Fix compiler warnings in OCL
[alexxy/gromacs.git] / src / gromacs / mdlib / nbnxn_ocl / nbnxn_ocl.cpp
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014,2015,2016,2017,2018, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 /*! \internal \file
36  *  \brief Define OpenCL implementation of nbnxn_gpu.h
37  *
38  *  \author Anca Hamuraru <anca@streamcomputing.eu>
39  *  \author Teemu Virolainen <teemu@streamcomputing.eu>
40  *  \author Dimitrios Karkoulis <dimitris.karkoulis@gmail.com>
41  *  \author Szilárd Páll <pall.szilard@gmail.com>
42  *  \ingroup module_mdlib
43  *
44  *  TODO (psz):
45  *  - Add a static const cl_uint c_pruneKernelWorkDim / c_nbnxnKernelWorkDim = 3;
46  *  - Rework the copying of OCL data structures done before every invocation of both
47  *    nb and prune kernels (using fillin_ocl_structures); also consider at the same
48  *    time calling clSetKernelArg only on the updated parameters (if tracking changed
49  *    parameters is feasible);
50  *  - Consider using the event_wait_list argument to clEnqueueNDRangeKernel to mark
51  *    dependencies on the kernel launched: e.g. the non-local nb kernel's dependency
52  *    on the misc_ops_and_local_H2D_done event could be better expressed this way.
53  *
54  *  - Consider extracting common sections of the OpenCL and CUDA nbnxn logic, e.g:
55  *    - in nbnxn_gpu_launch_kernel_pruneonly() the pre- and post-kernel launch logic
56  *      is identical in the two implementations, so a 3-way split might allow sharing
57  *      code;
58  *    -
59  *
60  */
61 #include "gmxpre.h"
62
63 #include <assert.h>
64 #include <stdlib.h>
65
66 #if defined(_MSVC)
67 #include <limits>
68 #endif
69
70 #include "thread_mpi/atomic.h"
71
72 #include "gromacs/gpu_utils/gputraits_ocl.h"
73 #include "gromacs/gpu_utils/oclutils.h"
74 #include "gromacs/hardware/hw_info.h"
75 #include "gromacs/mdlib/force_flags.h"
76 #include "gromacs/mdlib/nb_verlet.h"
77 #include "gromacs/mdlib/nbnxn_consts.h"
78 #include "gromacs/mdlib/nbnxn_gpu.h"
79 #include "gromacs/mdlib/nbnxn_gpu_common.h"
80 #include "gromacs/mdlib/nbnxn_gpu_common_utils.h"
81 #include "gromacs/mdlib/nbnxn_gpu_data_mgmt.h"
82 #include "gromacs/mdlib/nbnxn_pairlist.h"
83 #include "gromacs/pbcutil/ishift.h"
84 #include "gromacs/timing/gpu_timing.h"
85 #include "gromacs/utility/cstringutil.h"
86 #include "gromacs/utility/fatalerror.h"
87 #include "gromacs/utility/gmxassert.h"
88
89 #include "nbnxn_ocl_internal.h"
90 #include "nbnxn_ocl_types.h"
91
92
93 /*! \brief Convenience constants */
94 //@{
95 static const int c_numClPerSupercl = c_nbnxnGpuNumClusterPerSupercluster;
96 static const int c_clSize          = c_nbnxnGpuClusterSize;
97 //@}
98
99
100 /*! \brief Validates the input global work size parameter.
101  */
102 static inline void validate_global_work_size(const KernelLaunchConfig &config, int work_dim, const gmx_device_info_t *dinfo)
103 {
104     cl_uint device_size_t_size_bits;
105     cl_uint host_size_t_size_bits;
106
107     assert(dinfo);
108
109     size_t global_work_size[3];
110     GMX_ASSERT(work_dim <= 3, "Not supporting hyper-grids just yet");
111     for (int i = 0; i < work_dim; i++)
112     {
113         global_work_size[i] = config.blockSize[i] * config.gridSize[i];
114     }
115
116     /* Each component of a global_work_size must not exceed the range given by the
117        sizeof(device size_t) for the device on which the kernel execution will
118        be enqueued. See:
119        https://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/clEnqueueNDRangeKernel.html
120      */
121     device_size_t_size_bits = dinfo->adress_bits;
122     host_size_t_size_bits   = (cl_uint)(sizeof(size_t) * 8);
123
124     /* If sizeof(host size_t) <= sizeof(device size_t)
125             => global_work_size components will always be valid
126        else
127             => get device limit for global work size and
128             compare it against each component of global_work_size.
129      */
130     if (host_size_t_size_bits > device_size_t_size_bits)
131     {
132         size_t device_limit;
133
134         device_limit = (((size_t)1) << device_size_t_size_bits) - 1;
135
136         for (int i = 0; i < work_dim; i++)
137         {
138             if (global_work_size[i] > device_limit)
139             {
140                 gmx_fatal(FARGS, "Watch out, the input system is too large to simulate!\n"
141                           "The number of nonbonded work units (=number of super-clusters) exceeds the"
142                           "device capabilities. Global work size limit exceeded (%d > %d)!",
143                           global_work_size[i], device_limit);
144             }
145         }
146     }
147 }
148
149 /* Constant arrays listing non-bonded kernel function names. The arrays are
150  * organized in 2-dim arrays by: electrostatics and VDW type.
151  *
152  *  Note that the row- and column-order of function pointers has to match the
153  *  order of corresponding enumerated electrostatics and vdw types, resp.,
154  *  defined in nbnxn_cuda_types.h.
155  */
156
157 /*! \brief Force-only kernel function names. */
158 static const char* nb_kfunc_noener_noprune_ptr[eelOclNR][evdwOclNR] =
159 {
160     { "nbnxn_kernel_ElecCut_VdwLJ_F_opencl",            "nbnxn_kernel_ElecCut_VdwLJCombGeom_F_opencl",            "nbnxn_kernel_ElecCut_VdwLJCombLB_F_opencl",            "nbnxn_kernel_ElecCut_VdwLJFsw_F_opencl",            "nbnxn_kernel_ElecCut_VdwLJPsw_F_opencl",            "nbnxn_kernel_ElecCut_VdwLJEwCombGeom_F_opencl",            "nbnxn_kernel_ElecCut_VdwLJEwCombLB_F_opencl"            },
161     { "nbnxn_kernel_ElecRF_VdwLJ_F_opencl",             "nbnxn_kernel_ElecRF_VdwLJCombGeom_F_opencl",             "nbnxn_kernel_ElecRF_VdwLJCombLB_F_opencl",             "nbnxn_kernel_ElecRF_VdwLJFsw_F_opencl",             "nbnxn_kernel_ElecRF_VdwLJPsw_F_opencl",             "nbnxn_kernel_ElecRF_VdwLJEwCombGeom_F_opencl",             "nbnxn_kernel_ElecRF_VdwLJEwCombLB_F_opencl"             },
162     { "nbnxn_kernel_ElecEwQSTab_VdwLJ_F_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJCombGeom_F_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJCombLB_F_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJFsw_F_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJPsw_F_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJEwCombGeom_F_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJEwCombLB_F_opencl"        },
163     { "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJ_F_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJCombGeom_F_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJCombLB_F_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJFsw_F_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJPsw_F_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJEwCombGeom_F_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJEwCombLB_F_opencl" },
164     { "nbnxn_kernel_ElecEw_VdwLJ_F_opencl",             "nbnxn_kernel_ElecEw_VdwLJCombGeom_F_opencl",             "nbnxn_kernel_ElecEw_VdwLJCombLB_F_opencl",             "nbnxn_kernel_ElecEw_VdwLJFsw_F_opencl",             "nbnxn_kernel_ElecEw_VdwLJPsw_F_opencl",             "nbnxn_kernel_ElecEw_VdwLJEwCombGeom_F_opencl",             "nbnxn_kernel_ElecEw_VdwLJEwCombLB_F_opencl"             },
165     { "nbnxn_kernel_ElecEwTwinCut_VdwLJ_F_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJCombGeom_F_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJCombLB_F_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJFsw_F_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJPsw_F_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJEwCombGeom_F_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJEwCombLB_F_opencl"      }
166 };
167
168 /*! \brief Force + energy kernel function pointers. */
169 static const char* nb_kfunc_ener_noprune_ptr[eelOclNR][evdwOclNR] =
170 {
171     { "nbnxn_kernel_ElecCut_VdwLJ_VF_opencl",            "nbnxn_kernel_ElecCut_VdwLJCombGeom_VF_opencl",            "nbnxn_kernel_ElecCut_VdwLJCombLB_VF_opencl",            "nbnxn_kernel_ElecCut_VdwLJFsw_VF_opencl",            "nbnxn_kernel_ElecCut_VdwLJPsw_VF_opencl",            "nbnxn_kernel_ElecCut_VdwLJEwCombGeom_VF_opencl",            "nbnxn_kernel_ElecCut_VdwLJEwCombLB_VF_opencl"            },
172     { "nbnxn_kernel_ElecRF_VdwLJ_VF_opencl",             "nbnxn_kernel_ElecRF_VdwLJCombGeom_VF_opencl",             "nbnxn_kernel_ElecRF_VdwLJCombLB_VF_opencl",             "nbnxn_kernel_ElecRF_VdwLJFsw_VF_opencl",             "nbnxn_kernel_ElecRF_VdwLJPsw_VF_opencl",             "nbnxn_kernel_ElecRF_VdwLJEwCombGeom_VF_opencl",             "nbnxn_kernel_ElecRF_VdwLJEwCombLB_VF_opencl"             },
173     { "nbnxn_kernel_ElecEwQSTab_VdwLJ_VF_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJCombGeom_VF_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJCombLB_VF_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJFsw_VF_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJPsw_VF_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJEwCombGeom_VF_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJEwCombLB_VF_opencl"        },
174     { "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJ_VF_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJCombGeom_VF_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJCombLB_VF_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJFsw_VF_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJPsw_VF_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJEwCombGeom_VF_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJEwCombLB_VF_opencl" },
175     { "nbnxn_kernel_ElecEw_VdwLJ_VF_opencl",             "nbnxn_kernel_ElecEw_VdwLJCombGeom_VF_opencl",             "nbnxn_kernel_ElecEw_VdwLJCombLB_VF_opencl",             "nbnxn_kernel_ElecEw_VdwLJFsw_VF_opencl",             "nbnxn_kernel_ElecEw_VdwLJPsw_VF_opencl",             "nbnxn_kernel_ElecEw_VdwLJEwCombGeom_VF_opencl",             "nbnxn_kernel_ElecEw_VdwLJEwCombLB_VF_opencl"             },
176     { "nbnxn_kernel_ElecEwTwinCut_VdwLJ_VF_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJCombGeom_VF_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJCombLB_VF_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJFsw_VF_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJPsw_VF_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJEwCombGeom_VF_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJEwCombLB_VF_opencl"      }
177 };
178
179 /*! \brief Force + pruning kernel function pointers. */
180 static const char* nb_kfunc_noener_prune_ptr[eelOclNR][evdwOclNR] =
181 {
182     { "nbnxn_kernel_ElecCut_VdwLJ_F_prune_opencl",            "nbnxn_kernel_ElecCut_VdwLJCombGeom_F_prune_opencl",            "nbnxn_kernel_ElecCut_VdwLJCombLB_F_prune_opencl",            "nbnxn_kernel_ElecCut_VdwLJFsw_F_prune_opencl",            "nbnxn_kernel_ElecCut_VdwLJPsw_F_prune_opencl",            "nbnxn_kernel_ElecCut_VdwLJEwCombGeom_F_prune_opencl",            "nbnxn_kernel_ElecCut_VdwLJEwCombLB_F_prune_opencl"             },
183     { "nbnxn_kernel_ElecRF_VdwLJ_F_prune_opencl",             "nbnxn_kernel_ElecRF_VdwLJCombGeom_F_prune_opencl",             "nbnxn_kernel_ElecRF_VdwLJCombLB_F_prune_opencl",             "nbnxn_kernel_ElecRF_VdwLJFsw_F_prune_opencl",             "nbnxn_kernel_ElecRF_VdwLJPsw_F_prune_opencl",             "nbnxn_kernel_ElecRF_VdwLJEwCombGeom_F_prune_opencl",             "nbnxn_kernel_ElecRF_VdwLJEwCombLB_F_prune_opencl"              },
184     { "nbnxn_kernel_ElecEwQSTab_VdwLJ_F_prune_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJCombGeom_F_prune_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJCombLB_F_prune_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJFsw_F_prune_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJPsw_F_prune_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJEwCombGeom_F_prune_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJEwCombLB_F_prune_opencl"         },
185     { "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJ_F_prune_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJCombGeom_F_prune_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJCombLB_F_prune_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJFsw_F_prune_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJPsw_F_prune_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJEwCombGeom_F_prune_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJEwCombLB_F_prune_opencl"  },
186     { "nbnxn_kernel_ElecEw_VdwLJ_F_prune_opencl",             "nbnxn_kernel_ElecEw_VdwLJCombGeom_F_prune_opencl",             "nbnxn_kernel_ElecEw_VdwLJCombLB_F_prune_opencl",             "nbnxn_kernel_ElecEw_VdwLJFsw_F_prune_opencl",             "nbnxn_kernel_ElecEw_VdwLJPsw_F_prune_opencl",             "nbnxn_kernel_ElecEw_VdwLJEwCombGeom_F_prune_opencl",             "nbnxn_kernel_ElecEw_VdwLJEwCombLB_F_prune_opencl"              },
187     { "nbnxn_kernel_ElecEwTwinCut_VdwLJ_F_prune_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJCombGeom_F_prune_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJCombLB_F_prune_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJFsw_F_prune_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJPsw_F_prune_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJEwCombGeom_F_prune_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJEwCombLB_F_prune_opencl"       }
188 };
189
190 /*! \brief Force + energy + pruning kernel function pointers. */
191 static const char* nb_kfunc_ener_prune_ptr[eelOclNR][evdwOclNR] =
192 {
193     { "nbnxn_kernel_ElecCut_VdwLJ_VF_prune_opencl",            "nbnxn_kernel_ElecCut_VdwLJCombGeom_VF_prune_opencl",            "nbnxn_kernel_ElecCut_VdwLJCombLB_VF_prune_opencl",            "nbnxn_kernel_ElecCut_VdwLJFsw_VF_prune_opencl",            "nbnxn_kernel_ElecCut_VdwLJPsw_VF_prune_opencl",            "nbnxn_kernel_ElecCut_VdwLJEwCombGeom_VF_prune_opencl",            "nbnxn_kernel_ElecCut_VdwLJEwCombLB_VF_prune_opencl"            },
194     { "nbnxn_kernel_ElecRF_VdwLJ_VF_prune_opencl",             "nbnxn_kernel_ElecRF_VdwLJCombGeom_VF_prune_opencl",             "nbnxn_kernel_ElecRF_VdwLJCombLB_VF_prune_opencl",             "nbnxn_kernel_ElecRF_VdwLJFsw_VF_prune_opencl",             "nbnxn_kernel_ElecRF_VdwLJPsw_VF_prune_opencl",             "nbnxn_kernel_ElecRF_VdwLJEwCombGeom_VF_prune_opencl",             "nbnxn_kernel_ElecRF_VdwLJEwCombLB_VF_prune_opencl"             },
195     { "nbnxn_kernel_ElecEwQSTab_VdwLJ_VF_prune_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJCombGeom_VF_prune_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJCombLB_VF_prune_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJFsw_VF_prune_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJPsw_VF_prune_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJEwCombGeom_VF_prune_opencl",        "nbnxn_kernel_ElecEwQSTab_VdwLJEwCombLB_VF_prune_opencl"        },
196     { "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJ_VF_prune_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJCombGeom_VF_prune_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJCombLB_VF_prune_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJFsw_VF_prune_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJPsw_VF_prune_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJEwCombGeom_VF_prune_opencl", "nbnxn_kernel_ElecEwQSTabTwinCut_VdwLJEwCombLB_VF_prune_opencl" },
197     { "nbnxn_kernel_ElecEw_VdwLJ_VF_prune_opencl",             "nbnxn_kernel_ElecEw_VdwLJCombGeom_VF_prune_opencl",             "nbnxn_kernel_ElecEw_VdwLJCombLB_VF_prune_opencl",             "nbnxn_kernel_ElecEw_VdwLJFsw_VF_prune_opencl",             "nbnxn_kernel_ElecEw_VdwLJPsw_VF_prune_opencl",             "nbnxn_kernel_ElecEw_VdwLJEwCombGeom_VF_prune_opencl",             "nbnxn_kernel_ElecEw_VdwLJEwCombLB_VF_prune_opencl"             },
198     { "nbnxn_kernel_ElecEwTwinCut_VdwLJ_VF_prune_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJCombGeom_VF_prune_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJCombLB_VF_prune_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJFsw_VF_prune_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJPsw_VF_prune_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJEwCombGeom_VF_prune_opencl",      "nbnxn_kernel_ElecEwTwinCut_VdwLJEwCombLB_VF_prune_opencl"      }
199 };
200
201 /*! \brief Return a pointer to the prune kernel version to be executed at the current invocation.
202  *
203  * \param[in] kernel_pruneonly  array of prune kernel objects
204  * \param[in] firstPrunePass    true if the first pruning pass is being executed
205  */
206 static inline cl_kernel selectPruneKernel(cl_kernel kernel_pruneonly[],
207                                           bool      firstPrunePass)
208 {
209     cl_kernel  *kernelPtr;
210
211     if (firstPrunePass)
212     {
213         kernelPtr = &(kernel_pruneonly[epruneFirst]);
214     }
215     else
216     {
217         kernelPtr = &(kernel_pruneonly[epruneRolling]);
218     }
219     // TODO: consider creating the prune kernel object here to avoid a
220     // clCreateKernel for the rolling prune kernel if this is not needed.
221     return *kernelPtr;
222 }
223
224 /*! \brief Return a pointer to the kernel version to be executed at the current step.
225  *  OpenCL kernel objects are cached in nb. If the requested kernel is not
226  *  found in the cache, it will be created and the cache will be updated.
227  */
228 static inline cl_kernel select_nbnxn_kernel(gmx_nbnxn_ocl_t   *nb,
229                                             int                eeltype,
230                                             int                evdwtype,
231                                             bool               bDoEne,
232                                             bool               bDoPrune)
233 {
234     const char* kernel_name_to_run;
235     cl_kernel  *kernel_ptr;
236     cl_int      cl_error;
237
238     assert(eeltype  < eelOclNR);
239     assert(evdwtype < evdwOclNR);
240
241     if (bDoEne)
242     {
243         if (bDoPrune)
244         {
245             kernel_name_to_run = nb_kfunc_ener_prune_ptr[eeltype][evdwtype];
246             kernel_ptr         = &(nb->kernel_ener_prune_ptr[eeltype][evdwtype]);
247         }
248         else
249         {
250             kernel_name_to_run = nb_kfunc_ener_noprune_ptr[eeltype][evdwtype];
251             kernel_ptr         = &(nb->kernel_ener_noprune_ptr[eeltype][evdwtype]);
252         }
253     }
254     else
255     {
256         if (bDoPrune)
257         {
258             kernel_name_to_run = nb_kfunc_noener_prune_ptr[eeltype][evdwtype];
259             kernel_ptr         = &(nb->kernel_noener_prune_ptr[eeltype][evdwtype]);
260         }
261         else
262         {
263             kernel_name_to_run = nb_kfunc_noener_noprune_ptr[eeltype][evdwtype];
264             kernel_ptr         = &(nb->kernel_noener_noprune_ptr[eeltype][evdwtype]);
265         }
266     }
267
268     if (nullptr == kernel_ptr[0])
269     {
270         *kernel_ptr = clCreateKernel(nb->dev_rundata->program, kernel_name_to_run, &cl_error);
271         assert(cl_error == CL_SUCCESS);
272     }
273     // TODO: handle errors
274
275     return *kernel_ptr;
276 }
277
278 /*! \brief Calculates the amount of shared memory required by the nonbonded kernel in use.
279  */
280 static inline int calc_shmem_required_nonbonded(int  vdwType,
281                                                 bool bPrefetchLjParam)
282 {
283     int shmem;
284
285     /* size of shmem (force-buffers/xq/atom type preloading) */
286     /* NOTE: with the default kernel on sm3.0 we need shmem only for pre-loading */
287     /* i-atom x+q in shared memory */
288     shmem  = c_numClPerSupercl * c_clSize * sizeof(float) * 4; /* xqib */
289     /* cj in shared memory, for both warps separately
290      * TODO: in the "nowarp kernels we load cj only once  so the factor 2 is not needed.
291      */
292     shmem += 2 * c_nbnxnGpuJgroupSize * sizeof(int);           /* cjs  */
293     if (bPrefetchLjParam)
294     {
295         if (useLjCombRule(vdwType))
296         {
297             /* i-atom LJ combination parameters in shared memory */
298             shmem += c_numClPerSupercl * c_clSize * 2*sizeof(float); /* atib abused for ljcp, float2 */
299         }
300         else
301         {
302             /* i-atom types in shared memory */
303             shmem += c_numClPerSupercl * c_clSize * sizeof(int); /* atib */
304         }
305     }
306     /* force reduction buffers in shared memory */
307     shmem += c_clSize * c_clSize * 3 * sizeof(float);    /* f_buf */
308     /* Warp vote. In fact it must be * number of warps in block.. */
309     shmem += sizeof(cl_uint) * 2;                        /* warp_any */
310     return shmem;
311 }
312
313 /*! \brief Initializes data structures that are going to be sent to the OpenCL device.
314  *
315  *  The device can't use the same data structures as the host for two main reasons:
316  *  - OpenCL restrictions (pointers are not accepted inside data structures)
317  *  - some host side fields are not needed for the OpenCL kernels.
318  *
319  *  This function is called before the launch of both nbnxn and prune kernels.
320  */
321 static void fillin_ocl_structures(cl_nbparam_t        *nbp,
322                                   cl_nbparam_params_t *nbparams_params)
323 {
324     nbparams_params->coulomb_tab_scale = nbp->coulomb_tab_scale;
325     nbparams_params->c_rf              = nbp->c_rf;
326     nbparams_params->dispersion_shift  = nbp->dispersion_shift;
327     nbparams_params->eeltype           = nbp->eeltype;
328     nbparams_params->epsfac            = nbp->epsfac;
329     nbparams_params->ewaldcoeff_lj     = nbp->ewaldcoeff_lj;
330     nbparams_params->ewald_beta        = nbp->ewald_beta;
331     nbparams_params->rcoulomb_sq       = nbp->rcoulomb_sq;
332     nbparams_params->repulsion_shift   = nbp->repulsion_shift;
333     nbparams_params->rlistOuter_sq     = nbp->rlistOuter_sq;
334     nbparams_params->rvdw_sq           = nbp->rvdw_sq;
335     nbparams_params->rlistInner_sq     = nbp->rlistInner_sq;
336     nbparams_params->rvdw_switch       = nbp->rvdw_switch;
337     nbparams_params->sh_ewald          = nbp->sh_ewald;
338     nbparams_params->sh_lj_ewald       = nbp->sh_lj_ewald;
339     nbparams_params->two_k_rf          = nbp->two_k_rf;
340     nbparams_params->vdwtype           = nbp->vdwtype;
341     nbparams_params->vdw_switch        = nbp->vdw_switch;
342 }
343
344 /*! \brief Enqueues a wait for event completion.
345  *
346  * Then it releases the event and sets it to 0.
347  * Don't use this function when more than one wait will be issued for the event.
348  * Equivalent to Cuda Stream Sync. */
349 static void sync_ocl_event(cl_command_queue stream, cl_event *ocl_event)
350 {
351     cl_int gmx_unused cl_error;
352
353     /* Enqueue wait */
354     cl_error = clEnqueueBarrierWithWaitList(stream, 1, ocl_event, nullptr);
355     GMX_RELEASE_ASSERT(CL_SUCCESS == cl_error, ocl_get_error_string(cl_error).c_str());
356
357     /* Release event and reset it to 0. It is ok to release it as enqueuewaitforevents performs implicit retain for events. */
358     cl_error = clReleaseEvent(*ocl_event);
359     assert(CL_SUCCESS == cl_error);
360     *ocl_event = nullptr;
361 }
362
363 /*! \brief Launch GPU kernel
364
365    As we execute nonbonded workload in separate queues, before launching
366    the kernel we need to make sure that he following operations have completed:
367    - atomdata allocation and related H2D transfers (every nstlist step);
368    - pair list H2D transfer (every nstlist step);
369    - shift vector H2D transfer (every nstlist step);
370    - force (+shift force and energy) output clearing (every step).
371
372    These operations are issued in the local queue at the beginning of the step
373    and therefore always complete before the local kernel launch. The non-local
374    kernel is launched after the local on the same device/context, so this is
375    inherently scheduled after the operations in the local stream (including the
376    above "misc_ops").
377    However, for the sake of having a future-proof implementation, we use the
378    misc_ops_done event to record the point in time when the above  operations
379    are finished and synchronize with this event in the non-local stream.
380  */
381 void nbnxn_gpu_launch_kernel(gmx_nbnxn_ocl_t               *nb,
382                              const struct nbnxn_atomdata_t *nbatom,
383                              int                            flags,
384                              int                            iloc)
385 {
386     int                  adat_begin, adat_len; /* local/nonlocal offset and length used for xq and f */
387     /* OpenCL kernel launch-related stuff */
388     cl_kernel            nb_kernel = nullptr;  /* fn pointer to the nonbonded kernel */
389
390     cl_atomdata_t       *adat    = nb->atdat;
391     cl_nbparam_t        *nbp     = nb->nbparam;
392     cl_plist_t          *plist   = nb->plist[iloc];
393     cl_timers_t         *t       = nb->timers;
394     cl_command_queue     stream  = nb->stream[iloc];
395
396     bool                 bCalcEner   = flags & GMX_FORCE_ENERGY;
397     int                  bCalcFshift = flags & GMX_FORCE_VIRIAL;
398     bool                 bDoTime     = nb->bDoTime;
399
400     cl_nbparam_params_t  nbparams_params;
401
402     /* Don't launch the non-local kernel if there is no work to do.
403        Doing the same for the local kernel is more complicated, since the
404        local part of the force array also depends on the non-local kernel.
405        So to avoid complicating the code and to reduce the risk of bugs,
406        we always call the local kernel, the local x+q copy and later (not in
407        this function) the stream wait, local f copyback and the f buffer
408        clearing. All these operations, except for the local interaction kernel,
409        are needed for the non-local interactions. The skip of the local kernel
410        call is taken care of later in this function. */
411     if (canSkipWork(nb, iloc))
412     {
413         plist->haveFreshList = false;
414
415         return;
416     }
417
418     /* calculate the atom data index range based on locality */
419     if (LOCAL_I(iloc))
420     {
421         adat_begin  = 0;
422         adat_len    = adat->natoms_local;
423     }
424     else
425     {
426         adat_begin  = adat->natoms_local;
427         adat_len    = adat->natoms - adat->natoms_local;
428     }
429
430     /* beginning of timed HtoD section */
431     if (bDoTime)
432     {
433         t->nb_h2d[iloc].openTimingRegion(stream);
434     }
435
436     /* HtoD x, q */
437     ocl_copy_H2D_async(adat->xq, nbatom->x + adat_begin * 4, adat_begin*sizeof(float)*4,
438                        adat_len * sizeof(float) * 4, stream, bDoTime ? t->nb_h2d[iloc].fetchNextEvent() : nullptr);
439
440     if (bDoTime)
441     {
442         t->nb_h2d[iloc].closeTimingRegion(stream);
443     }
444
445     /* When we get here all misc operations issues in the local stream as well as
446        the local xq H2D are done,
447        so we record that in the local stream and wait for it in the nonlocal one. */
448     if (nb->bUseTwoStreams)
449     {
450         if (iloc == eintLocal)
451         {
452             cl_int gmx_used_in_debug cl_error = clEnqueueMarkerWithWaitList(stream, 0, nullptr, &(nb->misc_ops_and_local_H2D_done));
453             assert(CL_SUCCESS == cl_error);
454
455             /* Based on the v1.2 section 5.13 of the OpenCL spec, a flush is needed
456              * in the local stream in order to be able to sync with the above event
457              * from the non-local stream.
458              */
459             cl_error = clFlush(stream);
460             assert(CL_SUCCESS == cl_error);
461         }
462         else
463         {
464             sync_ocl_event(stream, &(nb->misc_ops_and_local_H2D_done));
465         }
466     }
467
468     if (nbp->useDynamicPruning && plist->haveFreshList)
469     {
470         /* Prunes for rlistOuter and rlistInner, sets plist->haveFreshList=false
471            (that's the way the timing accounting can distinguish between
472            separate prune kernel and combined force+prune).
473          */
474         nbnxn_gpu_launch_kernel_pruneonly(nb, iloc, 1);
475     }
476
477     if (plist->nsci == 0)
478     {
479         /* Don't launch an empty local kernel (is not allowed with OpenCL).
480          * TODO: Separate H2D and kernel launch into separate functions.
481          */
482         return;
483     }
484
485     /* beginning of timed nonbonded calculation section */
486     if (bDoTime)
487     {
488         t->nb_k[iloc].openTimingRegion(stream);
489     }
490
491     /* get the pointer to the kernel flavor we need to use */
492     nb_kernel = select_nbnxn_kernel(nb,
493                                     nbp->eeltype,
494                                     nbp->vdwtype,
495                                     bCalcEner,
496                                     (plist->haveFreshList && !nb->timers->didPrune[iloc]));
497
498     /* kernel launch config */
499
500     KernelLaunchConfig config;
501     config.sharedMemorySize = calc_shmem_required_nonbonded(nbp->vdwtype, nb->bPrefetchLjParam);
502     config.stream           = stream;
503     config.blockSize[0]     = c_clSize;
504     config.blockSize[1]     = c_clSize;
505     config.gridSize[0]      = plist->nsci;
506
507     validate_global_work_size(config, 3, nb->dev_info);
508
509     if (debug)
510     {
511         fprintf(debug, "Non-bonded GPU launch configuration:\n\tLocal work size: %dx%dx%d\n\t"
512                 "Global work size : %dx%d\n\t#Super-clusters/clusters: %d/%d (%d)\n",
513                 (int)(config.blockSize[0]), (int)(config.blockSize[1]), (int)(config.blockSize[2]),
514                 (int)(config.blockSize[0] * config.gridSize[0]), (int)(config.blockSize[1] * config.gridSize[1]), plist->nsci*c_numClPerSupercl,
515                 c_numClPerSupercl, plist->na_c);
516     }
517
518     fillin_ocl_structures(nbp, &nbparams_params);
519
520     auto          *timingEvent  = bDoTime ? t->nb_k[iloc].fetchNextEvent() : nullptr;
521     constexpr char kernelName[] = "k_calc_nb";
522     if (useLjCombRule(nb->nbparam->vdwtype))
523     {
524         const auto kernelArgs = prepareGpuKernelArguments(nb_kernel, config,
525                                                           &nbparams_params, &adat->xq, &adat->f, &adat->e_lj, &adat->e_el, &adat->fshift,
526                                                           &adat->lj_comb,
527                                                           &adat->shift_vec, &nbp->nbfp_climg2d, &nbp->nbfp_comb_climg2d, &nbp->coulomb_tab_climg2d,
528                                                           &plist->sci, &plist->cj4, &plist->excl, &bCalcFshift);
529
530         launchGpuKernel(nb_kernel, config, timingEvent, kernelName, kernelArgs);
531     }
532     else
533     {
534         const auto kernelArgs = prepareGpuKernelArguments(nb_kernel, config,
535                                                           &adat->ntypes,
536                                                           &nbparams_params, &adat->xq, &adat->f, &adat->e_lj, &adat->e_el, &adat->fshift,
537                                                           &adat->atom_types,
538                                                           &adat->shift_vec, &nbp->nbfp_climg2d, &nbp->nbfp_comb_climg2d, &nbp->coulomb_tab_climg2d,
539                                                           &plist->sci, &plist->cj4, &plist->excl, &bCalcFshift);
540         launchGpuKernel(nb_kernel, config, timingEvent, kernelName, kernelArgs);
541     }
542
543     if (bDoTime)
544     {
545         t->nb_k[iloc].closeTimingRegion(stream);
546     }
547 }
548
549
550 /*! \brief Calculates the amount of shared memory required by the prune kernel.
551  *
552  *  Note that for the sake of simplicity we use the CUDA terminology "shared memory"
553  *  for OpenCL local memory.
554  *
555  * \param[in] num_threads_z cj4 concurrency equal to the number of threads/work items in the 3-rd dimension.
556  * \returns   the amount of local memory in bytes required by the pruning kernel
557  */
558 static inline int calc_shmem_required_prune(const int num_threads_z)
559 {
560     int shmem;
561
562     /* i-atom x in shared memory (for convenience we load all 4 components including q) */
563     shmem  = c_numClPerSupercl * c_clSize * sizeof(float)*4;
564     /* cj in shared memory, for each warp separately
565      * Note: only need to load once per wavefront, but to keep the code simple,
566      * for now we load twice on AMD.
567      */
568     shmem += num_threads_z * c_nbnxnGpuClusterpairSplit * c_nbnxnGpuJgroupSize * sizeof(int);
569     /* Warp vote, requires one uint per warp/32 threads per block. */
570     shmem += sizeof(cl_uint) * 2*num_threads_z;
571
572     return shmem;
573 }
574
575 void nbnxn_gpu_launch_kernel_pruneonly(gmx_nbnxn_gpu_t       *nb,
576                                        int                    iloc,
577                                        int                    numParts)
578 {
579     cl_atomdata_t       *adat    = nb->atdat;
580     cl_nbparam_t        *nbp     = nb->nbparam;
581     cl_plist_t          *plist   = nb->plist[iloc];
582     cl_timers_t         *t       = nb->timers;
583     cl_command_queue     stream  = nb->stream[iloc];
584     bool                 bDoTime = nb->bDoTime;
585
586     if (plist->haveFreshList)
587     {
588         GMX_ASSERT(numParts == 1, "With first pruning we expect 1 part");
589
590         /* Set rollingPruningNumParts to signal that it is not set */
591         plist->rollingPruningNumParts = 0;
592         plist->rollingPruningPart     = 0;
593     }
594     else
595     {
596         if (plist->rollingPruningNumParts == 0)
597         {
598             plist->rollingPruningNumParts = numParts;
599         }
600         else
601         {
602             GMX_ASSERT(numParts == plist->rollingPruningNumParts, "It is not allowed to change numParts in between list generation steps");
603         }
604     }
605
606     /* Use a local variable for part and update in plist, so we can return here
607      * without duplicating the part increment code.
608      */
609     int part = plist->rollingPruningPart;
610
611     plist->rollingPruningPart++;
612     if (plist->rollingPruningPart >= plist->rollingPruningNumParts)
613     {
614         plist->rollingPruningPart = 0;
615     }
616
617     /* Compute the number of list entries to prune in this pass */
618     int numSciInPart = (plist->nsci - part)/numParts;
619
620     /* Don't launch the kernel if there is no work to do. */
621     if (numSciInPart <= 0)
622     {
623         plist->haveFreshList = false;
624
625         return;
626     }
627
628     GpuRegionTimer *timer = nullptr;
629     if (bDoTime)
630     {
631         timer = &(plist->haveFreshList ? t->prune_k[iloc] : t->rollingPrune_k[iloc]);
632     }
633
634     /* beginning of timed prune calculation section */
635     if (bDoTime)
636     {
637         timer->openTimingRegion(stream);
638     }
639
640     /* Kernel launch config:
641      * - The thread block dimensions match the size of i-clusters, j-clusters,
642      *   and j-cluster concurrency, in x, y, and z, respectively.
643      * - The 1D block-grid contains as many blocks as super-clusters.
644      */
645     int       num_threads_z = getOclPruneKernelJ4Concurrency(nb->dev_info->vendor_e);
646     cl_kernel pruneKernel   = selectPruneKernel(nb->kernel_pruneonly, plist->haveFreshList);
647
648     /* kernel launch config */
649     KernelLaunchConfig config;
650     config.sharedMemorySize = calc_shmem_required_prune(num_threads_z);
651     config.stream           = stream;
652     config.blockSize[0]     = c_clSize;
653     config.blockSize[1]     = c_clSize;
654     config.blockSize[2]     = num_threads_z;
655     config.gridSize[0]      = numSciInPart;
656
657     validate_global_work_size(config, 3, nb->dev_info);
658
659     if (debug)
660     {
661         fprintf(debug, "Pruning GPU kernel launch configuration:\n\tLocal work size: %dx%dx%d\n\t"
662                 "\tGlobal work size: %dx%d\n\t#Super-clusters/clusters: %d/%d (%d)\n"
663                 "\tShMem: %zu\n",
664                 (int)(config.blockSize[0]), (int)(config.blockSize[1]), (int)(config.blockSize[2]),
665                 (int)(config.blockSize[0] * config.gridSize[0]), (int)(config.blockSize[1] * config.gridSize[1]), plist->nsci*c_numClPerSupercl,
666                 c_numClPerSupercl, plist->na_c, config.sharedMemorySize);
667     }
668
669     cl_nbparam_params_t  nbparams_params;
670     fillin_ocl_structures(nbp, &nbparams_params);
671
672     auto          *timingEvent  = bDoTime ? timer->fetchNextEvent() : nullptr;
673     constexpr char kernelName[] = "k_pruneonly";
674     const auto     kernelArgs   = prepareGpuKernelArguments(pruneKernel, config,
675                                                             &nbparams_params, &adat->xq, &adat->shift_vec,
676                                                             &plist->sci, &plist->cj4, &plist->imask, &numParts, &part);
677     launchGpuKernel(pruneKernel, config, timingEvent, kernelName, kernelArgs);
678
679     if (plist->haveFreshList)
680     {
681         plist->haveFreshList         = false;
682         /* Mark that pruning has been done */
683         nb->timers->didPrune[iloc] = true;
684     }
685     else
686     {
687         /* Mark that rolling pruning has been done */
688         nb->timers->didRollingPrune[iloc] = true;
689     }
690
691     if (bDoTime)
692     {
693         timer->closeTimingRegion(stream);
694     }
695 }
696
697 /*! \brief
698  * Launch asynchronously the download of nonbonded forces from the GPU
699  * (and energies/shift forces if required).
700  */
701 void nbnxn_gpu_launch_cpyback(gmx_nbnxn_ocl_t               *nb,
702                               const struct nbnxn_atomdata_t *nbatom,
703                               int                            flags,
704                               int                            aloc)
705 {
706     cl_int gmx_unused cl_error;
707     int               adat_begin, adat_len; /* local/nonlocal offset and length used for xq and f */
708
709     /* determine interaction locality from atom locality */
710     int              iloc = gpuAtomToInteractionLocality(aloc);
711
712     cl_atomdata_t   *adat    = nb->atdat;
713     cl_timers_t     *t       = nb->timers;
714     bool             bDoTime = nb->bDoTime;
715     cl_command_queue stream  = nb->stream[iloc];
716
717     bool             bCalcEner   = flags & GMX_FORCE_ENERGY;
718     int              bCalcFshift = flags & GMX_FORCE_VIRIAL;
719
720
721     /* don't launch non-local copy-back if there was no non-local work to do */
722     if (canSkipWork(nb, iloc))
723     {
724         /* TODO An alternative way to signal that non-local work is
725            complete is to use a clEnqueueMarker+clEnqueueBarrier
726            pair. However, the use of bNonLocalStreamActive has the
727            advantage of being local to the host, so probably minimizes
728            overhead. Curiously, for NVIDIA OpenCL with an empty-domain
729            test case, overall simulation performance was higher with
730            the API calls, but this has not been tested on AMD OpenCL,
731            so could be worth considering in future. */
732         nb->bNonLocalStreamActive = false;
733         return;
734     }
735
736     getGpuAtomRange(adat, aloc, adat_begin, adat_len);
737
738     /* beginning of timed D2H section */
739     if (bDoTime)
740     {
741         t->nb_d2h[iloc].openTimingRegion(stream);
742     }
743
744     /* With DD the local D2H transfer can only start after the non-local
745        has been launched. */
746     if (iloc == eintLocal && nb->bNonLocalStreamActive)
747     {
748         sync_ocl_event(stream, &(nb->nonlocal_done));
749     }
750
751     /* DtoH f */
752     ocl_copy_D2H_async(nbatom->out[0].f + adat_begin * 3, adat->f, adat_begin*3*sizeof(float),
753                        (adat_len)* adat->f_elem_size, stream, bDoTime ? t->nb_d2h[iloc].fetchNextEvent() : nullptr);
754
755     /* kick off work */
756     cl_error = clFlush(stream);
757     assert(CL_SUCCESS == cl_error);
758
759     /* After the non-local D2H is launched the nonlocal_done event can be
760        recorded which signals that the local D2H can proceed. This event is not
761        placed after the non-local kernel because we first need the non-local
762        data back first. */
763     if (iloc == eintNonlocal)
764     {
765         cl_error = clEnqueueMarkerWithWaitList(stream, 0, nullptr, &(nb->nonlocal_done));
766         assert(CL_SUCCESS == cl_error);
767         nb->bNonLocalStreamActive = true;
768     }
769
770     /* only transfer energies in the local stream */
771     if (LOCAL_I(iloc))
772     {
773         /* DtoH fshift */
774         if (bCalcFshift)
775         {
776             ocl_copy_D2H_async(nb->nbst.fshift, adat->fshift, 0,
777                                SHIFTS * adat->fshift_elem_size, stream, bDoTime ? t->nb_d2h[iloc].fetchNextEvent() : nullptr);
778         }
779
780         /* DtoH energies */
781         if (bCalcEner)
782         {
783             ocl_copy_D2H_async(nb->nbst.e_lj, adat->e_lj, 0,
784                                sizeof(float), stream, bDoTime ? t->nb_d2h[iloc].fetchNextEvent() : nullptr);
785
786             ocl_copy_D2H_async(nb->nbst.e_el, adat->e_el, 0,
787                                sizeof(float), stream, bDoTime ? t->nb_d2h[iloc].fetchNextEvent() : nullptr);
788         }
789     }
790
791     if (bDoTime)
792     {
793         t->nb_d2h[iloc].closeTimingRegion(stream);
794     }
795 }
796
797
798 /*! \brief Selects the Ewald kernel type, analytical or tabulated, single or twin cut-off. */
799 int nbnxn_gpu_pick_ewald_kernel_type(bool bTwinCut)
800 {
801     bool bUseAnalyticalEwald, bForceAnalyticalEwald, bForceTabulatedEwald;
802     int  kernel_type;
803
804     /* Benchmarking/development environment variables to force the use of
805        analytical or tabulated Ewald kernel. */
806     bForceAnalyticalEwald = (getenv("GMX_OCL_NB_ANA_EWALD") != nullptr);
807     bForceTabulatedEwald  = (getenv("GMX_OCL_NB_TAB_EWALD") != nullptr);
808
809     if (bForceAnalyticalEwald && bForceTabulatedEwald)
810     {
811         gmx_incons("Both analytical and tabulated Ewald OpenCL non-bonded kernels "
812                    "requested through environment variables.");
813     }
814
815     /* OpenCL: By default, use analytical Ewald
816      * TODO: tabulated does not work, it needs fixing, see init_nbparam() in nbnxn_ocl_data_mgmt.cpp
817      *
818      * TODO: decide if dev_info parameter should be added to recognize NVIDIA CC>=3.0 devices.
819      *
820      */
821     //if ((dev_info->prop.major >= 3 || bForceAnalyticalEwald) && !bForceTabulatedEwald)
822     if ((1                         || bForceAnalyticalEwald) && !bForceTabulatedEwald)
823     {
824         bUseAnalyticalEwald = true;
825
826         if (debug)
827         {
828             fprintf(debug, "Using analytical Ewald OpenCL kernels\n");
829         }
830     }
831     else
832     {
833         bUseAnalyticalEwald = false;
834
835         if (debug)
836         {
837             fprintf(debug, "Using tabulated Ewald OpenCL kernels\n");
838         }
839     }
840
841     /* Use twin cut-off kernels if requested by bTwinCut or the env. var.
842        forces it (use it for debugging/benchmarking only). */
843     if (!bTwinCut && (getenv("GMX_OCL_NB_EWALD_TWINCUT") == nullptr))
844     {
845         kernel_type = bUseAnalyticalEwald ? eelOclEWALD_ANA : eelOclEWALD_TAB;
846     }
847     else
848     {
849         kernel_type = bUseAnalyticalEwald ? eelOclEWALD_ANA_TWIN : eelOclEWALD_TAB_TWIN;
850     }
851
852     return kernel_type;
853 }