Merge release-5-0 into master
[alexxy/gromacs.git] / src / gromacs / mdlib / nbnxn_kernels / nbnxn_kernel_gpu_ref.c
1 /*
2  * This file is part of the GROMACS molecular simulation package.
3  *
4  * Copyright (c) 2012,2013,2014, by the GROMACS development team, led by
5  * Mark Abraham, David van der Spoel, Berk Hess, and Erik Lindahl,
6  * and including many others, as listed in the AUTHORS file in the
7  * top-level source directory and at http://www.gromacs.org.
8  *
9  * GROMACS is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public License
11  * as published by the Free Software Foundation; either version 2.1
12  * of the License, or (at your option) any later version.
13  *
14  * GROMACS is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with GROMACS; if not, see
21  * http://www.gnu.org/licenses, or write to the Free Software Foundation,
22  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA.
23  *
24  * If you want to redistribute modifications to GROMACS, please
25  * consider that scientific software is very special. Version
26  * control is crucial - bugs must be traceable. We will be happy to
27  * consider code for inclusion in the official distribution, but
28  * derived work must not be called official GROMACS. Details are found
29  * in the README & COPYING files - if they are missing, get the
30  * official version at http://www.gromacs.org.
31  *
32  * To help us fund GROMACS development, we humbly ask that you cite
33  * the research papers on the package. Check out http://www.gromacs.org.
34  */
35 #include "config.h"
36
37 #include <math.h>
38
39 #include "types/simple.h"
40 #include "typedefs.h"
41 #include "force.h"
42
43 #include "gromacs/math/utilities.h"
44 #include "gromacs/math/vec.h"
45 #include "gromacs/pbcutil/ishift.h"
46
47 #include "nbnxn_kernel_gpu_ref.h"
48 #include "../nbnxn_consts.h"
49 #include "nbnxn_kernel_common.h"
50
51 #define NCL_PER_SUPERCL         (NBNXN_GPU_NCLUSTER_PER_SUPERCLUSTER)
52 #define CL_SIZE                 (NBNXN_GPU_CLUSTER_SIZE)
53
54 void
55 nbnxn_kernel_gpu_ref(const nbnxn_pairlist_t     *nbl,
56                      const nbnxn_atomdata_t     *nbat,
57                      const interaction_const_t  *iconst,
58                      rvec                       *shift_vec,
59                      int                         force_flags,
60                      int                         clearF,
61                      real  *                     f,
62                      real  *                     fshift,
63                      real  *                     Vc,
64                      real  *                     Vvdw)
65 {
66     const nbnxn_sci_t  *nbln;
67     const real         *x;
68     gmx_bool            bEner;
69     gmx_bool            bEwald;
70     const real         *Ftab = NULL;
71     real                rcut2, rvdw2, rlist2;
72     int                 ntype;
73     real                facel;
74     int                 n;
75     int                 ish3;
76     int                 sci;
77     int                 cj4_ind0, cj4_ind1, cj4_ind;
78     int                 ci, cj;
79     int                 ic, jc, ia, ja, is, ifs, js, jfs, im, jm;
80     int                 n0;
81     int                 ggid;
82     real                shX, shY, shZ;
83     real                fscal, tx, ty, tz;
84     real                rinvsq;
85     real                iq;
86     real                qq, vcoul = 0, krsq, vctot;
87     int                 nti;
88     int                 tj;
89     real                rt, r, eps;
90     real                rinvsix;
91     real                Vvdwtot;
92     real                Vvdw_rep, Vvdw_disp;
93     real                ix, iy, iz, fix, fiy, fiz;
94     real                jx, jy, jz;
95     real                dx, dy, dz, rsq, rinv;
96     int                 int_bit;
97     real                fexcl;
98     real                c6, c12, cexp1, cexp2, br;
99     const real       *  shiftvec;
100     real       *        vdwparam;
101     int       *         shift;
102     int       *         type;
103     const nbnxn_excl_t *excl[2];
104
105     int                 npair_tot, npair;
106     int                 nhwu, nhwu_pruned;
107
108     if (nbl->na_ci != CL_SIZE)
109     {
110         gmx_fatal(FARGS, "The neighborlist cluster size in the GPU reference kernel is %d, expected it to be %d", nbl->na_ci, CL_SIZE);
111     }
112
113     if (clearF == enbvClearFYes)
114     {
115         clear_f(nbat, 0, f);
116     }
117
118     bEner = (force_flags & GMX_FORCE_ENERGY);
119
120     bEwald = EEL_FULL(iconst->eeltype);
121     if (bEwald)
122     {
123         Ftab = iconst->tabq_coul_F;
124     }
125
126     rcut2               = iconst->rcoulomb*iconst->rcoulomb;
127     rvdw2               = iconst->rvdw*iconst->rvdw;
128
129     rlist2              = nbl->rlist*nbl->rlist;
130
131     type                = nbat->type;
132     facel               = iconst->epsfac;
133     shiftvec            = shift_vec[0];
134     vdwparam            = nbat->nbfp;
135     ntype               = nbat->ntype;
136
137     x = nbat->x;
138
139     npair_tot   = 0;
140     nhwu        = 0;
141     nhwu_pruned = 0;
142
143     for (n = 0; n < nbl->nsci; n++)
144     {
145         nbln = &nbl->sci[n];
146
147         ish3             = 3*nbln->shift;
148         shX              = shiftvec[ish3];
149         shY              = shiftvec[ish3+1];
150         shZ              = shiftvec[ish3+2];
151         cj4_ind0         = nbln->cj4_ind_start;
152         cj4_ind1         = nbln->cj4_ind_end;
153         sci              = nbln->sci;
154         vctot            = 0;
155         Vvdwtot          = 0;
156
157         if (nbln->shift == CENTRAL &&
158             nbl->cj4[cj4_ind0].cj[0] == sci*NCL_PER_SUPERCL)
159         {
160             /* we have the diagonal:
161              * add the charge self interaction energy term
162              */
163             for (im = 0; im < NCL_PER_SUPERCL; im++)
164             {
165                 ci = sci*NCL_PER_SUPERCL + im;
166                 for (ic = 0; ic < CL_SIZE; ic++)
167                 {
168                     ia     = ci*CL_SIZE + ic;
169                     iq     = x[ia*nbat->xstride+3];
170                     vctot += iq*iq;
171                 }
172             }
173             if (!bEwald)
174             {
175                 vctot *= -facel*0.5*iconst->c_rf;
176             }
177             else
178             {
179                 /* last factor 1/sqrt(pi) */
180                 vctot *= -facel*iconst->ewaldcoeff_q*M_1_SQRTPI;
181             }
182         }
183
184         for (cj4_ind = cj4_ind0; (cj4_ind < cj4_ind1); cj4_ind++)
185         {
186             excl[0]           = &nbl->excl[nbl->cj4[cj4_ind].imei[0].excl_ind];
187             excl[1]           = &nbl->excl[nbl->cj4[cj4_ind].imei[1].excl_ind];
188
189             for (jm = 0; jm < NBNXN_GPU_JGROUP_SIZE; jm++)
190             {
191                 cj               = nbl->cj4[cj4_ind].cj[jm];
192
193                 for (im = 0; im < NCL_PER_SUPERCL; im++)
194                 {
195                     /* We're only using the first imask,
196                      * but here imei[1].imask is identical.
197                      */
198                     if ((nbl->cj4[cj4_ind].imei[0].imask >> (jm*NCL_PER_SUPERCL+im)) & 1)
199                     {
200                         gmx_bool within_rlist;
201
202                         ci               = sci*NCL_PER_SUPERCL + im;
203
204                         within_rlist     = FALSE;
205                         npair            = 0;
206                         for (ic = 0; ic < CL_SIZE; ic++)
207                         {
208                             ia               = ci*CL_SIZE + ic;
209
210                             is               = ia*nbat->xstride;
211                             ifs              = ia*nbat->fstride;
212                             ix               = shX + x[is+0];
213                             iy               = shY + x[is+1];
214                             iz               = shZ + x[is+2];
215                             iq               = facel*x[is+3];
216                             nti              = ntype*2*type[ia];
217
218                             fix              = 0;
219                             fiy              = 0;
220                             fiz              = 0;
221
222                             for (jc = 0; jc < CL_SIZE; jc++)
223                             {
224                                 ja               = cj*CL_SIZE + jc;
225
226                                 if (nbln->shift == CENTRAL &&
227                                     ci == cj && ja <= ia)
228                                 {
229                                     continue;
230                                 }
231
232                                 int_bit = ((excl[jc>>2]->pair[(jc & 3)*CL_SIZE+ic] >> (jm*NCL_PER_SUPERCL+im)) & 1);
233
234                                 js               = ja*nbat->xstride;
235                                 jfs              = ja*nbat->fstride;
236                                 jx               = x[js+0];
237                                 jy               = x[js+1];
238                                 jz               = x[js+2];
239                                 dx               = ix - jx;
240                                 dy               = iy - jy;
241                                 dz               = iz - jz;
242                                 rsq              = dx*dx + dy*dy + dz*dz;
243                                 if (rsq < rlist2)
244                                 {
245                                     within_rlist = TRUE;
246                                 }
247                                 if (rsq >= rcut2)
248                                 {
249                                     continue;
250                                 }
251
252                                 if (type[ia] != ntype-1 && type[ja] != ntype-1)
253                                 {
254                                     npair++;
255                                 }
256
257                                 /* avoid NaN for excluded pairs at r=0 */
258                                 rsq             += (1.0 - int_bit)*NBNXN_AVOID_SING_R2_INC;
259
260                                 rinv             = gmx_invsqrt(rsq);
261                                 rinvsq           = rinv*rinv;
262                                 fscal            = 0;
263
264                                 qq               = iq*x[js+3];
265                                 if (!bEwald)
266                                 {
267                                     /* Reaction-field */
268                                     krsq  = iconst->k_rf*rsq;
269                                     fscal = qq*(int_bit*rinv - 2*krsq)*rinvsq;
270                                     if (bEner)
271                                     {
272                                         vcoul = qq*(int_bit*rinv + krsq - iconst->c_rf);
273                                     }
274                                 }
275                                 else
276                                 {
277                                     r     = rsq*rinv;
278                                     rt    = r*iconst->tabq_scale;
279                                     n0    = rt;
280                                     eps   = rt - n0;
281
282                                     fexcl = (1 - eps)*Ftab[n0] + eps*Ftab[n0+1];
283
284                                     fscal = qq*(int_bit*rinvsq - fexcl)*rinv;
285
286                                     if (bEner)
287                                     {
288                                         vcoul = qq*((int_bit - gmx_erf(iconst->ewaldcoeff_q*r))*rinv - int_bit*iconst->sh_ewald);
289                                     }
290                                 }
291
292                                 if (rsq < rvdw2)
293                                 {
294                                     tj        = nti + 2*type[ja];
295
296                                     /* Vanilla Lennard-Jones cutoff */
297                                     c6        = vdwparam[tj];
298                                     c12       = vdwparam[tj+1];
299
300                                     rinvsix   = int_bit*rinvsq*rinvsq*rinvsq;
301                                     Vvdw_disp = c6*rinvsix;
302                                     Vvdw_rep  = c12*rinvsix*rinvsix;
303                                     fscal    += (Vvdw_rep - Vvdw_disp)*rinvsq;
304
305                                     if (bEner)
306                                     {
307                                         vctot   += vcoul;
308
309                                         Vvdwtot +=
310                                             (Vvdw_rep - int_bit*c12*iconst->sh_invrc6*iconst->sh_invrc6)/12 -
311                                             (Vvdw_disp - int_bit*c6*iconst->sh_invrc6)/6;
312                                     }
313                                 }
314
315                                 tx        = fscal*dx;
316                                 ty        = fscal*dy;
317                                 tz        = fscal*dz;
318                                 fix       = fix + tx;
319                                 fiy       = fiy + ty;
320                                 fiz       = fiz + tz;
321                                 f[jfs+0] -= tx;
322                                 f[jfs+1] -= ty;
323                                 f[jfs+2] -= tz;
324                             }
325
326                             f[ifs+0]        += fix;
327                             f[ifs+1]        += fiy;
328                             f[ifs+2]        += fiz;
329                             fshift[ish3]     = fshift[ish3]   + fix;
330                             fshift[ish3+1]   = fshift[ish3+1] + fiy;
331                             fshift[ish3+2]   = fshift[ish3+2] + fiz;
332
333                             /* Count in half work-units.
334                              * In CUDA one work-unit is 2 warps.
335                              */
336                             if ((ic+1) % (CL_SIZE/2) == 0)
337                             {
338                                 npair_tot += npair;
339
340                                 nhwu++;
341                                 if (within_rlist)
342                                 {
343                                     nhwu_pruned++;
344                                 }
345
346                                 within_rlist = FALSE;
347                                 npair        = 0;
348                             }
349                         }
350                     }
351                 }
352             }
353         }
354
355         if (bEner)
356         {
357             ggid             = 0;
358             Vc[ggid]         = Vc[ggid]   + vctot;
359             Vvdw[ggid]       = Vvdw[ggid] + Vvdwtot;
360         }
361     }
362
363     if (debug)
364     {
365         fprintf(debug, "number of half %dx%d atom pairs: %d after pruning: %d fraction %4.2f\n",
366                 nbl->na_ci, nbl->na_ci,
367                 nhwu, nhwu_pruned, nhwu_pruned/(double)nhwu);
368         fprintf(debug, "generic kernel pair interactions:            %d\n",
369                 nhwu*nbl->na_ci/2*nbl->na_ci);
370         fprintf(debug, "generic kernel post-prune pair interactions: %d\n",
371                 nhwu_pruned*nbl->na_ci/2*nbl->na_ci);
372         fprintf(debug, "generic kernel non-zero pair interactions:   %d\n",
373                 npair_tot);
374         fprintf(debug, "ratio non-zero/post-prune pair interactions: %4.2f\n",
375                 npair_tot/(double)(nhwu_pruned*nbl->na_ci/2*nbl->na_ci));
376     }
377 }