub_stop(wcycle, ewcsNB_X_BUF_OPS);
1025             cycles_force += wallcycle_stop(wcycle, ewcNB_XF_BUF_OPS);
1026         }
1027
1028         if (bUseGPU && !bDiffKernels)
1029         {
1030             wallcycle_start(wcycle, ewcLAUNCH_GPU_NB);
1031             /* launch non-local nonbonded F on GPU */
1032             do_nb_verlet(fr, ic, enerd, flags, eintNonlocal, enbvClearFNo,
1033                          nrnb);
1034             cycles_force += wallcycle_stop(wcycle, ewcLAUNCH_GPU_NB);
1035         }
1036     }
1037
1038     if (bUseGPU)
1039     {
1040         /* launch D2H copy-back F */
1041         wallcycle_start_nocount(wcycle, ewcLAUNCH_GPU_NB);
1042         if (DOMAINDECOMP(cr) && !bDiffKernels)
1043         {
1044             nbnxn_cuda_launch_cpyback(nbv->cu_nbv, nbv->grp[eintNonlocal].nbat,
1045                                       flags, eatNonlocal);
1046         }
1047         nbnxn_cuda_launch_cpyback(nbv->cu_nbv, nbv->grp[eintLocal].nbat,
1048                                   flags, eatLocal);
1049         cycles_force += wallcycle_stop(wcycle, ewcLAUNCH_GPU_NB);
1050     }
1051
1052     if (bStateChanged && NEED_MUTOT(*inputrec))
1053     {
1054         if (PAR(cr))
1055         {
1056             gmx_sumd(2*DIM, mu, cr);
1057         }
1058
1059         for (i = 0; i < 2; i++)
1060         {
1061             for (j = 0; j < DIM; j++)
1062             {
1063                 fr->mu_tot[i][j] = mu[i*DIM + j];
1064             }
1065         }
1066     }
1067     if (fr->efep == efepNO)
1068     {
1069         copy_rvec(fr->mu_tot[0], mu_tot);
1070     }
1071     else
1072     {
1073         for (j = 0; j < DIM; j++)
1074         {
1075             mu_tot[j] =
1076                 (1.0 - lambda[efptCOUL])*fr->mu_tot[0][j] +
1077                 lambda[efptCOUL]*fr->mu_tot[1][j];
1078         }
1079     }
1080
1081     /* Reset energies */
1082     reset_enerdata(fr, bNS, enerd, MASTER(cr));
1083     clear_rvecs(SHIFTS, fr->fshift);
1084
1085     if (DOMAINDECOMP(cr))
1086     {
1087         if (!(cr->duty & DUTY_PME))
1088         {
1089             wallcycle_start(wcycle, ewcPPDURINGPME);
1090             dd_force_flop_start(cr->dd, nrnb);
1091         }
1092     }
1093
1094     if (inputrec->bRot)
1095     {
1096         /* Enforced rotation has its own cycle counter that starts after the collective
1097          * coordinates have been communicated. It is added to ddCyclF to allow
1098          * for proper load-balancing */
1099         wallcycle_start(wcycle, ewcROT);
1100         do_rotation(cr, inputrec, box, x, t, step, wcycle, bNS);
1101         wallcycle_stop(wcycle, ewcROT);
1102     }
1103
1104     /* Start the force cycle counter.
1105      * This counter is stopped in do_forcelow_level.
1106      * No parallel communication should occur while this counter is running,
1107      * since that will interfere with the dynamic load balancing.
1108      */
1109     wallcycle_start(wcycle, ewcFORCE);
1110     if (bDoForces)
1111     {
1112         /* Reset forces for which the virial is calculated separately:
1113          * PME/Ewald forces if necessary */
1114         if (fr->bF_NoVirSum)
1115         {
1116             if (flags & GMX_FORCE_VIRIAL)
1117             {
1118                 fr->f_novirsum = fr->f_novirsum_alloc;
1119                 if (fr->bDomDec)
1120                 {
1121                     clear_rvecs(fr->f_novirsum_n, fr->f_novirsum);
1122                 }
1123                 else
1124                 {
1125                     clear_rvecs(homenr, fr->f_novirsum+start);
1126                 }
1127             }
1128             else
1129             {
1130                 /* We are not calculating the pressure so we do not need
1131                  * a separate array for forces that do not contribute
1132                  * to the pressure.
1133                  */
1134                 fr->f_novirsum = f;
1135             }
1136         }
1137
1138         /* Clear the short- and long-range forces */
1139         clear_rvecs(fr->natoms_force_constr, f);
1140         if (bSepLRF && do_per_step(step, inputrec->nstcalclr))
1141         {
1142             clear_rvecs(fr->natoms_force_constr, fr->f_twin);
1143         }
1144
1145         clear_rvec(fr->vir_diag_posres);
1146     }
1147
1148     if (inputrec->ePull == epullCONSTRAINT)
1149     {
1150         clear_pull_forces(inputrec->pull);
1151     }
1152
1153     /* We calculate the non-bonded forces, when done on the CPU, here.
1154      * We do this before calling do_force_lowlevel, as in there bondeds
1155      * forces are calculated before PME, which does communication.
1156      * With this order, non-bonded and bonded force calculation imbalance
1157      * can be balanced out by the domain decomposition load balancing.
1158      */
1159
1160     if (!bUseOrEmulGPU)
1161     {
1162         /* Maybe we should move this into do_force_lowlevel */
1163         do_nb_verlet(fr, ic, enerd, flags, eintLocal, enbvClearFYes,
1164                      nrnb);
1165     }
1166
1167     if (!bUseOrEmulGPU || bDiffKernels)
1168     {
1169         int aloc;
1170
1171         if (DOMAINDECOMP(cr))
1172         {
1173             do_nb_verlet(fr, ic, enerd, flags, eintNonlocal,
1174                          bDiffKernels ? enbvClearFYes : enbvClearFNo,
1175                          nrnb);
1176         }
1177
1178         if (!bUseOrEmulGPU)
1179         {
1180             aloc = eintLocal;
1181         }
1182         else
1183         {
1184             aloc = eintNonlocal;
1185         }
1186
1187         /* Add all the non-bonded force to the normal force array.
1188          * This can be split into a local a non-local part when overlapping
1189          * communication with calculation with domain decomposition.
1190          */
1191         cycles_force += wallcycle_stop(wcycle, ewcFORCE);
1192         wallcycle_start(wcycle, ewcNB_XF_BUF_OPS);
1193         wallcycle_sub_start(wcycle, ewcsNB_F_BUF_OPS);
1194         nbnxn_atomdata_add_nbat_f_to_f(nbv->nbs, eatAll, nbv->grp[aloc].nbat, f);
1195         wallcycle_sub_stop(wcycle, ewcsNB_F_BUF_OPS);
1196         cycles_force += wallcycle_stop(wcycle, ewcNB_XF_BUF_OPS);
1197         wallcycle_start_nocount(wcycle, ewcFORCE);
1198
1199         /* if there are multiple fshift output buffers reduce them */
1200         if ((flags & GMX_FORCE_VIRIAL) &&
1201             nbv->grp[aloc].nbl_lists.nnbl > 1)
1202         {
1203             nbnxn_atomdata_add_nbat_fshift_to_fshift(nbv->grp[aloc].nbat,
1204                                                      fr->fshift);
1205         }
1206     }
1207
1208     /* update QMMMrec, if necessary */
1209     if (fr->bQMMM)
1210     {
1211         update_QMMMrec(cr, fr, x, mdatoms, box, top);
1212     }
1213
1214     if ((flags & GMX_FORCE_BONDED) && top->idef.il[F_POSRES].nr > 0)
1215     {
1216         posres_wrapper(fplog, flags, bSepDVDL, inputrec, nrnb, top, box, x,
1217                        enerd, lambda, fr);
1218     }
1219
1220     /* Compute the bonded and non-bonded energies and optionally forces */
1221     do_force_lowlevel(fplog, step, fr, inputrec, &(top->idef),
1222                       cr, nrnb, wcycle, mdatoms,
1223                       x, hist, f, bSepLRF ? fr->f_twin : f, enerd, fcd, top, fr->born,
1224                       &(top->atomtypes), bBornRadii, box,
1225                       inputrec->fepvals, lambda, graph, &(top->excls), fr->mu_tot,
1226                       flags, &cycles_pme);
1227
1228     if (bSepLRF)
1229     {
1230         if (do_per_step(step, inputrec->nstcalclr))
1231         {
1232             /* Add the long range forces to the short range forces */
1233             for (i = 0; i < fr->natoms_force_constr; i++)
1234             {
1235                 rvec_add(fr->f_twin[i], f[i], f[i]);
1236             }
1237         }
1238     }
1239
1240     cycles_force += wallcycle_stop(wcycle, ewcFORCE);
1241
1242     if (ed)
1243     {
1244         do_flood(cr, inputrec, x, f, ed, box, step, bNS);
1245     }
1246
1247     if (bUseOrEmulGPU && !bDiffKernels)
1248     {
1249         /* wait for non-local forces (or calculate in emulation mode) */
1250         if (DOMAINDECOMP(cr))
1251         {
1252             if (bUseGPU)
1253             {
1254                 wallcycle_start(wcycle, ewcWAIT_GPU_NB_NL);
1255                 nbnxn_cuda_wait_gpu(nbv->cu_nbv,
1256                                     nbv->grp[eintNonlocal].nbat,
1257                                     flags, eatNonlocal,
1258                                     enerd->grpp.ener[egLJSR], enerd->grpp.ener[egCOULSR],
1259                                     fr->fshift);
1260                 cycles_force += wallcycle_stop(wcycle, ewcWAIT_GPU_NB_NL);
1261             }
1262             else
1263             {
1264                 wallcycle_start_nocount(wcycle, ewcFORCE);
1265                 do_nb_verlet(fr, ic, enerd, flags, eintNonlocal, enbvClearFYes,
1266                              nrnb);
1267                 cycles_force += wallcycle_stop(wcycle, ewcFORCE);
1268             }
1269             wallcycle_start(wcycle, ewcNB_XF_BUF_OPS);
1270             wallcycle_sub_start(wcycle, ewcsNB_F_BUF_OPS);
1271             /* skip the reduction if there was no non-local work to do */
1272             if (nbv->grp[eintLocal].nbl_lists.nbl[0]->nsci > 0)
1273             {
1274                 nbnxn_atomdata_add_nbat_f_to_f(nbv->nbs, eatNonlocal,
1275                                                nbv->grp[eintNonlocal].nbat, f);
1276             }
1277             wallcycle_sub_stop(wcycle, ewcsNB_F_BUF_OPS);
1278             cycles_force += wallcycle_stop(wcycle, ewcNB_XF_BUF_OPS);
1279         }
1280     }
1281
1282     if (bDoForces)
1283     {
1284         /* Communicate the forces */
1285         if (PAR(cr))
1286         {
1287             wallcycle_start(wcycle, ewcMOVEF);
1288             if (DOMAINDECOMP(cr))
1289             {
1290                 dd_move_f(cr->dd, f, fr->fshift);
1291                 /* Do we need to communicate the separate force array
1292                  * for terms that do not contribute to the single sum virial?
1293                  * Position restraints and electric fields do not introduce
1294                  * inter-cg forces, only full electrostatics methods do.
1295                  * When we do not calculate the virial, fr->f_novirsum = f,
1296                  * so we have already communicated these forces.
1297                  */
1298                 if (EEL_FULL(fr->eeltype) && cr->dd->n_intercg_excl &&
1299                     (flags & GMX_FORCE_VIRIAL))
1300                 {
1301                     dd_move_f(cr->dd, fr->f_novirsum, NULL);
1302                 }
1303                 if (bSepLRF)
1304                 {
1305                     /* We should not update the shift forces here,
1306                      * since f_twin is already included in f.
1307                      */
1308                     dd_move_f(cr->dd, fr->f_twin, NULL);
1309                 }
1310             }
1311             wallcycle_stop(wcycle, ewcMOVEF);
1312         }
1313     }
1314
1315     if (bUseOrEmulGPU)
1316     {
1317         /* wait for local forces (or calculate in emulation mode) */
1318         if (bUseGPU)
1319         {
1320             wallcycle_start(wcycle, ewcWAIT_GPU_NB_L);
1321             nbnxn_cuda_wait_gpu(nbv->cu_nbv,
1322                                 nbv->grp[eintLocal].nbat,
1323                                 flags, eatLocal,
1324                                 enerd->grpp.ener[egLJSR], enerd->grpp.ener[egCOULSR],
1325                                 fr->fshift);
1326             wallcycle_stop(wcycle, ewcWAIT_GPU_NB_L);
1327
1328             /* now clear the GPU outputs while we finish the step on the CPU */
1329
1330             wallcycle_start_nocount(wcycle, ewcLAUNCH_GPU_NB);
1331             nbnxn_cuda_clear_outputs(nbv->cu_nbv, flags);
1332             wallcycle_stop(wcycle, ewcLAUNCH_GPU_NB);
1333         }
1334         else
1335         {
1336             wallcycle_start_nocount(wcycle, ewcFORCE);
1337             do_nb_verlet(fr, ic, enerd, flags, eintLocal,
1338                          DOMAINDECOMP(cr) ? enbvClearFNo : enbvClearFYes,
1339                          nrnb);
1340             wallcycle_stop(wcycle, ewcFORCE);
1341         }
1342         wallcycle_start(wcycle, ewcNB_XF_BUF_OPS);
1343         wallcycle_sub_start(wcycle, ewcsNB_F_BUF_OPS);
1344         if (nbv->grp[eintLocal].nbl_lists.nbl[0]->nsci > 0)
1345         {
1346             /* skip the reduction if there was no non-local work to do */
1347             nbnxn_atomdata_add_nbat_f_to_f(nbv->nbs, eatLocal,
1348                                            nbv->grp[eintLocal].nbat, f);
1349         }
1350         wallcycle_sub_stop(wcycle, ewcsNB_F_BUF_OPS);
1351         wallcycle_stop(wcycle, ewcNB_XF_BUF_OPS);
1352     }
1353
1354     if (DOMAINDECOMP(cr))
1355     {
1356         dd_force_flop_stop(cr->dd, nrnb);
1357         if (wcycle)
1358         {
1359             dd_cycles_add(cr->dd, cycles_force-cycles_pme, ddCyclF);
1360         }
1361     }
1362
1363     if (bDoForces)
1364     {
1365         if (IR_ELEC_FIELD(*inputrec))
1366         {
1367             /* Compute forces due to electric field */
1368             calc_f_el(MASTER(cr) ? field : NULL,
1369                       start, homenr, mdatoms->chargeA, fr->f_novirsum,
1370                       inputrec->ex, inputrec->et, t);
1371         }
1372
1373         /* If we have NoVirSum forces, but we do not calculate the virial,
1374          * we sum fr->f_novirum=f later.
1375          */
1376         if (vsite && !(fr->bF_NoVirSum && !(flags & GMX_FORCE_VIRIAL)))
1377         {
1378             wallcycle_start(wcycle, ewcVSITESPREAD);
1379             spread_vsite_f(vsite, x, f, fr->fshift, FALSE, NULL, nrnb,
1380                            &top->idef, fr->ePBC, fr->bMolPBC, graph, box, cr);
1381             wallcycle_stop(wcycle, ewcVSITESPREAD);
1382
1383             if (bSepLRF)
1384             {
1385                 wallcycle_start(wcycle, ewcVSITESPREAD);
1386                 spread_vsite_f(vsite, x, fr->f_twin, NULL, FALSE, NULL,
1387                                nrnb,
1388                                &top->idef, fr->ePBC, fr->bMolPBC, graph, box, cr);
1389                 wallcycle_stop(wcycle, ewcVSITESPREAD);
1390             }
1391         }
1392
1393         if (flags & GMX_FORCE_VIRIAL)
1394         {
1395             /* Calculation of the virial must be done after vsites! */
1396             calc_virial(mdatoms->start, mdatoms->homenr, x, f,
1397                         vir_force, graph, box, nrnb, fr, inputrec->ePBC);
1398         }
1399     }
1400
1401     if (inputrec->ePull == epullUMBRELLA || inputrec->ePull == epullCONST_F)
1402     {
1403         pull_potential_wrapper(fplog, bSepDVDL, cr, inputrec, box, x,
1404                                f, vir_force, mdatoms, enerd, lambda, t);
1405     }
1406
1407     /* Add the forces from enforced rotation potentials (if any) */
1408     if (inputrec->bRot)
1409     {
1410         wallcycle_start(wcycle, ewcROTadd);
1411         enerd->term[F_COM_PULL] += add_rot_forces(inputrec->rot, f, cr, step, t);
1412         wallcycle_stop(wcycle, ewcROTadd);
1413     }
1414
1415     if (PAR(cr) && !(cr->duty & DUTY_PME))
1416     {
1417         /* In case of node-splitting, the PP nodes receive the long-range
1418          * forces, virial and energy from the PME nodes here.
1419          */
1420         pme_receive_force_ener(fplog, bSepDVDL, cr, wcycle, enerd, fr);
1421     }
1422
1423     if (bDoForces)
1424     {
1425         post_process_forces(cr, step, nrnb, wcycle,
1426                             top, box, x, f, vir_force, mdatoms, graph, fr, vsite,
1427                             flags);
1428     }
1429
1430     /* Sum the potential energy terms from group contributions */
1431     sum_epot(&(enerd->grpp), enerd->term);
1432 }
1433
1434 void do_force_cutsGROUP(FILE *fplog, t_commrec *cr,
1435                         t_inputrec *inputrec,
1436                         gmx_large_int_t step, t_nrnb *nrnb, gmx_wallcycle_t wcycle,
1437                         gmx_localtop_t *top,
1438                         gmx_groups_t *groups,
1439                         matrix box, rvec x[], history_t *hist,
1440                         rvec f[],
1441                         tensor vir_force,
1442                         t_mdatoms *mdatoms,
1443                         gmx_enerdata_t *enerd, t_fcdata *fcd,
1444                         real *lambda, t_graph *graph,
1445                         t_forcerec *fr, gmx_vsite_t *vsite, rvec mu_tot,
1446                         double t, FILE *field, gmx_edsam_t ed,
1447                         gmx_bool bBornRadii,
1448                         int flags)
1449 {
1450     int        cg0, cg1, i, j;
1451     int        start, homenr;
1452     double     mu[2*DIM];
1453     gmx_bool   bSepDVDL, bStateChanged, bNS, bFillGrid, bCalcCGCM, bBS;
1454     gmx_bool   bDoLongRangeNS, bDoForces, bDoPotential, bSepLRF;
1455     gmx_bool   bDoAdressWF;
1456     matrix     boxs;
1457     rvec       vzero, box_diag;
1458     real       e, v, dvdlambda[efptNR];
1459     t_pbc      pbc;
1460     float      cycles_pme, cycles_force;
1461
1462     start  = mdatoms->start;
1463     homenr = mdatoms->homenr;
1464
1465     bSepDVDL = (fr->bSepDVDL && do_per_step(step, inputrec->nstlog));
1466
1467     clear_mat(vir_force);
1468
1469     if (PARTDECOMP(cr))
1470     {
1471         pd_cg_range(cr, &cg0, &cg1);
1472     }
1473     else
1474     {
1475         cg0 = 0;
1476         if (DOMAINDECOMP(cr))
1477         {
1478             cg1 = cr->dd->ncg_tot;
1479         }
1480         else
1481         {
1482             cg1 = top->cgs.nr;
1483         }
1484         if (fr->n_tpi > 0)
1485         {
1486             cg1--;
1487         }
1488     }
1489
1490     bStateChanged  = (flags & GMX_FORCE_STATECHANGED);
1491     bNS            = (flags & GMX_FORCE_NS) && (fr->bAllvsAll == FALSE);
1492     /* Should we update the long-range neighborlists at this step? */
1493     bDoLongRangeNS = fr->bTwinRange && bNS;
1494     /* Should we perform the long-range nonbonded evaluation inside the neighborsearching? */
1495     bFillGrid      = (bNS && bStateChanged);
1496     bCalcCGCM      = (bFillGrid && !DOMAINDECOMP(cr));
1497     bDoForces      = (flags & GMX_FORCE_FORCES);
1498     bDoPotential   = (flags & GMX_FORCE_ENERGY);
1499     bSepLRF        = ((inputrec->nstcalclr > 1) && bDoForces &&
1500                       (flags & GMX_FORCE_SEPLRF) && (flags & GMX_FORCE_DO_LR));
1501
1502     /* should probably move this to the forcerec since it doesn't change */
1503     bDoAdressWF   = ((fr->adress_type != eAdressOff));
1504
1505     if (bStateChanged)
1506     {
1507         update_forcerec(fr, box);
1508
1509         if (NEED_MUTOT(*inputrec))
1510         {
1511             /* Calculate total (local) dipole moment in a temporary common array.
1512              * This makes it possible to sum them over nodes faster.
1513              */
1514             calc_mu(start, homenr,
1515                     x, mdatoms->chargeA, mdatoms->chargeB, mdatoms->nChargePerturbed,
1516                     mu, mu+DIM);
1517         }
1518     }
1519
1520     if (fr->ePBC != epbcNONE)
1521     {
1522         /* Compute shift vectors every step,
1523          * because of pressure coupling or box deformation!
1524          */
1525         if ((flags & GMX_FORCE_DYNAMICBOX) && bStateChanged)
1526         {
1527             calc_shifts(box, fr->shift_vec);
1528         }
1529
1530         if (bCalcCGCM)
1531         {
1532             put_charge_groups_in_box(fplog, cg0, cg1, fr->ePBC, box,
1533                                      &(top->cgs), x, fr->cg_cm);
1534             inc_nrnb(nrnb, eNR_CGCM, homenr);
1535             inc_nrnb(nrnb, eNR_RESETX, cg1-cg0);
1536         }
1537         else if (EI_ENERGY_MINIMIZATION(inputrec->eI) && graph)
1538         {
1539             unshift_self(graph, box, x);
1540         }
1541     }
1542     else if (bCalcCGCM)
1543     {
1544         calc_cgcm(fplog, cg0, cg1, &(top->cgs), x, fr->cg_cm);
1545         inc_nrnb(nrnb, eNR_CGCM, homenr);
1546     }
1547
1548     if (bCalcCGCM)
1549     {
1550         if (PAR(cr))
1551         {
1552             move_cgcm(fplog, cr, fr->cg_cm);
1553         }
1554         if (gmx_debug_at)
1555         {
1556             pr_rvecs(debug, 0, "cgcm", fr->cg_cm, top->cgs.nr);
1557         }
1558     }
1559
1560 #ifdef GMX_MPI
1561     if (!(cr->duty & DUTY_PME))
1562     {
1563         /* Send particle coordinates to the pme nodes.
1564          * Since this is only implemented for domain decomposition
1565          * and domain decomposition does not use the graph,
1566          * we do not need to worry about shifting.
1567          */
1568
1569         wallcycle_start(wcycle, ewcPP_PMESENDX);
1570
1571         bBS = (inputrec->nwall == 2);
1572         if (bBS)
1573         {
1574             copy_mat(box, boxs);
1575             svmul(inputrec->wall_ewald_zfac, boxs[ZZ], boxs[ZZ]);
1576         }
1577
1578         gmx_pme_send_x(cr, bBS ? boxs : box, x,
1579                        mdatoms->nChargePerturbed, lambda[efptCOUL],
1580                        (flags & (GMX_FORCE_VIRIAL | GMX_FORCE_ENERGY)), step);
1581
1582         wallcycle_stop(wcycle, ewcPP_PMESENDX);
1583     }
1584 #endif /* GMX_MPI */
1585
1586     /* Communicate coordinates and sum dipole if necessary */
1587     if (PAR(cr))
1588     {
1589         wallcycle_start(wcycle, ewcMOVEX);
1590         if (DOMAINDECOMP(cr))
1591         {
1592             dd_move_x(cr->dd, box, x);
1593         }
1594         else
1595         {
1596             move_x(cr, x, nrnb);
1597         }
1598         wallcycle_stop(wcycle, ewcMOVEX);
1599     }
1600
1601     /* update adress weight beforehand */
1602     if (bStateChanged && bDoAdressWF)
1603     {
1604         /* need pbc for adress weight calculation with pbc_dx */
1605         set_pbc(&pbc, inputrec->ePBC, box);
1606         if (fr->adress_site == eAdressSITEcog)
1607         {
1608             update_adress_weights_cog(top->idef.iparams, top->idef.il, x, fr, mdatoms,
1609                                       inputrec->ePBC == epbcNONE ? NULL : &pbc);
1610         }
1611         else if (fr->adress_site == eAdressSITEcom)
1612         {
1613             update_adress_weights_com(fplog, cg0, cg1, &(top->cgs), x, fr, mdatoms,
1614                                       inputrec->ePBC == epbcNONE ? NULL : &pbc);
1615         }
1616         else if (fr->adress_site == eAdressSITEatomatom)
1617         {
1618             update_adress_weights_atom_per_atom(cg0, cg1, &(top->cgs), x, fr, mdatoms,
1619                                                 inputrec->ePBC == epbcNONE ? NULL : &pbc);
1620         }
1621         else
1622         {
1623             update_adress_weights_atom(cg0, cg1, &(top->cgs), x, fr, mdatoms,
1624                                        inputrec->ePBC == epbcNONE ? NULL : &pbc);
1625         }
1626     }
1627
1628     if (NEED_MUTOT(*inputrec))
1629     {
1630
1631         if (bStateChanged)
1632         {
1633             if (PAR(cr))
1634             {
1635                 gmx_sumd(2*DIM, mu, cr);
1636             }
1637             for (i = 0; i < 2; i++)
1638             {
1639                 for (j = 0; j < DIM; j++)
1640                 {
1641                     fr->mu_tot[i][j] = mu[i*DIM + j];
1642                 }
1643             }
1644         }
1645         if (fr->efep == efepNO)
1646         {
1647             copy_rvec(fr->mu_tot[0], mu_tot);
1648         }
1649         else
1650         {
1651             for (j = 0; j < DIM; j++)
1652             {
1653                 mu_tot[j] =
1654                     (1.0 - lambda[efptCOUL])*fr->mu_tot[0][j] + lambda[efptCOUL]*fr->mu_tot[1][j];
1655             }
1656         }
1657     }
1658
1659     /* Reset energies */
1660     reset_enerdata(fr, bNS, enerd, MASTER(cr));
1661     clear_rvecs(SHIFTS, fr->fshift);
1662
1663     if (bNS)
1664     {
1665         wallcycle_start(wcycle, ewcNS);
1666
1667         if (graph && bStateChanged)
1668         {
1669             /* Calculate intramolecular shift vectors to make molecules whole */
1670             mk_mshift(fplog, graph, fr->ePBC, box, x);
1671         }
1672
1673         /* Do the actual neighbour searching */
1674         ns(fplog, fr, box,
1675            groups, top, mdatoms,
1676            cr, nrnb, bFillGrid,
1677            bDoLongRangeNS);
1678
1679         wallcycle_stop(wcycle, ewcNS);
1680     }
1681
1682     if (inputrec->implicit_solvent && bNS)
1683     {
1684         make_gb_nblist(cr, inputrec->gb_algorithm,
1685                        x, box, fr, &top->idef, graph, fr->born);
1686     }
1687
1688     if (DOMAINDECOMP(cr))
1689     {
1690         if (!(cr->duty & DUTY_PME))
1691         {
1692             wallcycle_start(wcycle, ewcPPDURINGPME);
1693             dd_force_flop_start(cr->dd, nrnb);
1694         }
1695     }
1696
1697     if (inputrec->bRot)
1698     {
1699         /* Enforced rotation has its own cycle counter that starts after the collective
1700          * coordinates have been communicated. It is added to ddCyclF to allow
1701          * for proper load-balancing */
1702         wallcycle_start(wcycle, ewcROT);
1703         do_rotation(cr, inputrec, box, x, t, step, wcycle, bNS);
1704         wallcycle_stop(wcycle, ewcROT);
1705     }
1706
1707     /* Start the force cycle counter.
1708      * This counter is stopped in do_forcelow_level.
1709      * No parallel communication should occur while this counter is running,
1710      * since that will interfere with the dynamic load balancing.
1711      */
1712     wallcycle_start(wcycle, ewcFORCE);
1713
1714     if (bDoForces)
1715     {
1716         /* Reset forces for which the virial is calculated separately:
1717          * PME/Ewald forces if necessary */
1718         if (fr->bF_NoVirSum)
1719         {
1720             if (flags & GMX_FORCE_VIRIAL)
1721             {
1722                 fr->f_novirsum = fr->f_novirsum_alloc;
1723                 if (fr->bDomDec)
1724                 {
1725                     clear_rvecs(fr->f_novirsum_n, fr->f_novirsum);
1726                 }
1727                 else
1728                 {
1729                     clear_rvecs(homenr, fr->f_novirsum+start);
1730                 }
1731             }
1732             else
1733             {
1734                 /* We are not calculating the pressure so we do not need
1735                  * a separate array for forces that do not contribute
1736                  * to the pressure.
1737                  */
1738                 fr->f_novirsum = f;
1739             }
1740         }
1741
1742         /* Clear the short- and long-range forces */
1743         clear_rvecs(fr->natoms_force_constr, f);
1744         if (bSepLRF && do_per_step(step, inputrec->nstcalclr))
1745         {
1746             clear_rvecs(fr->natoms_force_constr, fr->f_twin);
1747         }
1748
1749         clear_rvec(fr->vir_diag_posres);
1750     }
1751     if (inputrec->ePull == epullCONSTRAINT)
1752     {
1753         clear_pull_forces(inputrec->pull);
1754     }
1755
1756     /* update QMMMrec, if necessary */
1757     if (fr->bQMMM)
1758     {
1759         update_QMMMrec(cr, fr, x, mdatoms, box, top);
1760     }
1761
1762     if ((flags & GMX_FORCE_BONDED) && top->idef.il[F_POSRES].nr > 0)
1763     {
1764         posres_wrapper(fplog, flags, bSepDVDL, inputrec, nrnb, top, box, x,
1765                        enerd, lambda, fr);
1766     }
1767
1768     if ((flags & GMX_FORCE_BONDED) && top->idef.il[F_FBPOSRES].nr > 0)
1769     {
1770         /* Flat-bottomed position restraints always require full pbc */
1771         if (!(bStateChanged && bDoAdressWF))
1772         {
1773             set_pbc(&pbc, inputrec->ePBC, box);
1774         }
1775         v = fbposres(top->idef.il[F_FBPOSRES].nr, top->idef.il[F_FBPOSRES].iatoms,
1776                      top->idef.iparams_fbposres,
1777                      (const rvec*)x, fr->f_novirsum, fr->vir_diag_posres,
1778                      inputrec->ePBC == epbcNONE ? NULL : &pbc,
1779                      fr->rc_scaling, fr->ePBC, fr->posres_com);
1780         enerd->term[F_FBPOSRES] += v;
1781         inc_nrnb(nrnb, eNR_FBPOSRES, top->idef.il[F_FBPOSRES].nr/2);
1782     }
1783
1784     /* Compute the bonded and non-bonded energies and optionally forces */
1785     do_force_lowlevel(fplog, step, fr, inputrec, &(top->idef),
1786                       cr, nrnb, wcycle, mdatoms,
1787                       x, hist, f, bSepLRF ? fr->f_twin : f, enerd, fcd, top, fr->born,
1788                       &(top->atomtypes), bBornRadii, box,
1789                       inputrec->fepvals, lambda,
1790                       graph, &(top->excls), fr->mu_tot,
1791                       flags,
1792                       &cycles_pme);
1793
1794     if (bSepLRF)
1795     {
1796         if (do_per_step(step, inputrec->nstcalclr))
1797         {
1798             /* Add the long range forces to the short range forces */
1799             for (i = 0; i < fr->natoms_force_constr; i++)
1800             {
1801                 rvec_add(fr->f_twin[i], f[i], f[i]);
1802             }
1803         }
1804     }
1805
1806     cycles_force = wallcycle_stop(wcycle, ewcFORCE);
1807
1808     if (ed)
1809     {
1810         do_flood(cr, inputrec, x, f, ed, box, step, bNS);
1811     }
1812
1813     if (DOMAINDECOMP(cr))
1814     {
1815         dd_force_flop_stop(cr->dd, nrnb);
1816         if (wcycle)
1817         {
1818             dd_cycles_add(cr->dd, cycles_force-cycles_pme, ddCyclF);
1819         }
1820     }
1821
1822     if (bDoForces)
1823     {
1824         if (IR_ELEC_FIELD(*inputrec))
1825         {
1826             /* Compute forces due to electric field */
1827             calc_f_el(MASTER(cr) ? field : NULL,
1828                       start, homenr, mdatoms->chargeA, fr->f_novirsum,
1829                       inputrec->ex, inputrec->et, t);
1830         }
1831
1832         if (bDoAdressWF && fr->adress_icor == eAdressICThermoForce)
1833         {
1834             /* Compute thermodynamic force in hybrid AdResS region */
1835             adress_thermo_force(start, homenr, &(top->cgs), x, fr->f_novirsum, fr, mdatoms,
1836                                 inputrec->ePBC == epbcNONE ? NULL : &pbc);
1837         }
1838
1839         /* Communicate the forces */
1840         if (PAR(cr))
1841         {
1842             wallcycle_start(wcycle, ewcMOVEF);
1843             if (DOMAINDECOMP(cr))
1844             {
1845                 dd_move_f(cr->dd, f, fr->fshift);
1846                 /* Do we need to communicate the separate force array
1847                  * for terms that do not contribute to the single sum virial?
1848                  * Position restraints and electric fields do not introduce
1849                  * inter-cg forces, only full electrostatics methods do.
1850                  * When we do not calculate the virial, fr->f_novirsum = f,
1851                  * so we have already communicated these forces.
1852                  */
1853                 if (EEL_FULL(fr->eeltype) && cr->dd->n_intercg_excl &&
1854                     (flags & GMX_FORCE_VIRIAL))
1855                 {
1856                     dd_move_f(cr->dd, fr->f_novirsum, NULL);
1857                 }
1858                 if (bSepLRF)
1859                 {
1860                     /* We should not update the shift forces here,
1861                      * since f_twin is already included in f.
1862                      */
1863                     dd_move_f(cr->dd, fr->f_twin, NULL);
1864                 }
1865             }
1866             else
1867             {
1868                 pd_move_f(cr, f, nrnb);
1869                 if (bSepLRF)
1870                 {
1871                     pd_move_f(cr, fr->f_twin, nrnb);
1872                 }
1873             }
1874             wallcycle_stop(wcycle, ewcMOVEF);
1875         }
1876
1877         /* If we have NoVirSum forces, but we do not calculate the virial,
1878          * we sum fr->f_novirum=f later.
1879          */
1880         if (vsite && !(fr->bF_NoVirSum && !(flags & GMX_FORCE_VIRIAL)))
1881         {
1882             wallcycle_start(wcycle, ewcVSITESPREAD);
1883             spread_vsite_f(vsite, x, f, fr->fshift, FALSE, NULL, nrnb,
1884                            &top->idef, fr->ePBC, fr->bMolPBC, graph, box, cr);
1885             wallcycle_stop(wcycle, ewcVSITESPREAD);
1886
1887             if (bSepLRF)
1888             {
1889                 wallcycle_start(wcycle, ewcVSITESPREAD);
1890                 spread_vsite_f(vsite, x, fr->f_twin, NULL, FALSE, NULL,
1891                                nrnb,
1892                                &top->idef, fr->ePBC, fr->bMolPBC, graph, box, cr);
1893                 wallcycle_stop(wcycle, ewcVSITESPREAD);
1894             }
1895         }
1896
1897         if (flags & GMX_FORCE_VIRIAL)
1898         {
1899             /* Calculation of the virial must be done after vsites! */
1900             calc_virial(mdatoms->start, mdatoms->homenr, x, f,
1901                         vir_force, graph, box, nrnb, fr, inputrec->ePBC);
1902         }
1903     }
1904
1905     if (inputrec->ePull == epullUMBRELLA || inputrec->ePull == epullCONST_F)
1906     {
1907         pull_potential_wrapper(fplog, bSepDVDL, cr, inputrec, box, x,
1908                                f, vir_force, mdatoms, enerd, lambda, t);
1909     }
1910
1911     /* Add the forces from enforced rotation potentials (if any) */
1912     if (inputrec->bRot)
1913     {
1914         wallcycle_start(wcycle, ewcROTadd);
1915         enerd->term[F_COM_PULL] += add_rot_forces(inputrec->rot, f, cr, step, t);
1916         wallcycle_stop(wcycle, ewcROTadd);
1917     }
1918
1919     if (PAR(cr) && !(cr->duty & DUTY_PME))
1920     {
1921         /* In case of node-splitting, the PP nodes receive the long-range
1922          * forces, virial and energy from the PME nodes here.
1923          */
1924         pme_receive_force_ener(fplog, bSepDVDL, cr, wcycle, enerd, fr);
1925     }
1926
1927     if (bDoForces)
1928     {
1929         post_process_forces(cr, step, nrnb, wcycle,
1930                             top, box, x, f, vir_force, mdatoms, graph, fr, vsite,
1931                             flags);
1932     }
1933
1934     /* Sum the potential energy terms from group contributions */
1935     sum_epot(&(enerd->grpp), enerd->term);
1936 }
1937
1938 void do_force(FILE *fplog, t_commrec *cr,
1939               t_inputrec *inputrec,
1940               gmx_large_int_t step, t_nrnb *nrnb, gmx_wallcycle_t wcycle,
1941               gmx_localtop_t *top,
1942               gmx_groups_t *groups,
1943               matrix box, rvec x[], history_t *hist,
1944               rvec f[],
1945               tensor vir_force,
1946               t_mdatoms *mdatoms,
1947               gmx_enerdata_t *enerd, t_fcdata *fcd,
1948               real *lambda, t_graph *graph,
1949               t_forcerec *fr,
1950               gmx_vsite_t *vsite, rvec mu_tot,
1951               double t, FILE *field, gmx_edsam_t ed,
1952               gmx_bool bBornRadii,
1953               int flags)
1954 {
1955     /* modify force flag if not doing nonbonded */
1956     if (!fr->bNonbonded)
1957     {
1958         flags &= ~GMX_FORCE_NONBONDED;
1959     }
1960
1961     switch (inputrec->cutoff_scheme)
1962     {
1963         case ecutsVERLET:
1964             do_force_cutsVERLET(fplog, cr, inputrec,
1965                                 step, nrnb, wcycle,
1966                                 top,
1967                                 groups,
1968                                 box, x, hist,
1969                                 f, vir_force,
1970                                 mdatoms,
1971                                 enerd, fcd,
1972                                 lambda, graph,
1973                                 fr, fr->ic,
1974                                 vsite, mu_tot,
1975                                 t, field, ed,
1976                                 bBornRadii,
1977                                 flags);
1978             break;
1979         case ecutsGROUP:
1980             do_force_cutsGROUP(fplog, cr, inputrec,
1981                                step, nrnb, wcycle,
1982                                top,
1983                                groups,
1984                                box, x, hist,
1985                                f, vir_force,
1986                                mdatoms,
1987                                enerd, fcd,
1988                                lambda, graph,
1989                                fr, vsite, mu_tot,
1990                                t, field, ed,
1991                                bBornRadii,
1992                                flags);
1993             break;
1994         default:
1995             gmx_incons("Invalid cut-off scheme passed!");
1996     }
1997 }
1998
1999
2000 void do_constrain_first(FILE *fplog, gmx_constr_t constr,
2001                         t_inputrec *ir, t_mdatoms *md,
2002                         t_state *state, t_commrec *cr, t_nrnb *nrnb,
2003                         t_forcerec *fr, gmx_localtop_t *top)
2004 {
2005     int             i, m, start, end;
2006     gmx_large_int_t step;
2007     real            dt = ir->delta_t;
2008     real            dvdl_dum;
2009     rvec           *savex;
2010
2011     snew(savex, state->natoms);
2012
2013     start = md->start;
2014     end   = md->homenr + start;
2015
2016     if (debug)
2017     {
2018         fprintf(debug, "vcm: start=%d, homenr=%d, end=%d\n",
2019                 start, md->homenr, end);
2020     }
2021     /* Do a first constrain to reset particles... */
2022     step = ir->init_step;
2023     if (fplog)
2024     {
2025         char buf[STEPSTRSIZE];
2026         fprintf(fplog, "\nConstraining the starting coordinates (step %s)\n",
2027                 gmx_step_str(step, buf));
2028     }
2029     dvdl_dum = 0;
2030
2031     /* constrain the current position */
2032     constrain(NULL, TRUE, FALSE, constr, &(top->idef),
2033               ir, NULL, cr, step, 0, md,
2034               state->x, state->x, NULL,
2035               fr->bMolPBC, state->box,
2036               state->lambda[efptBONDED], &dvdl_dum,
2037               NULL, NULL, nrnb, econqCoord,
2038               ir->epc == epcMTTK, state->veta, state->veta);
2039     if (EI_VV(ir->eI))
2040     {
2041         /* constrain the inital velocity, and save it */
2042         /* also may be useful if we need the ekin from the halfstep for velocity verlet */
2043         /* might not yet treat veta correctly */
2044         constrain(NULL, TRUE, FALSE, constr, &(top->idef),
2045                   ir, NULL, cr, step, 0, md,
2046                   state->x, state->v, state->v,
2047                   fr->bMolPBC, state->box,
2048                   state->lambda[efptBONDED], &dvdl_dum,
2049                   NULL, NULL, nrnb, econqVeloc,
2050                   ir->epc == epcMTTK, state->veta, state->veta);
2051     }
2052     /* constrain the inital velocities at t-dt/2 */
2053     if (EI_STATE_VELOCITY(ir->eI) && ir->eI != eiVV)
2054     {
2055         for (i = start; (i < end); i++)
2056         {
2057             for (m = 0; (m < DIM); m++)
2058             {
2059                 /* Reverse the velocity */
2060                 state->v[i][m] = -state->v[i][m];
2061                 /* Store the position at t-dt in buf */
2062                 savex[i][m] = state->x[i][m] + dt*state->v[i][m];
2063             }
2064         }
2065         /* Shake the positions at t=-dt with the positions at t=0
2066          * as reference coordinates.
2067          */
2068         if (fplog)
2069         {
2070             char buf[STEPSTRSIZE];
2071             fprintf(fplog, "\nConstraining the coordinates at t0-dt (step %s)\n",
2072                     gmx_step_str(step, buf));
2073         }
2074         dvdl_dum = 0;
2075         constrain(NULL, TRUE, FALSE, constr, &(top->idef),
2076                   ir, NULL, cr, step, -1, md,
2077                   state->x, savex, NULL,
2078                   fr->bMolPBC, state->box,
2079                   state->lambda[efptBONDED], &dvdl_dum,
2080                   state->v, NULL, nrnb, econqCoord,
2081                   ir->epc == epcMTTK, state->veta, state->veta);
2082
2083         for (i = start; i < end; i++)
2084         {
2085             for (m = 0; m < DIM; m++)
2086             {
2087                 /* Re-reverse the velocities */
2088                 state->v[i][m] = -state->v[i][m];
2089             }
2090         }
2091     }
2092     sfree(savex);
2093 }
2094
2095 void calc_enervirdiff(FILE *fplog, int eDispCorr, t_forcerec *fr)
2096 {
2097     double eners[2], virs[2], enersum, virsum, y0, f, g, h;
2098     double r0, r1, r, rc3, rc9, ea, eb, ec, pa, pb, pc, pd;
2099     double invscale, invscale2, invscale3;
2100     int    ri0, ri1, ri, i, offstart, offset;
2101     real   scale, *vdwtab, tabfactor, tmp;
2102
2103     fr->enershiftsix    = 0;
2104     fr->enershifttwelve = 0;
2105     fr->enerdiffsix     = 0;
2106     fr->enerdifftwelve  = 0;
2107     fr->virdiffsix      = 0;
2108     fr->virdifftwelve   = 0;
2109
2110     if (eDispCorr != edispcNO)
2111     {
2112         for (i = 0; i < 2; i++)
2113         {
2114             eners[i] = 0;
2115             virs[i]  = 0;
2116         }
2117         if ((fr->vdwtype == evdwSWITCH) || (fr->vdwtype == evdwSHIFT))
2118         {
2119             if (fr->rvdw_switch == 0)
2120             {
2121                 gmx_fatal(FARGS,
2122                           "With dispersion correction rvdw-switch can not be zero "
2123                           "for vdw-type = %s", evdw_names[fr->vdwtype]);
2124             }
2125
2126             scale  = fr->nblists[0].table_elec_vdw.scale;
2127             vdwtab = fr->nblists[0].table_vdw.data;
2128
2129             /* Round the cut-offs to exact table values for precision */
2130             ri0  = floor(fr->rvdw_switch*scale);
2131             ri1  = ceil(fr->rvdw*scale);
2132             r0   = ri0/scale;
2133             r1   = ri1/scale;
2134             rc3  = r0*r0*r0;
2135             rc9  = rc3*rc3*rc3;
2136
2137             if (fr->vdwtype == evdwSHIFT)
2138             {
2139                 /* Determine the constant energy shift below rvdw_switch.
2140                  * Table has a scale factor since we have scaled it down to compensate
2141                  * for scaling-up c6/c12 with the derivative factors to save flops in analytical kernels.
2142                  */
2143                 fr->enershiftsix    = (real)(-1.0/(rc3*rc3)) - 6.0*vdwtab[8*ri0];
2144                 fr->enershifttwelve = (real)( 1.0/(rc9*rc3)) - 12.0*vdwtab[8*ri0 + 4];
2145             }
2146             /* Add the constant part from 0 to rvdw_switch.
2147              * This integration from 0 to rvdw_switch overcounts the number
2148              * of interactions by 1, as it also counts the self interaction.
2149              * We will correct for this later.
2150              */
2151             eners[0] += 4.0*M_PI*fr->enershiftsix*rc3/3.0;
2152             eners[1] += 4.0*M_PI*fr->enershifttwelve*rc3/3.0;
2153
2154             invscale  = 1.0/(scale);
2155             invscale2 = invscale*invscale;
2156             invscale3 = invscale*invscale2;
2157
2158             /* following summation derived from cubic spline definition,
2159                Numerical Recipies in C, second edition, p. 113-116.  Exact
2160                for the cubic spline.  We first calculate the negative of
2161                the energy from rvdw to rvdw_switch, assuming that g(r)=1,
2162                and then add the more standard, abrupt cutoff correction to
2163                that result, yielding the long-range correction for a
2164                switched function.  We perform both the pressure and energy
2165                loops at the same time for simplicity, as the computational
2166                cost is low. */
2167
2168             for (i = 0; i < 2; i++)
2169             {
2170                 enersum = 0.0; virsum = 0.0;
2171                 if (i == 0)
2172                 {
2173                     offstart = 0;
2174                     /* Since the dispersion table has been scaled down a factor 6.0 and the repulsion
2175                      * a factor 12.0 to compensate for the c6/c12 parameters inside nbfp[] being scaled
2176                      * up (to save flops in kernels), we need to correct for this.
2177                      */
2178                     tabfactor = 6.0;
2179                 }
2180                 else
2181                 {
2182                     offstart  = 4;
2183                     tabfactor = 12.0;
2184                 }
2185                 for (ri = ri0; ri < ri1; ri++)
2186                 {
2187                     r  = ri*invscale;
2188                     ea = invscale3;
2189                     eb = 2.0*invscale2*r;
2190                     ec = invscale*r*r;
2191
2192                     pa = invscale3;
2193                     pb = 3.0*invscale2*r;
2194                     pc = 3.0*invscale*r*r;
2195                     pd = r*r*r;
2196
2197                     /* this "8" is from the packing in the vdwtab array - perhaps should be #define'ed? */
2198                     offset = 8*ri + offstart;
2199                     y0     = vdwtab[offset];
2200                     f      = vdwtab[offset+1];
2201                     g      = vdwtab[offset+2];
2202                     h      = vdwtab[offset+3];
2203
2204                     enersum += y0*(ea/3 + eb/2 + ec) + f*(ea/4 + eb/3 + ec/2) + g*(ea/5 + eb/4 + ec/3) + h*(ea/6 + eb/5 + ec/4);
2205                     virsum  += f*(pa/4 + pb/3 + pc/2 + pd) + 2*g*(pa/5 + pb/4 + pc/3 + pd/2) + 3*h*(pa/6 + pb/5 + pc/4 + pd/3);
2206                 }
2207
2208                 enersum  *= 4.0*M_PI*tabfactor;
2209                 virsum   *= 4.0*M_PI*tabfactor;
2210                 eners[i] -= enersum;
2211                 virs[i]  -= virsum;
2212             }
2213
2214             /* now add the correction for rvdw_switch to infinity */
2215             eners[0] += -4.0*M_PI/(3.0*rc3);
2216             eners[1] +=  4.0*M_PI/(9.0*rc9);
2217             virs[0]  +=  8.0*M_PI/rc3;
2218             virs[1]  += -16.0*M_PI/(3.0*rc9);
2219         }
2220         else if ((fr->vdwtype == evdwCUT) || (fr->vdwtype == evdwUSER))
2221         {
2222             if (fr->vdwtype == evdwUSER && fplog)
2223             {
2224                 fprintf(fplog,
2225                         "WARNING: using dispersion correction with user tables\n");
2226             }
2227             rc3  = fr->rvdw*fr->rvdw*fr->rvdw;
2228             rc9  = rc3*rc3*rc3;
2229             /* Contribution beyond the cut-off */
2230             eners[0] += -4.0*M_PI/(3.0*rc3);
2231             eners[1] +=  4.0*M_PI/(9.0*rc9);
2232             if (fr->vdw_modifier == eintmodPOTSHIFT)
2233             {
2234                 /* Contribution within the cut-off */
2235                 eners[0] += -4.0*M_PI/(3.0*rc3);
2236                 eners[1] +=  4.0*M_PI/(3.0*rc9);
2237             }
2238             /* Contribution beyond the cut-off */
2239             virs[0]  +=  8.0*M_PI/rc3;
2240             virs[1]  += -16.0*M_PI/(3.0*rc9);
2241         }
2242         else
2243         {
2244             gmx_fatal(FARGS,
2245                       "Dispersion correction is not implemented for vdw-type = %s",
2246                       evdw_names[fr->vdwtype]);
2247         }
2248         fr->enerdiffsix    = eners[0];
2249         fr->enerdifftwelve = eners[1];
2250         /* The 0.5 is due to the Gromacs definition of the virial */
2251         fr->virdiffsix     = 0.5*virs[0];
2252         fr->virdifftwelve  = 0.5*virs[1];
2253     }
2254 }
2255
2256 void calc_dispcorr(FILE *fplog, t_inputrec *ir, t_forcerec *fr,
2257                    gmx_large_int_t step, int natoms,
2258                    matrix box, real lambda, tensor pres, tensor virial,
2259                    real *prescorr, real *enercorr, real *dvdlcorr)
2260 {
2261     gmx_bool bCorrAll, bCorrPres;
2262     real     dvdlambda, invvol, dens, ninter, avcsix, avctwelve, enerdiff, svir = 0, spres = 0;
2263     int      m;
2264
2265     *prescorr = 0;
2266     *enercorr = 0;
2267     *dvdlcorr = 0;
2268
2269     clear_mat(virial);
2270     clear_mat(pres);
2271
2272     if (ir->eDispCorr != edispcNO)
2273     {
2274         bCorrAll  = (ir->eDispCorr == edispcAllEner ||
2275                      ir->eDispCorr == edispcAllEnerPres);
2276         bCorrPres = (ir->eDispCorr == edispcEnerPres ||
2277                      ir->eDispCorr == edispcAllEnerPres);
2278
2279         invvol = 1/det(box);
2280         if (fr->n_tpi)
2281         {
2282             /* Only correct for the interactions with the inserted molecule */
2283             dens   = (natoms - fr->n_tpi)*invvol;
2284             ninter = fr->n_tpi;
2285         }
2286         else
2287         {
2288             dens   = natoms*invvol;
2289             ninter = 0.5*natoms;
2290         }
2291
2292         if (ir->efep == efepNO)
2293         {
2294             avcsix    = fr->avcsix[0];
2295             avctwelve = fr->avctwelve[0];
2296         }
2297         else
2298         {
2299             avcsix    = (1 - lambda)*fr->avcsix[0]    + lambda*fr->avcsix[1];
2300             avctwelve = (1 - lambda)*fr->avctwelve[0] + lambda*fr->avctwelve[1];
2301         }
2302
2303         enerdiff   = ninter*(dens*fr->enerdiffsix - fr->enershiftsix);
2304         *enercorr += avcsix*enerdiff;
2305         dvdlambda  = 0.0;
2306         if (ir->efep != efepNO)
2307         {
2308             dvdlambda += (fr->avcsix[1] - fr->avcsix[0])*enerdiff;
2309         }
2310         if (bCorrAll)
2311         {
2312             enerdiff   = ninter*(dens*fr->enerdifftwelve - fr->enershifttwelve);
2313             *enercorr += avctwelve*enerdiff;
2314             if (fr->efep != efepNO)
2315             {
2316                 dvdlambda += (fr->avctwelve[1] - fr->avctwelve[0])*enerdiff;
2317             }
2318         }
2319
2320         if (bCorrPres)
2321         {
2322             svir = ninter*dens*avcsix*fr->virdiffsix/3.0;
2323             if (ir->eDispCorr == edispcAllEnerPres)
2324             {
2325                 svir += ninter*dens*avctwelve*fr->virdifftwelve/3.0;
2326             }
2327             /* The factor 2 is because of the Gromacs virial definition */
2328             spres = -2.0*invvol*svir*PRESFAC;
2329
2330             for (m = 0; m < DIM; m++)
2331             {
2332                 virial[m][m] += svir;
2333                 pres[m][m]   += spres;
2334             }
2335             *prescorr += spres;
2336         }
2337
2338         /* Can't currently control when it prints, for now, just print when degugging */
2339         if (debug)
2340         {
2341             if (bCorrAll)
2342             {
2343                 fprintf(debug, "Long Range LJ corr.: <C6> %10.4e, <C12> %10.4e\n",
2344                         avcsix, avctwelve);
2345             }
2346             if (bCorrPres)
2347             {
2348                 fprintf(debug,
2349                         "Long Range LJ corr.: Epot %10g, Pres: %10g, Vir: %10g\n",
2350                         *enercorr, spres, svir);
2351             }
2352             else
2353             {
2354                 fprintf(debug, "Long Range LJ corr.: Epot %10g\n", *enercorr);
2355             }
2356         }
2357
2358         if (fr->bSepDVDL && do_per_step(step, ir->nstlog))
2359         {
2360             gmx_print_sepdvdl(fplog, "Dispersion correction", *enercorr, dvdlambda);
2361         }
2362         if (fr->efep != efepNO)
2363         {
2364             *dvdlcorr += dvdlambda;
2365         }
2366     }
2367 }
2368
2369 void do_pbc_first(FILE *fplog, matrix box, t_forcerec *fr,
2370                   t_graph *graph, rvec x[])
2371 {
2372     if (fplog)
2373     {
2374         fprintf(fplog, "Removing pbc first time\n");
2375     }
2376     calc_shifts(box, fr->shift_vec);
2377     if (graph)
2378     {
2379         mk_mshift(fplog, graph, fr->ePBC, box, x);
2380         if (gmx_debug_at)
2381         {
2382             p_graph(debug, "do_pbc_first 1", graph);
2383         }
2384         shift_self(graph, box, x);
2385         /* By doing an extra mk_mshift the molecules that are broken
2386          * because they were e.g. imported from another software
2387          * will be made whole again. Such are the healing powers
2388          * of GROMACS.
2389          */
2390         mk_mshift(fplog, graph, fr->ePBC, box, x);
2391         if (gmx_debug_at)
2392         {
2393             p_graph(debug, "do_pbc_first 2", graph);
2394         }
2395     }
2396     if (fplog)
2397     {
2398         fprintf(fplog, "Done rmpbc\n");
2399     }
2400 }
2401
2402 static void low_do_pbc_mtop(FILE *fplog, int ePBC, matrix box,
2403                             gmx_mtop_t *mtop, rvec x[],
2404                             gmx_bool bFirst)
2405 {
2406     t_graph        *graph;
2407     int             mb, as, mol;
2408     gmx_molblock_t *molb;
2409
2410     if (bFirst && fplog)
2411     {
2412         fprintf(fplog, "Removing pbc first time\n");
2413     }
2414
2415     snew(graph, 1);
2416     as = 0;
2417     for (mb = 0; mb < mtop->nmolblock; mb++)
2418     {
2419         molb = &mtop->molblock[mb];
2420         if (molb->natoms_mol == 1 ||
2421             (!bFirst && mtop->moltype[molb->type].cgs.nr == 1))
2422         {
2423             /* Just one atom or charge group in the molecule, no PBC required */
2424             as += molb->nmol*molb->natoms_mol;
2425         }
2426         else
2427         {
2428             /* Pass NULL iso fplog to avoid graph prints for each molecule type */
2429             mk_graph_ilist(NULL, mtop->moltype[molb->type].ilist,
2430                            0, molb->natoms_mol, FALSE, FALSE, graph);
2431
2432             for (mol = 0; mol < molb->nmol; mol++)
2433             {
2434                 mk_mshift(fplog, graph, ePBC, box, x+as);
2435
2436                 shift_self(graph, box, x+as);
2437                 /* The molecule is whole now.
2438                  * We don't need the second mk_mshift call as in do_pbc_first,
2439                  * since we no longer need this graph.
2440                  */
2441
2442                 as += molb->natoms_mol;
2443             }
2444             done_graph(graph);
2445         }
2446     }
2447     sfree(graph);
2448 }
2449
2450 void do_pbc_first_mtop(FILE *fplog, int ePBC, matrix box,
2451                        gmx_mtop_t *mtop, rvec x[])
2452 {
2453     low_do_pbc_mtop(fplog, ePBC, box, mtop, x, TRUE);
2454 }
2455
2456 void do_pbc_mtop(FILE *fplog, int ePBC, matrix box,
2457                  gmx_mtop_t *mtop, rvec x[])
2458 {
2459     low_do_pbc_mtop(fplog, ePBC, box, mtop, x, FALSE);
2460 }
2461
2462 void finish_run(FILE *fplog, t_commrec *cr,
2463                 t_inputrec *inputrec,
2464                 t_nrnb nrnb[], gmx_wallcycle_t wcycle,
2465                 gmx_runtime_t *runtime,
2466                 wallclock_gpu_t *gputimes,
2467                 gmx_bool bWriteStat)
2468 {
2469     int     i, j;
2470     t_nrnb *nrnb_tot = NULL;
2471     real    delta_t;
2472     double  nbfs, mflop;
2473
2474     wallcycle_sum(cr, wcycle);
2475
2476     if (cr->nnodes > 1)
2477     {
2478         snew(nrnb_tot, 1);
2479 #ifdef GMX_MPI
2480         MPI_Allreduce(nrnb->n, nrnb_tot->n, eNRNB, MPI_DOUBLE, MPI_SUM,
2481                       cr->mpi_comm_mysim);
2482 #endif
2483     }
2484     else
2485     {
2486         nrnb_tot = nrnb;
2487     }
2488
2489 #if defined(GMX_MPI) && !defined(GMX_THREAD_MPI)
2490     if (cr->nnodes > 1)
2491     {
2492         /* reduce nodetime over all MPI processes in the current simulation */
2493         double sum;
2494         MPI_Allreduce(&runtime->proctime, &sum, 1, MPI_DOUBLE, MPI_SUM,
2495                       cr->mpi_comm_mysim);
2496         runtime->proctime = sum;
2497     }
2498 #endif
2499
2500     if (SIMMASTER(cr))
2501     {
2502         print_flop(fplog, nrnb_tot, &nbfs, &mflop);
2503     }
2504     if (cr->nnodes > 1)
2505     {
2506         sfree(nrnb_tot);
2507     }
2508
2509     if ((cr->duty & DUTY_PP) && DOMAINDECOMP(cr))
2510     {
2511         print_dd_statistics(cr, inputrec, fplog);
2512     }
2513
2514 #ifdef GMX_MPI
2515     if (PARTDECOMP(cr))
2516     {
2517         if (MASTER(cr))
2518         {
2519             t_nrnb     *nrnb_all;
2520             int         s;
2521             MPI_Status  stat;
2522
2523             snew(nrnb_all, cr->nnodes);
2524             nrnb_all[0] = *nrnb;
2525             for (s = 1; s < cr->nnodes; s++)
2526             {
2527                 MPI_Recv(nrnb_all[s].n, eNRNB, MPI_DOUBLE, s, 0,
2528                          cr->mpi_comm_mysim, &stat);
2529             }
2530             pr_load(fplog, cr, nrnb_all);
2531             sfree(nrnb_all);
2532         }
2533         else
2534         {
2535             MPI_Send(nrnb->n, eNRNB, MPI_DOUBLE, MASTERRANK(cr), 0,
2536                      cr->mpi_comm_mysim);
2537         }
2538     }
2539 #endif
2540
2541     if (SIMMASTER(cr))
2542     {
2543         wallcycle_print(fplog, cr->nnodes, cr->npmenodes, runtime->realtime,
2544                         wcycle, gputimes);
2545
2546         if (EI_DYNAMICS(inputrec->eI))
2547         {
2548             delta_t = inputrec->delta_t;
2549         }
2550         else
2551         {
2552             delta_t = 0;
2553         }
2554
2555         if (fplog)
2556         {
2557             print_perf(fplog, runtime->proctime, runtime->realtime,
2558                        runtime->nsteps_done, delta_t, nbfs, mflop);
2559         }
2560         if (bWriteStat)
2561         {
2562             print_perf(stderr, runtime->proctime, runtime->realtime,
2563                        runtime->nsteps_done, delta_t, nbfs, mflop);
2564         }
2565     }
2566 }
2567
2568 extern void initialize_lambdas(FILE *fplog, t_inputrec *ir, int *fep_state, real *lambda, double *lam0)
2569 {
2570     /* this function works, but could probably use a logic rewrite to keep all the different
2571        types of efep straight. */
2572
2573     int       i;
2574     t_lambda *fep = ir->fepvals;
2575
2576     if ((ir->efep == efepNO) && (ir->bSimTemp == FALSE))
2577     {
2578         for (i = 0; i < efptNR; i++)
2579         {
2580             lambda[i] = 0.0;
2581             if (lam0)
2582             {
2583                 lam0[i] = 0.0;
2584             }
2585         }
2586         return;
2587     }
2588     else
2589     {
2590         *fep_state = fep->init_fep_state; /* this might overwrite the checkpoint
2591                                              if checkpoint is set -- a kludge is in for now
2592                                              to prevent this.*/
2593         for (i = 0; i < efptNR; i++)
2594         {
2595             /* overwrite lambda state with init_lambda for now for backwards compatibility */
2596             if (fep->init_lambda >= 0) /* if it's -1, it was never initializd */
2597             {
2598                 lambda[i] = fep->init_lambda;
2599                 if (lam0)
2600                 {
2601                     lam0[i] = lambda[i];
2602                 }
2603             }
2604             else
2605             {
2606                 lambda[i] = fep->all_lambda[i][*fep_state];
2607                 if (lam0)
2608                 {
2609                     lam0[i] = lambda[i];
2610                 }
2611             }
2612         }
2613         if (ir->bSimTemp)
2614         {
2615             /* need to rescale control temperatures to match current state */
2616             for (i = 0; i < ir->opts.ngtc; i++)
2617             {
2618                 if (ir->opts.ref_t[i] > 0)
2619                 {
2620                     ir->opts.ref_t[i] = ir->simtempvals->temperatures[*fep_state];
2621                 }
2622             }
2623         }
2624     }
2625
2626     /* Send to the log the information on the current lambdas */
2627     if (fplog != NULL)
2628     {
2629         fprintf(fplog, "Initial vector of lambda components:[ ");
2630         for (i = 0; i < efptNR; i++)
2631         {
2632             fprintf(fplog, "%10.4f ", lambda[i]);
2633         }
2634         fprintf(fplog, "]\n");
2635     }
2636     return;
2637 }
2638
2639
2640 void init_md(FILE *fplog,
2641              t_commrec *cr, t_inputrec *ir, const output_env_t oenv,
2642              double *t, double *t0,
2643              real *lambda, int *fep_state, double *lam0,
2644              t_nrnb *nrnb, gmx_mtop_t *mtop,
2645              gmx_update_t *upd,
2646              int nfile, const t_filenm fnm[],
2647              gmx_mdoutf_t **outf, t_mdebin **mdebin,
2648              tensor force_vir, tensor shake_vir, rvec mu_tot,
2649              gmx_bool *bSimAnn, t_vcm **vcm, unsigned long Flags)
2650 {
2651     int  i, j, n;
2652     real tmpt, mod;
2653
2654     /* Initial values */
2655     *t = *t0       = ir->init_t;
2656
2657     *bSimAnn = FALSE;
2658     for (i = 0; i < ir->opts.ngtc; i++)
2659     {
2660         /* set bSimAnn if any group is being annealed */
2661         if (ir->opts.annealing[i] != eannNO)
2662         {
2663             *bSimAnn = TRUE;
2664         }
2665     }
2666     if (*bSimAnn)
2667     {
2668         update_annealing_target_temp(&(ir->opts), ir->init_t);
2669     }
2670
2671     /* Initialize lambda variables */
2672     initialize_lambdas(fplog, ir, fep_state, lambda, lam0);
2673
2674     if (upd)
2675     {
2676         *upd = init_update(ir);
2677     }
2678
2679
2680     if (vcm != NULL)
2681     {
2682         *vcm = init_vcm(fplog, &mtop->groups, ir);
2683     }
2684
2685     if (EI_DYNAMICS(ir->eI) && !(Flags & MD_APPENDFILES))
2686     {
2687         if (ir->etc == etcBERENDSEN)
2688         {
2689             please_cite(fplog, "Berendsen84a");
2690         }
2691         if (ir->etc == etcVRESCALE)
2692         {
2693             please_cite(fplog, "Bussi2007a");
2694         }
2695     }
2696
2697     init_nrnb(nrnb);
2698
2699     if (nfile != -1)
2700     {
2701         *outf = init_mdoutf(nfile, fnm, Flags, cr, ir, oenv);
2702
2703         *mdebin = init_mdebin((Flags & MD_APPENDFILES) ? NULL : (*outf)->fp_ene,
2704                               mtop, ir, (*outf)->fp_dhdl);
2705     }
2706
2707     if (ir->bAdress)
2708     {
2709         please_cite(fplog, "Fritsch12");
2710         please_cite(fplog, "Junghans10");
2711     }
2712     /* Initiate variables */
2713     clear_mat(force_vir);
2714     clear_mat(shake_vir);
2715     clear_rvec(mu_tot);
2716
2717     debug_gmx();
2718 }